Когда можно применять модель идеального газа. Молярная масса. Число Авогадро. Примеры решения задач

ОПРЕДЕЛЕНИЕ

Идеальный газ - это простейшая физическая модель настоящего газа. Идеальный газ состоит из огромного числа частиц, которые уподобляют шарикам (материальным точкам), имеющим конечную массу, и у которых отсутствует объем.

Моделью в физике называют упрощенную копию изучаемой настоящей системы. Она отражает самые значимые основные характеристики и свойства системы.

В модели идеального газа учитываются только основные свойства молекул, которые требуются для того, чтобы объяснить основы поведения газа. Идеальный газ напоминает реальный газ в довольно узком интервале давлений (p) и температур (T).

Главным упрощением идеального газа является предположение о том, что молекулы идеального газа не взаимодействуют на расстоянии. Кинетическая энергия движения молекул такого газа много больше, потенциальной энергии их взаимодействия. Данное упрощение ведет к уравнению состояния идеального газа:

где m - масса газа; - молярная масса; - универсальная газовая постоянная.

Реальные газы можно уподобить идеальному газу с достаточно высокой точностью при низких делениях, когда расстояния (в среднем) между молекулами существенно больше, чем их размеры и (или) низких температурах. В таком случае силы притяжения между молекулами можно считать ничтожно малыми, а силы отталкивания возникают на очень маленькие промежутки времени при столкновениях молекул.

Столкновения частиц идеального газа описывают при помощи законов абсолютно упругого соударения шаров. Следует отметить, что имеются в виду законы столкновения именно шаров, так как точечные частицы испытывают только лобовые столкновения, которые не могут изменять направления скоростей на разные углы. В промежутках между столкновениями молекулы идеального газа движется по прямым линиям. Законы столкновений и соударений о стенки сосудов, в которых находится газ, известны. В МКТ движение каждой молекулы идеального газа описывают при помощи законов динамики. Однако из-за того, что число молекул в газе огромно, то практически не представляется возможным написать такое число уранений.

С помощью модели идеального газа получают, например, основное уравнение молекулярно-кинетической теории (МКТ) (2). Которое показывает, что давление газа является результатом многочисленных ударов его молекул о стенки сосуда, в котором газ находится.

где - средняя кинетическая энергия поступательного движения молекул газа; - концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда); - масса молекулы газа; - среднеквадратичная скорость молекулы.

Модель идеального газа можно использовать для объяснения свойств газов. Так, горят, что газ занимает весь объем, который ему предоставляется, потому что силы взаимодействия его молекул малы, и они не способны удержать молекулы друг около друга.

Примеры решения задач

ПРИМЕР 1

Задание Идеальный газ находится в сосуде объем, которого составляет л. Давление этого газа равно Па. Средняя кинетическая энергия, которую имеют молекулы газа Дж. Какое число молекул газа находится в сосуде?
Решение В качестве основы для решения задачи используем основное уравнение МКТ:

Концентрация молекул (n) это:

где N — искомое число молекул газа. Подставим правую часть выражения (1.2) в (1.1), имеем:

Проведем вычисления:

Ответ молекул.

Строение газообразных, жидких и твердых тел

Молекулярно-кинетическая теория дает возможность поня ть, почему вещество может находиться в газообразном, жидком и твердом состояниях.

Газы. В газах расстояние между атомами или молекулами в среднем во много раз больше размеров самих молекул (рис.1). Например, при атмосферном давлении объем сосуда в десятки тысяч раз превышает объем находящихся в нем молекул.

Газы легко сжимаются, при этом уменьшается среднее расстояние между молекулами, но форма молекулы не изменяется (рис.2).

Рис.1 Рис.2

Молекулы с огромными скоростями — сотни метров в секунду – движутся в пространстве. Сталкиваясь, они отскакивают друг от друга в разные стороны подобно бильярдным шарам. Слабые силы притяжения молекул газа не способны удержать их друг возле друга. Поэтому газы могут неограниченно расширяться. Они не сохраняют ни формы, ни объема. Многочисленные удары молекул о стенки сосуда создают давление газа.

Жидкости. Молекулы жидкости расположены почти вплотную друг к другу (рис.3), поэтому молекула жидкости ведет себя иначе, чем молекула газа.

В жидкостях существует так называемый ближний порядок, т. е. упорядоченное расположение молекул сохраняется на расстояниях, равных нескольким молекулярным диаметрам. Молекула колеблется около своего положения равновесия, сталкиваясь с соседними молекулами. Лишь время от времени она совершает очередной «прыжок», попадая в новое положение равновесия. В этом положении равновесия сила отталкивания равна силе притяжения, т. е. суммарная сила взаимодействия молекулы равна нулю.

Время оседлой жизни молекулы воды, т. е. время ее колебаний около одного определенного положения равновесия при комнатной температуре, равно в среднем 10 -11 с. Время же одного колебания значительно меньше (10 -12 -10 -13 с). С повышением температуры время оседлой жизни молекул уменьшается.

Характер молекулярного движения в жидкостях, впервые установленный советским физиком Я.И.Френкелем, позволяет понять основные свойства жидкостей.

Молекулы жидкости находятся непосредственно друг возле друга. При уменьшении объема, силы отталкивания становятся, очень велики. Этим и объясняется малая сжимаемость жидкостей. Как известно, жидкости текучи, т. е. не сохраняют своей формы. Объяснить это можно так. Внешняя сила заметно не меняет числа перескоков молекул в секунду. Но перескоки молекул из одного оседлого положения в другое происходят преимущественно в направлении действия внешней силы (рис.4). Вот почему жидкость течет и принимает форму сосуда.

Твердые тела. Атомы или молекулы твердых тел, в отличие от атомов и молекул жидкостей, колеблются около определенных положений равновесия. По этой причине твердые тела сохраняют не только объем, но и форму. Потенциальная энергия взаимодействия молекул твердого тела существенно больше их кинетической энергии.

Есть еще одно важное различие между жидкостями и твердыми телами. Жидкость можно сравнить с толпой людей, где отдельные индивидуумы беспокойно толкутся на месте, а твердое тело подобно стройной когорте тех же индивидуумов, которые хотя и не стоят по стойке смирно, но выдерживают между собой в среднем определенные расстояния. Если соединить центры положений равновесия атомов или ионов твердого тела, то получится правильная пространственная решетка, называемая кристаллической.

На рисунках 5 и 6 изображены кристаллические решетки поваренной соли и алмаза. Внутренний порядок в расположении атомов кристаллов приводит к правильным внешним геометрическим формам.

Рис.5 Рис.6

У газа расстояние l между молекулами много больше размеров молекул r 0:l>>r 0 .

У жидкостей и твердых тел l≈r 0 . Молекулы жидкости расположены в беспорядке и время от времени перескакивают из одного оседлого положения в другое.

У кристаллических твердых тел молекулы (или атомы) расположены строго упорядоченно.

Кристаллизация - процесс фазового перехода вещества из жидкого состояния в твёрдое состояние.

Наиболее простой теоретической моделью газа является идеальный газ. В этой модели пренебрегают размерами и взаимодействиями молекул и учиты­вают лишь их упругие столкновения. Более реальной является расширенная модель идеального газа, в которой молекулы представляются упругими сферами с конечным диаметром d , а взаимодействие по-прежнему учитывается только при непосредственном упругом столкновении молекул.

Установим критерий, следуя которому можно установить, когда газ можно рассматривать как идеальный. Ясно, что газ будет идеаль­ным, если расстояние r между его молекулами такое, что силой взаимодействия между ними на этом расстоянии можно пренебречь. Как мы знаем, силы взаимодействия между молекулами быстро убывают с расстоянием r и уже на расстояниях в несколь­ко диаметров d молекулы пренебрежимо малы. Поэтому условие идеаль­ности газа в расширенном понимании можно записать в виде:

r>>d (1)

Расстояние r нетрудно выразить через такой важный параметр газа как концентрацию n=N/V , здесь N – число частиц в газе, а V – его объем. В самом деле, если газ находится в равновесии, при отсутствии внешних полей его молекулы будут равномерно распре­делены в объеме V м 3 , и тогда на ребре куба длиной 1 м расположиться 3 √n молекул. Следовательно, среднее расстояние между молекулами составит

r = 1/ 3 √n (2)

Из соотношений (1) и (2) следует, что критерий идеальности газа можно представить следующим образом

nd 3 << 1 , nd 3 – безразмерный параметр (3)

Учитывая, что число частиц в газе N=mN A /m , концентрацию можно выразить через плотность ρ газа:

n = N/ѵ = (m/ν)*(Na/m) = ρNa/m (4)

где ρ = m/V — плотность газа

Выражение (4) позволяет записать критерий идеальности газа (5) в эквивалентной форме

ρN A d 3 /m<<1 (5),

где: ρ – плотность газа; Na – постоянная Авагадро; m – масса газа; ν = N/Na – количество вещества.

Изопроцессы

Изопроцессы — это процессы, протекающие при неизменном значении одного из макроскопических параметров (р, V, Т).

Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим .

Изотермический процесс описывает закон Бойля- Мариотта, открытый в 1861 г. английским ученым Р. Бой-лем (1627-1691) и в 1876 г. французским ученым Э. Мари-оттом (1620-1684). При постоянной массе газа pV = const.

Для газа данной массы произведение давления на его объем постоянно, если температура не меняется.

Графики изотермического процесса в координатах р-V; р-Т; V-Т имеют следующий вид (рис. 7):

Процесс изменения состояния термодинамической системы при постоянном давлении называется изобарным. Из уравнения Менделеева-Клапейрона следует, что при

постоянной массе газа

Для данной массы газа отношение объема к температуре постоянно, если давление газа не меняется.

Этот закон был установлен экспериментально в 1802 г. французским ученым Ж. Гей-Люссаком (1778-1850).

; в которой пренебрегают размерами частиц газа, не учитывают силы взаимодействия между частицами газа, предполагая, что средняя кинетическая энергия частиц много больше энергии их взаимодействия, и считают, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

Существуют модель классического идеального газа, свойства которого описываются законами классической физики, и модель квантового идеального газа, подчиняющегося законам квантовой механики. Обе модели идеального газа справедливы для реальных классических и квантовых газов при достаточно высоких температурах и разряжениях.

В модели классического идеального газа газ рассматривают как совокупность огромного числа одинаковых частиц (молекул), размеры которых пренебрежимо малы. Газ заключен в сосуд, и в состоянии теплового равновесия никаких макроскопических движений в нем не происходит. Т. е. это газ, энергия взаимодействия между молекулами которого значительно меньше их кинетической энергии, а суммарный объем всех молекул значительно меньше объема сосуда. Молекулы движутся по законам классической механики независимо друг от друга, и взаимодействуют между собой только во время столкновений, которые носят характер упругого удара. Давление идеального газа на стенку сосуда равно сумме импульсов, переданных за единицу времени отдельными частицами при столкновениях со стенкой, а энергия - сумме энергий отдельных частиц.

Состояние идеального газа характеризуют три макроскопические величины: P - давление, V - объем, Т - температура. На основе модели идеального газа были теоретически выведены ранее установленные опытным путем экспериментальные законы (закон Бойля- Мариотта , закон Гей-Люссака , закон Шарля , закон Авогадро). Эта модель легла в основу молекулярно-кинетических представлений (см. Кинетическая теория газов).

Установленная опытным путем связь между давлением, объемом и температурой газа приближенно описывается уравнением Клапейрона , которое выполняется тем точнее, чем ближе газ по свойствам к идеальному. Классический идеальный газ подчиняется уравнению состояния Клапейрона p = nkT , где р - давление, n - число частиц в единице объема, k - постоянная Больцмана , Т - абсолютная температура. Уравнение состояния и закон Авогадро впервые связали макрохарактеристики газа - давление, температуру, массу - с массой его молекулы.

В идеальном газе, где молекулы не взаимодействуют между собой, энергия всего газа является суммой энергий отдельных молекул и для одного моля одноатомного газа эта энергия U =3/2(RT) , где R - универсальная газовая постоянная . Эта величина не связана с движением газа как целого и является внутренней энергией газа. Для неидеального газа внутренняя энергия представляет сбой сумму энергий отдельных молекул и энергии их взаимодействия.

Частицы классического идеального газа распределены по энергиям согласно распределению Больцмана (см. Больцмана статистика).

Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным, а также при низких давлениях и высоких температурах реальные газы близки по свойствам к идеальному газу.

В современной физике понятие идеальный газ применяют для описания любых слабовзаимодействующих частиц и квазичастиц, бозонов и фермионов . Внеся поправки, учитывающие собственный объем молекул газа и действующие межмолекулярные силы, можно перейти к теории реальных газов.

При понижении температуры Т газа или увеличении его плотности n до определенного значения становятся существенными волновые (квантовые) свойства частиц идеального газа. Переход от классического идеального газа к квантовому происходит при таких значениях Т и n , при которых длины Волн де Бройля частиц, движущихся со скоростями порядка тепловых, сравнимы с расстоянием между частицами.

В квантовом случае различают два вида идеального газа: если частицы газа одного вида имеют спин, равный единице, то к ним применяют статистику Бозе - Эйнштейна , если частицы имеют спин, равный Ѕ , то применяют статистику Ферми - Дирака . Применение теории идеального газа Ферми - Дирака к электронам в металлах позволяет объяснить многие свойства металлического состояния.

Подробности Категория: Молекулярно-кинетическая теория Опубликовано 05.11.2014 07:28 Просмотров: 12962

Газ - одно из четырёх агрегатных состояний, в которых может находиться вещество.

Частицы, из которых состоит газ, очень подвижны. Они практически свободно и хаотично движутся, периодически сталкиваясь друг с другом подобно биллиардным шарам. Такое столкновение называют упругим столкновением . Во время столкновения они резко изменяют характер своего движения.

Так как в газообразных веществах расстояние между молекулами, атомами и ионами намного превышает их размеры, то между собой эти частицы взаимодействую очень слабо, и их потенциальная энергия взаимодействия очень мала по сравнению с кинетической.

Связи между молекулами в реальном газе сложные. Поэтому также довольно сложно описывать зависимость его температуры, давления, объёма от свойств самих молекул, их количества, скорости их движения. Но задача значительно упрощается, если вместо реального газа рассматривать его математическую модель - идеальный газ .

Предполагается, что в модели идеального газа между молекулами нет сил притяжения и отталкивания. Все они движутся независимо друг от друга. И к каждой из них можно применить законы классической механики Ньютона. А между собой они взаимодействуют только во время упругих столкновений. Время самого столкновения очень мало по сравнению со временем между столкновениями.

Классический идеальный газ

Попробуем представить молекулы идеального газа маленькими шариками, находящимися в огромном кубе на большом расстоянии друг от друга. Из-за этого расстояния они не могут друг с другом взаимодействовать. Следовательно, их потенциальная энергия равна нулю. Но эти шарики двигаются с огромной скоростью. А значит, обладают кинетической энергией. Когда они сталкиваются друг с другом и со стенками куба, они ведут себя как мячики, то есть упруго отскакивают. При этом они меняют направление своего движения, но не меняют скорости. Примерно так выглядит движение молекул в идеальном газе.

  1. Потенциальная энергия взаимодействия молекул идеального газа настолько мала, что ею пренебрегают по сравнению с кинетической энергией.
  2. Молекулы в идеальном газе также имеют настолько маленькие размеры, что их можно считать материальными точками. А это означает, что и их суммарный объём также ничтожно мал по сравнению с объёмом сосуда, в котором находится газ. И этим объёмом также пренебрегают.
  3. Среднее время между столкновениями молекул намного превышает время их взаимодействия при соударении. Поэтому временем взаимодействия пренебрегают также.

Газ всегда принимает форму сосуда, в котором находится. Движущиеся частицы сталкиваются друг с другом и со стенками сосуда. Во время удара каждая молекула действует на стенку с некоторой силой в течение очень короткого промежутка времени. Так возникает давление . Суммарное давление газа складывается из давлений всех молекул.

Уравнение состояния идеального газа

Состояние идеального газа характеризуют три параметра: давление , объём и температура . Зависимость между ними описывается уравнением:

где р - давление,

V M - молярный объём,

R - универсальная газовая постоянная,

T - абсолютная температура (градусы Кельвина).

Так как V M = V / n , где V - объём, n - количество вещества, а n = m/M , то

где m - масса газа, М - молярная масса. Это уравнение называется уравнением Менделеева-Клайперона .

При постоянной массе уравнение приобретает вид:

Это уравнение называют объединённым газовым законом .

Используя закон Менделеева-Клайперона, можно определить один из параметров газа, если известны два других.

Изопроцессы

С помощью уравнения объединённого газового закона можно исследовать процессы, в которых масса газа и один из важнейших параметров - давление, температура или объём - остаются постоянными. В физике такие процессы называются изопроцессами .

Из объединённого газового закона вытекают другие важнейшие газовые законы: закон Бойля-Мариотта , закон Гей-Люссака , закон Шарля, или второй закон Гей-Люссака.

Изотермический процесс

Процесс, в котором изменяются давление или объём, но температура остаётся постоянной, называется изотермическим процессом .

При изотермическом процессе T = const, m = const .

Поведение газа в изотермическом процессе описывает закон Бойля-Мариотта . Этот закон открыли экспериментальным путём английский физик Роберт Бойль в 1662 г. и французский физик Эдм Мариотт в 1679 г. Причём сделали они это независимо друг от друга. Закон Бойля-Мариотта формулируется следующим образом: В идеальном газе при постоянной температуре произведение давления газа на его объём также постоянно .

Уравнение Бойля-Мариотта можно вывести из объединённого газового закона. Подставив в формулу Т = const , получаем

p · V = const

Это и есть закон Бойля-Мариотта . Из формулы видно, что давление газа при постоянной температуре обратно пропорционально его объёму . Чем выше давление, тем меньше объём, и наоборот.

Как объяснить это явление? Почему же при увеличении объёма газа его давление становится меньше?

Так как температура газа не меняется, то не меняется и частота ударов молекул о стенки сосуда. Если увеличивается объём, то концентрация молекул становится меньше. Следовательно, на единицу площади придётся меньшее количество молекул, которые соударяются со стенками в единицу времени. Давление падает. При уменьшении объёма число соударений, наоборот, возрастает. Соответственно растёт и давление.

Графически изотермический процесс отображают на плоскости кривой, которую называют изотермой . Она имеет форму гиперболы .

Каждому значению температуры соответствует своя изотерма. Чем выше температура, тем выше расположена соответсвующая ей изотерма.

Изобарный процесс

Процессы изменения температуры и объёма газа при постоянном давлении, называются изобарными . Для этого процесса m = const, P = const.

Зависимость объёма газа от его температуры при неизменяющемся давлении также была установлена экспериментальным путём французским химиком и физиком Жозефом Луи Гей-Люссаком , опубликовавшем его в 1802 г. Поэтому её называют законом Гей-Люссака : " Пр и постоянном давлении отношение объёма постоянной массы газа к его абсолютной температуре является постоянной величиной".

При Р = const уравнение объединённого газового закона превращается в уравнение Гей-Люссака .

Пример изобарного процесса - газ, находящийся внутри цилиндра, в котором перемещается поршень. При повышении температуры растёт частота ударов молекул о стенки. Увеличивается давление, и поршень приподнимается. В итоге увеличивается объём, занимаемый газом в цилиндре.

Графически изобарный процесс отображается прямой линией, которая называется изобарой .

Чем больше давление в газе, тем ниже расположена на графике соответствующая изобара.

Изохорный процесс

Изохорным, или изохорическим, называют процесс изменения давления и температуры идеального газа при постоянном объёме.

Для изохорного процесса m = const, V = const.

Представить такой процесс очень просто. Он происходит в сосуде фиксированного объёма. Например, в цилиндре, поршень в котором не двигается, а жёстко закреплён.

Изохорный процесс описывается законом Шарля : «Для данной массы газа при постоянном объёме его давление пропорционально температуре ». Французский изобретатель и учёный Жак Александр Сезар Шарль установил эту зависимость с помощью экспериментов в 1787 г. В 1802 г. её уточнил Гей-Люссак. Поэтому этот закон иногда называют вторым законом Гей-Люссака.

При V = const из уравнения объединённого газового закона получаем уравнение закона Шарля, или второго закона Гей-Люссака .

При постоянном объёме давление газа увеличивается, если увеличивается его температура .

На графиках изохорный процесс отображается линией, которая называется изохорой .

Чем больше объём занимаемый газом, тем ниже расположена изохора, соответствующая этому объёму.

В реальности ни один параметр газа невозможно поддерживать неизменным. Это возможно сделать лишь в лабораторных условиях.

Конечно, в природе идеального газа не существует. Но в реальных разреженных газах при очень низкой температуре и давлении не выше 200 атмосфер расстояние между молекулами намного превышает их размеры. Поэтому их свойства приближаются к свойствам идеального газа.

Модель идеального газа

Первым шагом на пути построения физической тео­рии может быть создание мысленной модели объекта. Любая мысленная модель реального объекта обязательно является упрощением действительности и поэтому имеет определенные границы применимости, в пределах которых она может с успехом использоваться для описания известных свойств и предсказания новых, ранее неизвестных следствий теории.

Примером модели, использован­ной для теоретического объяснения свойств газов, может служить модель идеального газа. М.В.Ломоносов считал, что вещества состоят из корпускул, находящихся во вращательном движении, температура тела связана с вращательным движением этих корпускул.

Английский физик Д.Джоуль в 1852 г. предложил более точную модель, приписав молекулам газа поступательное движение. При этом он считал, что скорости всех молекул одинаковы. На основе этих предположений он теоретически вывел закон Бойля - Мариотта, вычислил скорость теплового движения молекул, определил значение абсолютно­го нуля.

В 1857 г. немецкий физик Р. Клаузиус, используя модель идеального газа, впервые систематически изложил кинетическую теорию газов. Он ввел понятие о средних величинах, длине свободного пробега молекул, вычислил давление газа на стенки сосуда и среднюю длину пути между двумя столкновениями молекул.

Идеальным Клаузиус назвал газ, удовлетворяющий следующим усло­виям:

· объемом всех молекул газа можно пренебречь по сравнению с объемом сосуда, в котором этот газ находится;

· время столкновения молекул друг с другом пренебрежимо мало по сравнению со временем между двумя столкновениями (т. е. време­нем свободного пробега моле­кулы);

· молекулы взаимодействуют между собой только при непосред­ственном соприкосновении, при этом они отталкиваются;

· силы притяжения между мо­лекулами идеального газа ничтожно малы и ими можно пренебречь.

Исходя из этих положений, Клау­зиус смог вывести все свойства идеального газа и установить соот­ношения между его микроскопичес­кими и макроскопическими парамет­рами.

Микроскопическими параметра­ми газа называют индивидуальные характеристики молекул. К их числу относятся масса молекулы, ее ско­рость, импульс и кинетическая энер­гия поступательного движения. Па­раметры газа как физического тела называются макроскопическими. К ним относятся температура, объем и давление газа. Одной из важнейших задач молекулярно-кинетической теории было установление связи между макроскопическими и микро­скопическими параметрами газа.