Конспект урока: "Импульс тела. ". Закон сохранения импульса. Реактивное движение. Импульс силы и импульс тела

На этом уроке мы поговорим о законах сохранения. Законы сохранения являются мощным инструментом при решении механических задач. Они являются следствием внутренней симметрии пространства. Первой сохраняющейся величиной, которую мы изучим, является импульс. На этом уроке мы дадим определение импульса тела, и свяжем изменение этой величины с силой, которая действует на тело.

Законы сохранения являются очень мощным инструментом при решении задач механики. Их применяют тогда, когда уравнения динамики решить затруднительно или невозможно. Законы сохранения являются прямым следствием законов природы. Оказывается, каждый закон сохранения соответствует какой-либо симметрии в природе. Например, закон сохранения энергии возникает из-за того, что время однородно, а закон сохранения импульса - из-за однородности пространства. Более того, в ядерной физике в результате сложных симметрий системы возникают некие величины, которые нельзя измерить, но о которых известно, что они сохраняются, например такие величины, как странность и красота.

Рассмотрим второй закон Ньютона в векторном виде:

вспомним, что ускорение - это скорость изменения скорости:

Теперь, если подставить это выражение во второй закон Ньютона и умножить левую и правую часть на , получим

Введем теперь некоторую величину , которую мы в дальнейшем будем называть импульсом, и получим второй закон Ньютона в импульсной форме:

Величина слева от знака равенства называется импульсом силы. Таким образом,

Изменение импульса тела равно импульсу силы.

Ньютон записал свой знаменитый второй закон именно в таком виде. Отметим, что второй закон Ньютона в такой форме является более общим, поскольку сила действует на тело в течение некоторого времени не только при изменении скорости тела, но и при изменении массы тела. При помощи такого уравнения легко, например, узнать силу, действующую на взлетающую ракету, поскольку ракета при взлете меняет массу. Такое уравнение называется уравнением Мещерского, или уравнением Циолковского.

Рассмотрим подробнее введенную нами величину . Эту величину принято называть импульсом тела. Итак,

Импульс тела - это физическая величина, равная произведению массы тела на его скорость.

Импульс измеряется в системе СИ в килограммах на метр, деленный на секунду:

Из второго закона Ньютона в импульсной форме следует закон сохранения импульса. Действительно, если сумма сил, действующих на тело, равна нулю, то изменение импульса тела равно нулю, или, другими словами, импульс тела постоянен.

Рассмотрим применение закона сохранения импульса на примерах. Итак, мяч с импульсом налетает на стенку (Рис.1). Импульс мяча меняется, и мяч отскакивает в другом направлении с импульсом . Если до удара, угол к нормали был равен , то после удара, этот угол, вообще говоря, может быть другим. Однако если на мяч со стороны стенки действует только сила нормального давления, направленная по перпендикуляру к стенке, то меняется составляющая импульса в направлении, перпендикулярном к стенке. Если до удара она была равна , то после удара она будет равна , а составляющая импульса вдоль стенки не изменится. Мы приходим к тому, что импульс после удара по модулю равен импульсу до удара и направлен под углом к нормали.

Рис. 1. Мяч отскакивает от стенки

Отметим, что сила тяжести, действующая на мяч, никак не повлияет на результат, поскольку она направлена вдоль стенки. Такой удар, при котором сохраняется модуль импульса тела, и угол падения равен углу отражения называют абсолютно упругим. Отметим, что в реальной ситуации, когда удар является неупругим, угол отражения может быть другим (Рис. 2)

Рис. 2. Мяч отскакивает не упруго

Удар будет неупругим, если на мяч будут действовать так называемые диссипативные силы, такие как сила трения, или сила сопротивления.

Таким образом, на этом уроке вы познакомились с понятием импульса, с законом сохранения импульса и со вторым законом Ньютона, записанным в импульсной форме. Кром того, вы рассмотрели задачу о мяче, абсолютно упруго отскакивающем от стенки.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. Физика 10. - М.: Просвещение, 2008.
  2. А. П. Рымкевич. Физика. Задачник 10-11. - М.: Дрофа, 2006.
  3. О. Я. Савченко. Задачи по физике. - М.: Наука, 1988.
  4. А. В. Пёрышкин, В. В. Крауклис. Курс физики. Т. 1. - М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.

Вопрос: Мы выяснили, что при абсолютно упругом ударе мячика о стенку угол падения равен углу отражения. Этот же закон справедлив и для отражения луча в зеркале. Как это объяснить?

Ответ: Объясняется это очень просто: свет можно считать потоком частичек - фотонов, которые упруго ударяются о зеркало. Соответственно, угол падения при падении фотона равен углу отражения.

Вопрос: Самолеты, когда летят, отталкиваются пропеллером от воздуха. От чего отталкивается при полете ракета?

Ответ: Ракета не отталкивается, ракета движется под действием силы реактивной тяги. Это достигается за счет того, что из сопла ракеты с большой скоростью вылетают частички горючего.

ИМПУЛЬСОМ ТЕЛА НАЗЫВАЕТСЯ векторная величина, равная ПРОИЗВЕДЕНИЕ МАССЫ ТЕЛА НА ЕГО СКОРОСТЬ:

За единицу импульса в системе СИ принят импульс тела массой 1 кг, двигающегося со скоростью 1 м/с. Называется эта единица КИЛОГРАММ-МЕТР В СЕКУНДУ(кг . м/с).

СИСТЕМА ТЕЛ, НЕ ВЗАИМОДЕЙСТВУЮЩИХ С ДРУГИМИ ТЕЛАМИ, НЕ ВХОДЯЩИМИ В ЭТУ СИСТЕМУ, НАЗЫВАЕТСЯ ЗАМКНУТОЙ.

В замкнутой системе тел для импульса выполняется закон сохранения.

В ЗАМКНУТОЙ СИСТЕМЕ ТЕЛ ГЕОМЕТРИЧЕСКАЯ СУММА ИМПУЛЬ­СОВ ТЕЛ ОСТАЕТСЯ ПОСТОЯННОЙ ПРИ ЛЮБЫХ ВЗАИМОДЕЙСТВИЯХ ТЕЛ ЭТОЙ СИСТЕМЫ МЕЖДУ СОБОЙ.

На законе сохранения импульса основано реактивное движение. При сгорании топлива, газы, нагретые до большой температуры, выбрасываются из сопла ракеты с некоторой скоростью. При этом они взаимодействуют с ракетой. Если до начала работы двигателя сумма импульсов

V
v
ракеты и топлива была равна нулю, после выброса газов, она должна остаться такой же:

где M - масса ракеты; V - скорость ракеты;

m - масса выброшенных газов; v - скорость истечения газов.

Отсюда получим выражение для скорости ракеты:

Главная особенность реактивного двигателя в том, что для движения ему не нужна среда с которой он может взаимодействовать. Поэтому ракета - единственное транс­портное средство, способное перемещаться в безвоздушном пространстве.

Доказал возможность использования ракет для исследования космического пространства великий русский ученый и изобретатель Константин Эдуардович Циолковский. Он разработал схему устройства ракеты, нашел необходимые компоненты топлива. Работы Циолковского послужили базой для создания первых космических кораблей.

Первый в мире искусственный спутник Земли был запущен в нашей стране 4 октября 1957 года, а 12 апреля 1961 года Юрий Алексеевич Гагарин стал первым космонавтом Земли. В настоящее время космические аппараты исследуют другие планеты Солнечной системы, кометы, астероиды. Американские астронавты высажива­лись на Луне, готовится пилотируемый полет на Марс. На орбите в течении длительного времени работают научные экспедиции. Разработаны космические корабли многора­зового использования "Шатл" и "Челенджер" (США) , "Буран" (Россия), ведутся работы по созданию на орбите Земли научной станции "Альфа", где будут вместе работать ученые разных стран.

Реактивное движение используют и некоторые живые организмы. Например, кальмары и осьминоги движутся, выбрасывая струю воды в противоположную движению сторону.

4/2. Экспериментальное задание по теме «Молекулярная физика»: наблю­дение изменения давления воздуха при изменении температуры и объема.

Подключить гофрированный цилиндр к манометру, измерить давление внутри цилиндра.


Занятие № 14

Тема. Импульс тела. Закон сохранения импульса. Реактивное движение.

Цель: cформировать знания учащихся о физических величи­нах - импульсе тела и импульсе силы, и связи между ними; помочь осознать закон сохранения импульса; cформировать знания о реактивном движении.

Тип урока: урок усвоения новых знаний.

Оборудование: стальной шарик, магнит, стакан с водой, лист бумаги, одинаковые шары (2 или 4) на нитях, воздушный шарик, поддон, детская машинка, стакан с водой и краном.

^ План-схема урока


Этапы урока

Время, мин

Методы и формы работы с классом

I. Организационный этап

2

II. Актуализация опорных знаний

5

Фронтальный опрос

III. Сообщение темы, цели и задач урока

2

Определение цели урока по плану изучения темы

IV. Мотивация учебной деятельности

2

Аргументированное объяснение

V. Восприятие и первоначальное осмысление нового мате­риала

20

Объяснение учителя с элементами эвристиче­ской беседы

VI. Закрепление нового мате­риала

10

Тест для самопроверки

VII. Подведение итогов урока и сообщение домашнего за­дания

4

Объяснение учителя, инструктаж

^ Ход урока

  1. Организационный этап

  2. Актуализация и коррекция опорных знаний
Учитель подчеркивает, что те понятия и физические величи­ны, с которыми учащиеся ознакомятся на уроке, для них новы. Чтобы создать определенную основу для изучения темы, следует предложить учащимся повторить предыдущий материал.

Вопросы классу


  1. Сформулируйте первый закон динамики Ньютона.

  2. Сформулируйте второй закон динамики Ньютона.

  3. Сформулируйте третий закон динамики Ньютона.

  4. Какая система тел называется изолированной или замкнутой?

  1. Сообщение темы, цели и задач урока
Учитель сообщает тему урока, предлагает учащимся ознако­миться с планом ее изучения, записанным на доске. Затем про­сит учащихся самостоятельно сформулировать цель урока и при необходимости вносит коррективы в их ответы.

План изучения темы


    1. Импульс силы.

    2. Импульс тела.

    3. Изолированная система тел. Закон сохранения импульса.

    4. Реактивное движение. Движение ракеты как реактивное движение.

  1. Мотивация учебной деятельности
Законы Ньютона в принципе позволяют решить все задачи, связанные с взаимодействием тел. Но найти силы взаимодей­ствия часто достаточно сложно, а без этого невозможно найти ускорение, приобретаемое телом, и соответственно его скорость и перемещение. Для решения подобных задач в механике вве­дены специальные понятия и величины, при их помощи уста­новлено соотношение между ними. При этом оказалось, что чис­ловые значения введенных величин не изменяются в процессе взаимодействия тел, поэтому самые важные соотношения между величинами, которые сохраняются, получили название законов сохранения. Закон сохранения энергии в разных интерпретациях уже рассматривался ранее. Сейчас пришел черед ознакомиться с законом сохранения импульса.

Как и законы Ньютона, законы сохранения являются результатом теоретического обобщения исследовательских фактов. Это - фундаментальные законы физики, которые имеют исключительно важное значение, поскольку применяются не только в механике, но и в других разделах физики.


  1. Восприятие и первоначальное осмысление нового материала
1. Импульс силы

Под термином «импульс» (от лат. « impulsus » - толчок) в ме­ханике понимают импульс силы и импульс тела.

Вопрос классу. Как вы считаете, зависит ли результат взаи­модействия от времени или он определяется только силой взаимодействия?

Демонстрация 1. На горизонтальную поверхность положить стальной шарик и быстро пронести над ним магнит. Шарик едва сдвинется с места (рис. 1, а). Повторить опыт, пронося магнит медленно. Шарик будет двигаться за магнитом (рис. 1, б).

Демонстрация 2. На край стола положить лист бумаги и поставить на него стакан с водой. Если лист тянуть медленно, то стакан движется вместе с ним (рис. 2, а), а если лист дер­нуть, он выдернется из-под стакана, а ста­кан останется на месте (рис. 2, б).

^ Вопрос классу. О чем свидетельствуют эти опыты?

Взаимодействие тел зависит не только от силы, но и от времени ее действия, поэтому для характеристики действия силы ввели специальную характеристику - импульс силы.

^ Импульс силы - физическая величина, являющаяся мерой действия силы за определенный интервал времени и численно равная произведению силы на время е ё действия:
.

Единицей в СИ является ньютон-секунда (Н ∙ с). Импульс силы - векторная величина: направление импульса силы совпа­дает с направлением силы, действующей на тело.

^ 2. Импульс тела

Представим себе, что шар массой 40 г бросили со скоростью 5 м/с. Такой шар можно остановить, подставив лист плотного картона или толстую ткань. Но если шар выстрелить из винтов­ки со скоростью 800 м/с, то даже с помощью тр ё х толстых досок остановить его почти невозможно.

^ Вопрос классу. Какой вывод можно сделать из этого примера?

Для характеристики движения недостаточно знать только массу тела и скорость. Поэтому как одна из мер механического движения введен импульс тела (или количество движения).

^ Импульс тела - физическая величина, которая является ме­рой механического движения и численно определяется произве­дением массы тела на скорость его движения:
.

Единицей в СИ является килограмм-метр в секунду (кг ∙м/с) . Импульс тела - векторная величина, его направление совпадает с направлением скорости движения тела.

Если тело массой m движется со скоростью υ, а потом в течение времени взаимодействует с другим телом с силой F , то в процессе этого взаимодействия тело будет двигаться с ускоре­нием а:

,
.

Последняя формула демонстрирует связь между импульсом силы и изменением импульса тела.

Таким образом, изменение импульса тела равно импульсу силы взаимодействия.

^ 3. Изолированная система тел. Закон сохранения импульса

Изолированная (или замкнутая) система тел - это система тел, взаимодействующих только между собой и не взаимодействующих с телами, не входящими в эту систему.

Изолированных систем тел в полном смысле этого слова не существует, это идеализация. Все тела в мире взаимодействуют. Но в ряде случаев реальные системы можно рассматривать как изолированные, исключая из рассмотрения те взаимодействия, которые в данном случае являются несущественными.

Демонстрация 3. Упругий удар двух шаров одинаковой массы, подвешенных на нитях (рис. 3).

Так, изучая упругий удар двух одинаковых шаров, систему.шаров можно рассматривать как изолированную, так как в момент удара силы тяжести шаров уравновешены силами реакции нитей, силы сопротивления.воздуха шаров малы, ими можно пренебречь.

Приведите примеры других систем, которые можно считать изолированными.

Если снова обратиться к системе шаров массами т 1 и т 2 , которые в начальный момент времени в выбранной инерциальной системе отсчета имеют скорости и , то через момент времени t можно увидеть, что их скорости в результате взаимодействия изменились до и .

Согласно второму закону Ньютона:

Поскольку согласно третьему закону Ньютона

Из полученного выражения видно, что векторная сумма импульсов тел, входящих в замкнутую систему, остается постоянной. Это и есть закон сохранения импульса.

^ 4. Реактивное движение. Движение ракеты как реактивное движение

Законом сохранения импульса объясняется реактивное движение.

^ Реактивное движение - это движение тела, возникающее в результате отделения от него части или выброса им вещества с некоторой скоростью относительно тела.

Демонстрация 4 . Надуть воздушный шарик, а затем отпустить. Шарик будет двигаться за счет газов, которые из него «вытекают».

Демонстрация 5. В поддон поставить детскую машинку и установить на нее стакан с водой, имеющий кран. Если открыть кран, из стакана начнет вытекать вода, и машинка поедет.

^ Задание классу. Приведите примеры реактивного движения. (Реактивное движение осуществляют самолеты, летящие со скоростями в несколько тысяч километров в час, снаряды всем известных «катюш», космические ракеты. Реактивное движение присуще, например, кальмарам, каракатицам, осьминогам.)

Рассмотрим рис. 4. Любая ракета состоит из трубчатого корпуса 1, закрытого с одного конца. На втором конце расположено сопло 2. Каждая ракета имеет топливо 3. Когда ракета стоит, ее суммарный импульс равен нулю: топливо и корпус неподвижны. Будем считать, что топливо ракеты сгорает мгновенно. Ра с каленные газы 4 под большим давлением вырываются наружу.

При этом корпус ракеты движется в сторону, противоположную движению раскаленных газов.

Пусть m г υ г - проекция импульса газов на ось Оу, а m к υ к - проекция импульса корпуса ракеты. Согласно закону сохранения импульса сумма импульсов корпуса ракеты и вытекающих газов равна суммарному импульсу ракеты на старте, который, как известно, равен нулю. Соответственно 0 = m r υ r + m к υ к

m к υ к = - m г υ г

Отсюда следует, что корпус ракеты получает такой же по модулю импульс, как и газы, вылетевшие из сопла. Следовательно,

Здесь знак «-» указывает на то, что направление скорости корпуса ракеты противоположно направлению скорости вылетающих газов. Поэтому для перемещения ракеты в заданном направлении струю газов, выбрасываемых ракетой, надо направить противоположно заданному направлению движения. Как видим, ракета движется, не взаимодействуя с другими телами, и поэтому может двигаться в космосе.

^ Задание классу. Проанализировав последнюю формулу, ответьте на вопрос: как можно увеличить скорость ракеты?

Скорость ракеты можно увеличить двумя способами:


  1. увеличить скорость газов, вытекающих из сопла ракеты;

  2. увеличить массу сгорающего топлива.
Второй способ приводит к уменьшению полезной массы ракеты - массы корпуса и массы грузов, ею перевозимых.

VI. Закрепление нового материала

^ Тест для самопроверки

Отметьте правильный, по вашему мнению, ответ.


    1. Импульсом тела называется:
^ А произведение массы тела и его ускорения

Б произведение массы тела и его скорости

В произведение силы, действующей на тело, и скорости тела

Г произведение силы, действующей на тело, и времени ее действия


    1. Укажите единицу импульса тела.

  1. Укажите единицу импульса силы.

  1. Изменение импульса тела равно:
А произведению массы тела и его скорости

Б разности начальной и конечной скорости тела

В импульсу силы

Г изменению массы тела за единицу времени


  1. Реактивное движение возникает:
^ А при отталкивании тел

Б движении различных частей тела относительно центра массы тела

^ В разделении тела на части

Г отделении от тела части его массы с определенной скоростью движения относительно остальной части


  1. Определите, в каких системах отсчета выполняется закон сохранения импульса.
А Инерциальных В Замкнутых

Б Неинерциальных Г Любых


  1. Выберите пример, демонстрирующий реактивное движение.
^ А Движение кальмара

Б Колебание маятника

В Полет мотылька

Г Падение листьев с деревьев


  1. Ракета поднимается равномерно вертикально вверх. Определите, как и почему изменяется импульс ракеты.
А Уменьшается, поскольку уменьшается масса ракеты

Б Не изменяется, поскольку масса уменьшается, а скорость движения увеличивается

В Возрастает, поскольку ракета поднимается все выше над землей

Г Не изменяется, поскольку скорость движения постоянная


  1. Укажите правильную запись закона сохранения импульса.


1

2

3

4

5

6

7

8

9

Б

В

Г

В

Г

В

А

А

А

VII. Подведение итогов урока и сообщение домашнего задания

Учитель подводит итоги урока, оценивает деятельность учащихся.

Домашнее задание


  1. Выучить теоретический материал по учебнику.

  2. Охарактеризовать реактивное движение как физическое явление по обобщенному плану хар актеристики физического явления.

  3. Продумать демонстрацию реактивного движения, описать и объяснить ее.

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»: