Корпускулярно волновой дуализм бройль. Что такое корпускулярно-волновой дуализм

Так и с помощью формализма, основанного на представлении об объекте как о частице или как о системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля . В этом смысле любой объект может проявлять как волновые , так и корпускулярные (квантовые) свойства .

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В соответствии с теоремой Эренфеста квантовые аналоги системы канонических уравнений Гамильтона для макрочастиц приводят к обычным уравнениям классической механики. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона . Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и/или противопоставлять материальный объект (электромагнитное излучение, например) и способ его описания (корпускулярный или волновой); и, во-вторых, число способов описания материального объекта может быть больше двух (корпускулярный, волновой, термодинамический, …), так что сам термин «дуализм » становится неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом интерпретировать поведение квантовых объектов, подбирая аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

Энциклопедичный YouTube

  • 1 / 5

    Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми, и корпускулярными свойствами.

    Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке - кристаллической решётке твёрдого тела. В 1909 году английский учёный Джеффри Инграм Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.

    Волны де Бройля

    p = h 2 π k = ℏ k , {\displaystyle \mathbf {p} ={\frac {h}{2\pi }}\mathbf {k} =\hbar \mathbf {k} ,}

    где k = 2 π λ n {\displaystyle \mathbf {k} ={\frac {2\pi }{\lambda }}\mathbf {n} } - волновой вектор, модуль которого k = 2 π λ {\displaystyle k={\frac {2\pi }{\lambda }}} - волновое число - есть число длин волн, укладывающихся на 2 π {\displaystyle 2\pi } единицах длины, n {\displaystyle \mathbf {n} } - единичный вектор в направлении распространения волны, ℏ = h 2 π = 1 , 05 ⋅ 10 − 34 {\displaystyle \hbar ={\frac {h}{2\pi }}=1{,}05\cdot 10^{-34}} Дж·с.

    Длина волны де Бройля для нерелятивистской частицы с массой m {\displaystyle m} , имеющей кинетическую энергию W k {\displaystyle W_{k}}

    λ = h 2 m W k . {\displaystyle \lambda ={\frac {h}{\sqrt {2mW_{k}}}}.}

    В частности, для электрона, ускоряющегося в электрическом поле с разностью потенциалов Δ φ {\displaystyle \Delta \varphi } вольт

    λ = 12 , 25 Δ φ A ∘ . {\displaystyle \lambda ={\frac {12{,}25}{\sqrt {\Delta \varphi }}}\;{\overset {\circ }{\mathrm {A} }}.}

    Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приёмниках частиц.

    Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение волновых свойств оказывается невозможным. Впрочем, наблюдать квантовые эффекты можно и в макроскопическом масштабе, особенно ярким примером этому служат - циклическая частота, W {\displaystyle W} - кинетическая энергия свободной частицы, E {\displaystyle E} - полная (релятивистская) энергия частицы, p = m v 1 − v 2 c 2 {\displaystyle p={\frac {mv}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} - импульс частицы, m {\displaystyle m} v f {\displaystyle v_{f}} волны де Бройля хотя и больше скорости света, но относится к числу величин, принципиально неспособных переносить информацию (является чисто математическим объектом).

    Групповая скорость волны де Бройля u {\displaystyle u} равна скорости частицы v {\displaystyle v} :

    u = d ω d k = d E d p = v {\displaystyle u={\frac {d\omega }{dk}}={\frac {dE}{dp}}=v} .

    Связь между энергией частицы E {\displaystyle E} и частотой ν {\displaystyle \nu } волны де Бройля

    E = h ν = ℏ ω , {\displaystyle E=h\nu =\hbar \omega ,} волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации , квадрат модуля амплитуды «волны вероятности» обращается в нуль.

    Обнаружение корпускулярных свойств света в опытах по фотоэффекту, в опыте Комптона и в ряде других экспериментов не может отменить твердо установленных фактов наличия у света волновых свойств, обнаруживаемых при наблюдении явлений интерференции, дифракции, поляризации. Тот факт, что свет обладает как волновыми, так и корпускулярными свойствами, называют корпускулярно-волновым дуализмом.

    Противоположность свойств волн и частиц в классической физике делает неправомерным утверждение, что свет является одновременно и волной, и потоком частиц. Свет не является ни волной, ни потоком частиц. Природа света более сложна и не может быть без внутренних противоречий описана с применением наглядных образов классической физики. Смысл корпускулярноволнового дуализма свойств света заключается в том, что в зависимости от условий эксперимента природа света может быть приближенно описана с применением либо волновых, либо корпускулярных представлений.

    Одним из вариантов сведения сложной природы света к более простой является попытка представления фотона в виде ограниченного в пространстве и во времени цуга электромагнитных волн, получившегося в результате сложения большого числа гармонических электромагнитных волн. Если бы такое представление о фотоне соответствовало действительности, то при прохождении пучка света через пластину с полупрозрачным зеркальным покрытием половина каждого цуга проходила бы, а половина отражалась. Разделение каждого фотона на два можно было бы обнаружить по одновременному срабатыванию приборов, поставленных на пути проходящего и отраженного пучков света. Однако опыт показывает, что приборы не срабатывают одновременно. Срабатывает либо первый из них, либо второй в отдельности. Это значит, что каждый фотон не разделяется пластиной с полупрозрачным покрытием на два, а с равной вероятностью либо

    отражается, либо проходит сквозь пластину как единое целое.

    Ограниченная применимость образов классической физики для описания свойств света выражается не только в том, что для описания результатов одних опытов оказываются пригодными волновые представления, а для других - корпускулярные, но и в условности применения этих образов в каждом случае. Используя корпускулярные представления при описании фотоэлектрического эффекта и комптоновского рассеяния, нельзя забывать о существенных отличиях свойств фотона от свойств частиц в классической физике. Масса покоя фотона равна нулю, скорость его движения в любой инерциальной системе отсчета одинакова, и нет такой системы отсчета, в которой его скорость была бы равна нулю. Рассматривая свет как поток частиц - фотонов, мы должны для определения массы фотона использовать чисто волновую характеристику света - частоту. При исследовании таких волновых явлений, как интерференция и дифракция света, для регистрации интерференционной или дифракционной картины необходимо применять фотоэлемент или фотопластинку, т. е. использовать квантовые свойства света для обнаружения его волновых свойств.

    1. Какие закономерности явления фотоэффекта невозможно объяснить на основе волновой теории света?

    2. Объясните, почему из волновой теории следует запаздывание фотоэффекта.

    3. Одинакова ли кинетическая энергия электронов, освобождаемых из металла под действием фотонов одинаковой частоты?

    4. Можно ли наблюдать явление комптоновского рассеяния фотонов видимого света?

    5. Можно ли выполнить опыт Боте, используя в качестве источника фотонов лампочку карманного фонаря и счетчики фотонов видимого света?

    Коллега, по представлениям классической физики, движение частиц и распространение волн различаются принципиально. Многие наблюдали это различие между полётом камня по определённой траектории и распространением волн по поверхности воды, при падении этого камня в воду.

    Это, мой друг, в макромире. Но в микромире эти различия, как-бы, «размываются».

    К примеру, ещё Гюйгенс (1629-1695), затем Юнг (1773-1829) и Френель (1788-1827) доказали, что свет имеет волновую природу. Это проявляется в явлениях, поляризации, преломления, интерференции и дифракции света.

    Однако, исследуя в 1900 году законы теплового излучения, Планк (1858-1947) обнаружил «световые порции» – кванты электромагнитного поля. Эти кванты – фотоны – во многом похожи на частицы (корпускулы): они обладают определённой энергией и импульсом, взаимодействуют с веществом как целое. Более поздние опыты по вырыванию светом электронов с поверхности металлов (фотоэффект) и рассеянию света на электронах (Комптона эффект) показали, что свет ведёт себя подобно потоку частиц.

    С другой стороны, оказалось, что падающие на кристалл электроны, которые изначально воспринимались, как частицы, дают дифракционную картину, которую нельзя понять иначе, как на основе волновых представлений. Позже было установлено, что это явление свойственно вообще всем микрочастицам.

    В 1924 Бройль (1892-1968) выступил с поразительной по смелости гипотезой о том, что корпускулярно-волновой дуализм присущ всем без исключения видам материи – электронам, протонам, атомам и т.д., причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и установленные ранее для фотонов. А именно, если частица имеет энергию W и импульс p , то с ней связана волна, частота которой ν = W/h и длина волны λ = h/p , где h – постоянная Планка. Эти волны получили название «волны де Бройля».

    Таким образом, характерной особенностью микромира является своеобразная двойственность, дуализм корпускулярных и волновых свойств, который не может быть понят в рамках классической физики.

    Квантовая механика устранила абсолютную грань между волной и частицей. Ведь каждая волна состоит из полуволн, которые мы называем пучностями (расположены между двумя узлами, см. рис.):

    Пучности во многом похожи на частицы (корпускулы). Ведь они, так же как и фотоны, обладают определённой энергией и импульсом, чётко ограничены в пространстве (длина волны) и во времени (период волны).

    При этом (очень важно!), если мы по горизонтальной оси будем откладывать длину волны (в метрах), а по вертикальной – её импульс (кг*м/с), то величина площади пучности будет равна постоянной Планка (Дж*с). Такое же значение будет иметь площадь пучности, если мы по вертикали будем откладывать энергию волны (Дж), а по горизонтали – её период (в секундах). Именно поэтому мы называем эти пучности квантами (порциями) энергии и импульса (следовательно, и массы).

    Вывод : фотон, электрон, протон, нейтрон… являются лишь полуволнами колебаний той среды, в которой распространяется волна. В свою очередь полуволну можно рассматривать, как корпускулу, имеющую конкретный размер (длина полуволны), энергию, импульс и массу (для электрона и протона – ещё и электрический заряд) .

    Дополнение :

    Однако электромагнитные волны распространяются не в плоскости, а в трёхмерном объёме. При этом поперечность этих волн выражается в том, что колеблющиеся в них векторы напряжённости электрического и магнитного полей перпендикулярны направлению распространения волны. Кроме того, эти векторы почти всегда взаимно перпендикулярны, поэтому для описания электромагнитной волны требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

    На рисунке показаны колебания проекций электрического вектора Е на взаимно перпендикулярные оси X и Y (Z - направление распространения волны) и огибающая концов полного вектора Е в разных точках волны для случая, когда вертикальные (по оси X) колебания на четверть периода (90°) опережают горизонтальные (по оси Y). Конец вектора Е в этом случае описывает окружность в направлении «правого винта».

    Практически мы получили цилиндрическую пружину, которую можно рассматривать как устройство, накапливающее потенциальную энергию. Однако, в потенциальном поле атома электромагнитная волна распространяется не линейно (вдоль оси Z), а по замкнутой кривой. Значит, нашу пружину необходимо свернуть в кольцо так, чтобы её основания совместились друг с другом. Получим тор (проще бублик), центр которого совпадает с центром потенциального поля.

    Электромагнитная волна в замкнутом пространстве атома представляет собой стоячую волну, которая распространяется вдоль оси тора (свёрнутая нами в кольцо ось Z) с орбитальной скоростью, равной корню квадратному из модуля гравитационного потенциала (v 2 , Дж/кг) на данной траектории, а конец вектора Е описывает винтовую окружность вдоль витков пружины.

    Для справки :

    Поляризация света , одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии векторов напряжённости в плоскости, перпендикулярной световому лучу (направлению распространения световой волны).

    Преломление света , изменение направления распространения оптического излучения (света) при его прохождении через границу раздела двух сред.

    Интерференция волн , сложение в пространстве двух (или нескольких) волн, при котором в разных точках получается усиление или ослабление амплитуды результирующей волны.

    Дифракция (от лат. diffractus – разломанный) волн , явление, связанное с отклонением волн при их прохождении мимо края препятствия. В соответствии с принципом Гюйгенса – Френеля это препятствие является источником вторичных волн, от которого распространяется сферическая волна, попадая в область геометрической тени.

    Квант света (нем. quant, от лат. quantum – сколько), количество (порция) электромагнитного излучения, которое в единичном акте способен излучить или поглотить атом или другая квантовая система; элементарная частица, то же, что фотон.

    Планка постоянная , квант действия, фундаментальная физическая постоянная, определяющая широкий круг физических явлений, для которых существенна дискретность действия.

    Квантовая механика – волновая механика, теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах.

    Свет долгое время оставался одним из главных объектов изучения. Многие учёные стремились познать его природу, но сделать это было сложно из-за ограниченных возможностей. Самой первой теорией, пытавшейся объяснить природу света, была волновая теория. Она долгое время считалась правильной и верной, и не было никаких предпосылок, чтобы сформировался корпускулярно-волновой дуализм. В то время в физике бытовало мнение, что свет по своей природе - волна, а атомы и другие мелкие частицы обладали только корпускулярными свойствами.

    Теория начинала рушиться, потому что не удавалось объяснить Резерфорд в результате своих опытов сделал предположение, что ядро атома находится в центре, там же сосредоточена основная масса, а электроны распределяются по всему объему, свободно заполняя пространство. Но теория не нашла подтверждения, потому что согласно расчётам, подобная система не могла быть устойчивой.

    Предпосылки формирования новой теории

    Позже было открыто явление фотоэффекта, который выходил за рамки классической физики, которая главенствовала в то время. Впоследствии именно фотоэффект помог сформировать корпускулярно-волновой дуализм, потому что это привело к необходимости создания Её особенностью стало то, что частицы получали свойства, которые были невозможны бы, если рассматривать их в свете принципов физики классической. Корпускулярно-волновой дуализм стал одной из первых теорий, изучаемых в новом

    Суть фотоэффекта заключалась в том, что обычные вещества под воздействием коротковолнового излучения испускают быстрые электроны. Главным расхождением с классической физикой стал тот факт, что энергия испускаемых быстрых электронов не зависела от интенсивности излучения. Значения имело только свойства самого вещества, а также частота излучения. На тот момент не удавалось объяснить механизмы высвобождения фотоэлектронов на основе имеющихся данных.

    Волновая теория представлялась стройной и неоспоримой. Согласно ей, энергия излучения равномерно распространялась в световой волне. Когда она попадает на электрон, она сообщает ему определённое количество энергии, соответственно, согласно этой теории, чем выше интенсивность, тем больше энергия. Однако на деле выходило всё несколько иначе.

    Развитие идеи дуализма

    Альберт Эйнштейн начал высказывать идеи о дискретной природе света. Также начали развиваться квантовая теория поля и концепции квантовых полей, которые помогли сформировать корпускулярно-волновой дуализм.

    Суть заключается в том, что на свет могут воздействовать следовательно, он имеет физические свойства потока частиц - фотонов. Но при этом в таких явлениях, как дифракция и демонстрирует явные свойства волны. Был проведён ряд опытов, доказывающих двойственность структуры света. Именно на их основе был построен корпускулярно-волновой дуализм света, т.е. фотон проявляет корпускулярные свойства, но в ряде экспериментов он имел чёткие проявление волновых свойств.

    Нужно понимать, что подобные идеи на данный момент представляют лишь исторический интерес. Корпускулярно-волновой дуализм свойств вещества сформировался как теория в период, когда изучение подобных свойств только начиналось, тогда же были фактически основаны новые разделы физики. Подобная теория была попыткой объяснить новые явления языком классической физики.

    На самом деле, с точки зрения квантовой физики подобные объекты не являются частицами, по крайне мере, в классическом понимании. Они приобретают определённые свойства лишь при приближении. Впрочем, теория дуализма по-прежнему используется для объяснения определённых принципов природы света.

    Введение

    Почти одновременно были выдвинуты две теории света: корпускулярная теория Ньютона и волновая теория Гюйгенса.

    Согласно корпускулярной теории, или теории истечения, выдвинутой Ньютоном в конце 17 века, светящиеся тела испускают мельчайшие частицы (корпускулы), которые летят прямолинейно по всем направления и, попадая в глаз, вызывают световое ощущение.

    Согласно волновой теории светящееся тело вызывает заполняющей все мировое пространство особой среде – мировом эфире – упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе.

    Во времена Ньютона и Гюйгенса большинство ученых придерживалось корпускулярной теории Ньютона, которая достаточно удовлетворительно объясняла все известные к тому времени световые явления. Отражение света объяснялось аналогично отражению упругих тел при ударе о плоскость. Преломление света объяснялось действием на корпускулы больших сил притяжения со стороны более плотной среды. Под действием этих сил, проявляющихся, согласно теории Ньютона, при приближении к более плотной среде, световые корпускулы получали ускорение, направленные перпендикулярно к границе этой среды, вследствие чего они изменяли направление движения и одновременно увеличивали свою скорость. Аналогично объяснялись другие световые явления.

    В дальнейшем появившиеся новые наблюдения не укладывались в рамки этой теории. В частности, несостоятельность этой теории обнаружилось, когда была измерена скорость распространения света в воде. Она оказалась не больше, а меньше, чем в воздухе.

    В начале 19 века волновая теория Гюйгенса, не признанная современниками, была развита и усовершенствована Юнгом и Френелем и получила всеобщее признание. В 60–х годах прошлого столетия, после того как Максвелл разработал теорию электромагнитного поля, выяснилось, что свет представляет собой электромагнитные волны. Таким образом, волновая механистическая теория света была заменена волновой электромагнитной теорией. Световые волны (видимый спектр) занимают в шкале электромагнитных волн диапазон 0,4–0,7мкм. Волновая теория света Максвелла, трактующая излучение как непрерывный процесс, оказалась не в состоянии объяснить некоторые из вновь открытых оптических явлений. Её дополнила квантовая теория света, согласно которой энергия световой волны излучается, распространяется и поглощается не непрерывно, а определенными порциями - квантами света, или фотонами, - которые зависят только от длины световой волны. Таким образом, по современным представлениям, свет обладает как волновыми так, и корпускулярными свойствами.

    Интерференция света

    Волны создающие в каждой точке пространства колебания с не изменяющейся со временем разностью фаз, называются когерентными. Разность фаз в этом случае имеет постоянное, но, вообще говоря, различное для разных точек пространства значение. Очевидно, что когерентными могут быть лишь волны одинаковой частоты.

    При распространении в пространстве нескольких когерентных волн порождаемые этими волнами колебания в одних точках усиливают друг друга, в других – ослабляют. Это явление называется интерференцией волн. Интерферировать могут волны любой физической природы. Мы рассмотрим интерференцию световых волн.

    Источники когерентных волн также называются когерентными. При освещении некоторой поверхности несколькими когерентными источниками света на этой поверхности возникают в общем случае чередующиеся светлые и темные полосы.

    Два независимых источника света, например две электролампы, не когерентны. Излучаемые ими световые волны – это результат сложения большого количества волн, излучаемых отдельными атомами. Излучение волн атомами происходит беспорядочно, и поэтому нет каких - либо постоянных соотношений между фазами волн, излучаемых двумя источниками.

    При освещении поверхности некогерентными источниками характерная для интерференции картина чередующихся светлых и темных полос не возникает. Освещенность в каждой точке оказывается равной сумме освещенностей, создаваемых каждым из источников в отдельности.

    Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков.

    Интерференцию света можно наблюдать при освещении монохроматическими (одноцветными) лучами прозрачной пластинки переменной толщины, в частности клинообразной пластинки. В глаз наблюдателя будут попадать волны, отраженные как от передней, так и от задней поверхностей пластинки. Результат интерференции определяется разностью фаз тех и других волн, которая постепенно изменяется с изменением толщины

    пластинки. Соответственно изменяется освещенность: если разность хода интерферирующих волн в некоторой точке поверхности пластинки равна четному числу полуволн, то в этой точке поверхность будет казаться светлой, при разности фаз в нечетное число полуволн – темной.

    При освещении параллельным пучком плоскопараллельной пластинки разность фаз световых волн, отраженных от передней и задней её поверхностей, одна и та же во всех точках, - пластинка будет казаться освещенной равномерно.

    Вокруг точки соприкосновения слегка выпуклого стекла с плоским при освещении монохроматическим светом наблюдаются темные и светлые кольца – так называемые кольца Ньютона. Здесь тончайшая прослойка воздуха между обоими стеклами играет роль отражающей пленки, имеющей постоянную толщину по концентрическим окружностям.

    Дифракция света.

    У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

    Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

    Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

    Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

    Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

    Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

    С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

    Поляризация света

    Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

    Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

    Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

    1) Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

    2) Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

    3) В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.