Какие перегрузки выдержит человек при ускорении. Единицы силы

Перегру́зка - отношение абсолютной величины линейного ускорения, вызванного негравитационными силами, к ускорению свободного падения на поверхности Земли. Будучи отношением двух сил, перегрузка является безразмерной величиной, однако часто перегрузка указывается в единицах ускорения свободного падения g. Перегрузка в 1 единицу (то есть 1 g) численно равна весу тела, покоящемуся в поле тяжести Земли. Перегрузка в 0 g испытывается телом, находящемся в состоянии свободного падения под воздействием только гравитационных сил, то есть в состоянии невесомости.

Перегрузка - векторная величина. Для живого организма очень важно направление действия перегрузки. При перегрузке органы человека стремятся оставаться в прежнем состоянии (равномерного прямолинейного движения или покоя). При положительной перегрузке (голова - ноги) кровь уходит от головы в ноги, желудок опускается вниз. При отрицательной перегрузке увеличивается приток крови к голове. Наиболее благоприятное положение тела человека, при котором он может воспринимать наибольшие перегрузки - лёжа на спине, лицом к направлению ускорения движения, наиболее неблагоприятное для перенесения перегрузок - в продольном направлении ногами к направлению ускорения. При столкновении автомобиля с неподвижной преградой сидящий в автомобиле человек испытает перегрузку спина-грудь. Такая перегрузка переносится без особых трудностей. Обычный человек может выдерживать перегрузки до 15 g около 3-5 секунд без потери сознания. Перегрузки от 20-30 g и более человек может выдерживать без потери сознания не более 1-2 секунд и зависимости от величины перегрузки.

Одно из основных требований к военным летчикам и космонавтам - способность организма переносить перегрузки. Тренированные пилоты в противоперегрузочных костюмах могут переносить перегрузки от −3…−2 g до +12 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 7-8 g в глазах «краснеет», пропадает зрение, и человек постепенно теряет сознание из-за прилива крови к голове. Космонавты во время взлёта переносят перегрузку лёжа. В этом положении перегрузка действует в направлении грудь - спина, что позволяет выдержать несколько минут перегрузку в несколько единиц g. Существуют специальные противоперегрузочные костюмы, задача которых - облегчить действие перегрузки. Костюмы представляют собой корсет со шлангами, надувающимися от воздушной системы и удерживающими наружную поверхность тела человека, немного препятствуя оттоку крови.

Перегрузка увеличивает нагрузку на конструкцию машин и может привести к их поломке или разрушению, а также к перемещению не закреплённого или плохо закреплённого груза. Допустимое значение перегрузок для гражданских самолётов составляет 2,5 g.

Примерные значения перегрузок, встречающихся в жизниЧеловек, стоящий неподвижно1 Пассажир в самолёте при взлёте1,5 Парашютист при приземлении со скоростью 6 м/с1,8 Парашютист при раскрытии парашютадо 10,0 (По-16, Д1-5У) до 16 (Ут-15 сер.5) Космонавты при спуске в космическом корабле «Союз»до 3,0-4,0 Лётчик спортивного самолёта при выполнении фигур высшего пилотажаот −7 до +12 Перегрузка (длительная), соответствующая пределу физиологических возможностей человека8,0-10,0 Предыдущий рекорд (кратковременной) перегрузки автомобиля, при которой человеку удалось выжить 179,8 Наибольшая (кратковременная) перегрузка автомобиля, при которой человеку удалось выжить.

Сила, приложенная к телу, в системе единиц СИ измеряется в ньютонах (1 Н = 1 кг·м/с 2 ). В технических дисциплинах в нередко качестве единицы измерения силы традиционно используют килограмм-силу (1 кгс , 1 кГ ) и аналогичные единицы: грамм-силу (1 гс , 1 Г ), тонна-силу (1 тс , 1 Т ). 1 килограмм-сила определена как сила, сообщающая телу массой 1 кг нормальное ускорение, равное по определению 9,80665 м/с 2 (это ускорение приблизительно равно ускорению свободного падения). Таким образом, по второму закону Ньютона, 1 кгс = 1 кг · 9,80665 м/с 2 = 9,80665 Н . Можно сказать также, что тело массой 1 кг , покоящееся на опоре, имеет вес 1 кгс Часто ради краткости килограмм-силу называют просто «килограммом» (а тонна-силу, соответственно, «тонной»), что порождает порой путаницу у людей, не привыкших к использованию разных единиц.

Русская терминология, сложившаяся в ракетостроении, традиционно использует «килограммы» и «тонны» (точнее, килограмм-силы и тонна-силы) в качестве единиц тяги ракетных двигателей. Таким образом, когда говорят о ракетном двигателе с тягой 100 тонн, имеют в виду, что данный двигатель развивает тягу 10 5 кг · 9,80665 м/с 2 $\approx$ 10 6 Н .

Частая ошибка

Путая ньютоны и килограмм-силы, некоторые считают, что сила в 1 килограмм-силу сообщает телу массой 1 килограмм ускорение 1 м/с 2 , т. е. пишут ошибочное «равенство» 1 кгс / 1 кг = 1 м/с 2 . В то же время очевидно, что на самом деле 1 кгс / 1 кг = 9,80665 Н / 1 кг = 9,80665 м/с 2 — таким образом, допускается ошибка почти в 10 раз.

Пример

<…> Соответственно, сила которая давит на частицы в пределах средневзвешенного радиуса будет равна: 0,74 Гс/мм 2 · 0,00024 = 0,00018 Гс/мм 2 или 0,18 мГс/мм 2 . Соответственно, на среднюю частицу с поперечным сечением в 0,01 мм 2 будет давить сила в 0,0018 мГс.
Эта сила придаст частице ускорение, равное ее отношению к массе средней частицы: 0,0018 мГс / 0,0014 мГ = 1,3 м/сек 2 . <…>

(Выделение apollofacts .) Разумеется, сила величиной 0,0018 миллиграмм-сил сообщила бы частице массой 0,0014 миллиграмм ускорение почти в 10 раз больше того, что насчитал Мухин: 0,0018 миллиграмм-сил / 0,0014 миллиграмм = 0,0018 мг · 9,81 м/с 2 / 0,0014 мг $\approx$ 13 м/сек 2 . (Можно заметить, что с исправлением одной только этой ошибки насчитанная Мухиным глубина кратера, который якобы должен был бы образоваться под лунным модулем при посадке, сразу упадет с 1,9 м , которые требует Мухин, до 20 см ; однако весь остальной расчет настолько нелеп , что эта поправка не способна его исправить).

Вес тела

По определению, вес тела есть сила, с которой тело давит на опору или подвес. Вес тела, покоящегося на опоре или подвесе (т. е. неподижного относительно Земли или иного небесного тела) равен

(1)

\begin{align} \mathbf{W} = m \cdot \mathbf{g}, \end{align}

где $\mathbf{W}$ — вес тела, $m$ — масса тела, $\mathbf{g}$ — ускорение свободного падения в данной точке. На поверхности Земли ускорение свободного падения близко к нормальному ускорению (часто округляемому до 9,81 м/с 2 ). Тело массой 1 кг имеет вес $\approx$ 1 кг · 9,81 м/с 2 $\approx$ 1 кгс . На поверхности Луны ускорение свободного падения примерно в 6 раз меньше, чем у поверхности Земли (точнее, близко к 1,62 м/с 2 ). Таким образом, на Луне тела примерно в 6 раз легче, чем на Земле.

Частая ошибка

Путают вес тела и его массу. Масса тела не зависит от небесного тела, она постоянна (если пренебречь релятивистскими эффектами) и всегда равна одной и той же величине — и на Земле, и на Луне, и в невесомости

Пример

Пример

В газете «Дуэль », № 20, 2002 г. автор живописует страдания, которые должны испытывать астронавты лунного модуля при посадке на Луну, и настаивает на невозможности такой посадки :

Космонавты <…> испытывают длительную перегрузку, максимальное значение которой — 5. Перегрузка направлена вдоль позвоночника (самая опасная перегрузка). Спросите у военных летчиков, можно ли устоять в самолете в течение 8 мин. при пятикратной перегрузке да еще и управлять им. Представьте себе, что после трех дней пребывания в воде (три дня полета к Луне в невесомости) вы выбрались на сушу, вас поместили в Лунную кабину, а ваш вес стал 400 кг (перегрузка 5), комбинезон на вас — 140 кг, а рюкзак за спиной — 250 кг. Чтобы вы не упали, вас держат тросом, прикрепленным к поясу, 8 минут, а затем еще 1,5 мин. (никаких кресел, ложементов нет). Не подгибайте ноги, опирайтесь на подлокотники (руки должны быть на органах управления). Кровь отлила от головы? Глаза почти не видят? Не умирайте и не падайте в обморок <…>
уж совсем плохо заставлять космонавтов управлять посадкой в положении «стоя» при длительной 5-кратной перегрузке — это просто НЕВОЗМОЖНО.

Однако, как уже было показано, в начале спуска астронавты испытывали перегрузку $\approx$ 0,66 g — то есть заметно меньше их нормального земного веса (и никакого рюкзака за спиной у них не было — они были непосредственно подключены к системе жизнеобеспечения корабля). Перед посадкой тяга двигателя почти уравновешивала вес корабля на Луне, поэтому связанное с ней ускорение составляет $\approx$ 1/6 g — таким образом, в течение всей посадки они испытывали меньшую нагрузку, чем при простом стоянии на земле. По сути, одна из задач описыванной тросовая системы как раз и была в том, чтобы помочь астронавтам удержаться на ногах в условиях пониженного веса .

В данной статье репетитор по физике и математике рассказывает о том, как рассчитать перегрузку, которую испытывает тело в момент разгона или торможения. Данный материал очень плохо рассматривается в школе, поэтому школьники очень часто не знают, как осуществлять расчёт перегрузки , а ведь соответствующие задания встречаются на ЕГЭ и ОГЭ по физике. Так что дочитайте эту статью до конца или посмотрите прилагающийся видеоурок. Знания, которые вы получите, пригодятся вам на экзамене.


Начнём с определений. Перегрузкой называется отношение веса тела к величине силы тяжести, действующей на это тело у поверхности земли. Вес тела — это сила, которая действует со стороны тела на опору или подвес. Обратите внимание, вес — это именно сила! Поэтому измеряется вес в ньютонах, а не в килограммах, как некоторые считают.

Таком образом, перегрузка — это безразмерная величина (ньютоны делятся на ньютоны, в результате ничего не остаётся). Однако, иногда эту величину выражают в ускорениях свободного падения. Говорят, к примеру, что перегрузка равна , имея ввиду, что вес тела вдвое больше силы тяжести.

Примеры расчёта перегрузки

Покажем, как осуществлять расчёт перегрузки на конкретных примерах. Начнём с самых простых примеров и перейдём далее к более сложным.

Очевидно, что человек, стоящий на земле, не испытывает никаких перегрузок. Поэтому хочется сказать, что его перегрузка равна нулю. Но не будем делать поспешных выводов. Нарисуем силы, действующие на этого человека:

К человеку приложены две силы: сила тяжести , притягивающая тело к земле, и противодействующая ей со стороны земной поверхности сила реакции , направленная вверх. На самом деле, если быть точным, то эта сила приложена к подошвам ног человека. Но в данном конкретном случае, это не имеет значения, поэтому её можно отложить от любой точки тела. На рисунке она отложена от центра масс человека.

Вес человека приложен к опоре (к поверхности земли), в ответ в соответствии с 3-м законом Ньютона со стороны опоры на человека действует равная по величине и противоположно направленная сила . Значит для нахождения веса тела, нам нужно найти величину силы реакции опоры.

Поскольку человек стоит на месте и не проваливается сквозь землю, то силы, которые на него действуют скомпенсированы. То есть , и, соответственно, . То есть расчёт перегрузки в этом случае даёт следующий результат:

Запомните это! При отсутствии перегрузок перегрузка равна 1, а не 0. Как бы странно это не звучало.

Определим теперь, чему равна перегрузка человека, который находится в свободном падении.

Если человек пребывает в состоянии свободного падения, то на него действует только сила тяжести, которая ничем не уравновешивается. Силы реакции опоры нет, как нет и веса тела. Человек находится в так называемом состоянии невесомости. В этом случае перегрузка равна 0.

Космонавты находятся в горизонтальном положении в ракете во время её старта. Только так они могут выдержать перегрузки, которые они испытывают, не потеряв при этом сознания. Изобразим это на рисунке:

В этом состоянии на них действует две силы: сила реакции опоры и сила тяжести . Как и в прошлом примере, модуль веса космонавтов равен величине силы реакции опоры: . Отличие будет состоять в том, что сила реакции опоры уже не равна силе тяжести, как в прошлый раз, поскольку ракета движется вверх с ускорением . С этим же ускорением синхронно с ракетой ускоряются и космонавты.

Тогда в соответствии со 2-м законом Ньютона в проекции на ось Y (см. рисунок), получаем следующее выражение: , откуда . То есть искомая перегрузка равна:

Надо сказать, что это не самая большая перегрузка, которую приходится испытывать космонавтам во время старта ракеты. Перегрузка может доходить до 7. Длительное воздействие таких перегрузок на тело человека неминуемо приводит к летальному исходу.

В нижней точке «мёртвой петли» на пилота будут действовать две силы: вниз — сила , вверх, к центру «мёртвой петли», — сила (со стороны кресла, в котором сидит пилот):

Туда же будет направлено центростремительное ускорение пилота , где км/ч м/с — скорость самолёта, — радиус «мёртвой петли». Тогда вновь в соответствии со 2-м законом Ньютона в проекции на ось, направленную вертикально вверх, получаем следующее уравнение:

Тогда вес равен . Итак, расчёт перегрузки даёт следующий результат:

Весьма существенная перегрузка. Спасает жизнь пилота только то, что действует она не очень длительно.

Ну и напоследок, рассчитаем перегрузку, которую испытывает водитель автомобиля при разгоне.

Итак, конечная скорость автомобиля равна км/ч м/с. Если автомобиль ускоряется до этой скорости из состояния покоя за c, то его ускорение равно м/с 2 .Автомобиль движется горизонтально, следовательно, вертикальная составляющая силы реакции опоры уравновешена силой тяжести, то есть . В горизонтальном направлении водитель ускоряется вместе с автомобилем. Следовательно, по 2-закону Ньютона в проекции на ось, сонаправленную с ускорением, горизонтальная составляющая силы реакции опоры равна .

Величину общей силы реакции опоры найдём по теореме Пифагора: . Она будет равна модулю веса. То есть искомая перегрузка будет равна:

Сегодня мы научились рассчитывать перегрузку. Запомните этот материал, он может пригодиться при решении заданий из ЕГЭ или ОГЭ по физике, а также на различных вступительных экзаменах и олимпиадах.

Материал подготовил , Сергей Валерьевич

Тамбовское областное государственное общеобразовательное учреждение

Общеобразовательная школа – интернат с первоначальной летной подготовкой

имени М. М. Расковой

Реферат

«Перегрузки в авиации»

Выполнил: воспитанник 103 взвода

Зотов Вадим

Руководитель: Пеливан В.С.

Тамбов 2006 г

1. Вступление.

2. Вес тела.

3. Перегрузка.

4. Перегрузки при выполнении фигур высшего пилотажа.

5. Ограничения по перегрузке. Невесомость.

6. Заключение.

ПЕРЕГРУЗКИ В АВИАЦИИ

1. Вступление.

Силы тяготения являются, очевидно, первыми, с которыми мы знакомимся еще с детских лет. В физике их часто называют гравитационными (от латинского – тяжесть).

Значение сил тяготения в природе огромно. Они играют первостепенную роль в образовании планет, в распределении вещества в глубинах небесных тел, определяют движение звезд, планетных систем и планет, удерживают около планет атмосферу. Без сил тяготения невозможной была бы жизнь и само существование вселенной, а значит, и нашей Земли.

Сооружая здания и каналы, проникая в глубь Земли или в космическое пространство, конструируя корабль или шагающий экскаватор, добиваясь результатов почти в любом виде спорта, человек всюду имеет дело с силой тяготения.

Великие и таинственные силы тяготения были предметом размышления выдающихся умов человечества: от Платона и Аристотеля в древнем мире до ученых эпохи Возрождения – Леонардо да Винчи, Коперника, Галилея, Кеплера, от Гука и Ньютона до нашего современника Эйнштейна.

При рассмотрении гравитационных сил используются различные понятия, в числе которых сила тяготения, сила тяжести, вес.

2. Вес тела.

Вес – есть сила, с которой вследствие земного притяжения тело давит на опору или натягивает подвес.

В аэродинамике под весом тела понимают несколько иную величину.

На самолет при полете действуют аэродинамические силы (подъемная сила и лобовое сопротивление), сила тяги двигательной установки и сила земного притяжения, которую называют весом и обозначают G.

где m – масса летательного аппарата, g – ускорение свободного падения.

Вес – одна из самых сложных сил в природе. Вы знаете, что вес – величина непостоянная, он меняется в зависимости от характера движения тела.

Если тело движется без ускорения, то вес тела равен силе тяжести и определяется по формуле P = mg.

Если тело движется с ускорением вверх, т. е. с ускорением противоположно направленным ускорению свободного падения (а↓g), то вес тела увеличивается, определяется по формуле P = m(g+a) и возникает перегрузка.

Если тело движется с ускорением вниз, т. е. с ускорением сонаправленным с ускорением свободного падения (а ↓↓g), то вес тела определяется по формуле P = m(g-a), и в этом случае возможны несколько вариантов:

если |a|<|g|, то вес тела уменьшается (становится меньше силы тяжести), и возникает состояние частичной невесомости;

если |a|=|g|, то вес тела равен 0, возникает состояние полной невесомости (т. е. тело свободно падает);

если |a|>|g|, то вес тела становится отрицательным и возникает отрицательная перегрузка.

3. Перегрузки.

Перегрузкой называется отношение суммы всех сил, кроме силы веса, действующих на самолет, к весу самолета, и определяется по формуле:

где P – тяга двигателя, R – суммарная аэродинамическая сила.

Стрелки над символами в формуле указывают, что учитывается направление действия сил, поэтому силы нельзя складывать алгебраически.

Например, если аэродинамическая сила R и тяга двигателя P лежат в плоскости симметрии, то их сумма R+P, определяется, как показано на рисунке 4.14.

В большинстве случаев пользуются не суммарной перегрузкой n, а ее проекциями на оси скоростной системы координат – n x , n y , n z как показано на рисунке 4.15.

Существуют три вида перегрузки: нормальная, продольная и боковая.

Нормальная перегрузка n y определяется в первую очередь подъемной силой и определяется по формуле:

где Y – подъемная сила.

На заданной скорости и высоте полета изменить нормальную перегрузку можно путем изменения угла атаки. Как показано на рисунке с уменьшением скорости полета предельные нормальные перегрузки возрастают, а с увеличением высоты – уменьшаются. При отрицательном угле атаки возникают отрицательные перегрузки.

Продольная перегрузка n x определяется отношением разности сил тяги двигателя (Р) и лобового сопротивления (Q) к весу самолета:

n x = (P-Q) / G.

Продольная перегрузка положительна, если тяга больше лобового сопротивления, и отрицательна, если тяга меньше лобового сопротивления или если тяги вообще нет.

Таким образом, знак продольной перегрузки зависит от соотношения величин тяги двигателя и лобового сопротивления самолета.

С увеличением высоты полета положительные продольные перегрузки n х уменьшаются, т. к. уменьшается избыточность тела. Зависимость продольной перегрузки от высоты и скорости полета изображена на рисунке.

Боковая перегрузка n z возникает при несимметричном обтекании самолета воздушным потоком. Это наблюдается при наличии скольжения, либо при отклонении руля направления.

4. Перегрузки при выполнении фигур высшего пилотажа.

Рассмотрим, какие перегрузки возникают при выполнении фигур высшего пилотажа.

На самолетах в разных пилотажных фигурах перегрузка действует по-разному.

Например, на самолете Л-39 при выполнении полупетли необходимо выдерживать оптимальные изменения перегрузки.

Полупетля – фигура пилотажа, при выполнении которой самолет описывает восходящую часть петли Нестерова с последующим поворотом относительно продольной оси на 180 0 и выводом в горизонтальный

полет в направлении, обратном вводу.

При выполнении данной фигуры можно отметить несколько отсчетных точек:

1. Ввод в полупетлю.

2. Угол кабрирования 50 0 – 60 0 . Перегрузка в данной

точке 4,5 – 5 ед.

3. Угол кабрирования 90 0 . Перегрузка 3,5 – 4 ед.

4. Начало ввода в полубочку. Перегрузка

приблизительно равна 1ед.

5. Вывод из полубочки.

При перегрузке больше оптимальной резко увеличивается лобовое сопротивление и быстро падает скорость, возможен выход самолета на режим тряски и сваливания. При перегрузке меньше оптимальной увеличивается время выполнения фигуры и скорость в верхней точке также становится менее заданной.

Рассмотрим еще одну фигуру высшего пилотажа – переворот.

Переворот – это фигура пилотажа, при выполнении которой самолет поворачивается относительно продольной плоскости оси на 180 0 с последующим движением по нисходящей траектории в вертикальной плоскости и выводом в горизонтальный полет в направлении, обратном вводу.

При выполнении переворота на Л-39, в первой половине траектории составляющая силы веса (Gcosθ) способствует искривлению траектории, поэтому на этом участке достаточно небольшое значение нормальной перегрузки 2 – 3 ед. Во второй половине эта же сила препятствует искривлению траектории, поэтому для вывода самолета из пикирования необходима большая перегрузка 3,5 – 4,5 ед. При перевороте происходит зависание самолета, возникновение отрицательных перегрузок в положении «вверх колесами» летчик устраняет, взяв РУС на себя, увеличивает перегрузку до допустимой и создает необходимое угловое вращение.

На Як-52 , например, при выполнении пикирования, при вводе в пикирование появляется отрицательная перегрузка. При выводе из пикирования потеря высоты определяется скоростью, углом пикирования и перегрузкой, создаваемой летчиком.

При выводе из виража «Горки», во избежание возникновения больших отрицательных перегрузок, вывод летчик производит плавным движением ручки управления от себя.

«Пикирование» «Горка»

Еще одной захватывающей фигурой высшего пилотажа является петля Нестерова.

Петля Нестерова – фигура пилотажа, при выполнении которой самолет описывает траекторию в вертикальной плоскости, расположенную выше точки ввода.

При выполнении петли Нестерова на Як-52 летчик должен следить по нарастанию перегрузки за созданием угловой скорости. Необходимо создать угловую скорость вращения с таким расчетом, чтобы при угле кабрирования 40 0 – 50 0 перегрузка была равна 4 – 4,5 ед. При выводе самолета из петли летчик должен следить за темпом нарастания перегрузки.