Кто открыл рутений. Что мы должны знать о рутении. Физические и химические свойства

Рутений - наиболее легкий и наименее "благородный" из всех металлов платиновой группы. Является едва ли не самым "многовалентным" элементом (известно девять валентных состояний). Несмотря на более чем полувековую историю изучения, он и сегодня перед современными химиками ставит немало вопросов и проблем. Так что же представляет собой рутений как химический элемент? Для начала - небольшой экскурс в историю.

Загадочная и богатая

Название и история открытия рутения неразрывно связаны с Россией. В самом начале XΙX века мировую общественность взволновало и обеспокоило известие о том, что в Российской империи обнаружены богатейшие залежи платины. Ходили слухи, что на Урале добычу этого драгоценного металла можно было вести обыкновенной лопатой. Факт открытия богатых месторождений был вскоре подтвержден тем, что министр финансов России Е. Ф. Канкрин направил на Петербургский Монетный двор высочайший указ о чеканке монет из платины. В последующие годы было запущено в оборот около полутора миллионов монет (3,6 и 12 руб.) для производства которых затрачено 20 тонн драгоценного металла.

"Открытие" Озанна

Изучением состава уральской драгоценной руды занялся профессор Дерптско-Юрьевского (ныне Тартусского) университета Готфрид Озанн. Он пришел к выводу, что платине сопутствуют три неизвестных металла - полуран, полином и рутений - названия которым были даны самим Озанном. Кстати, третий он назвал в честь России (от латинского Ruthenia).

Коллеги Озанна во всей Европе, во главе с авторитетнейшим шведским химиком Йенсом Берцелиусом, очень критично отнеслись к сообщению профессора. В попытке оправдаться ученый повторил серию своих экспериментов, но прежних результатов достигнуть не удалось.

Спустя два десятилетия работами Озанна заинтересовался профессор химии Карл Карлович Клаусс (Казанский университет). Он добился разрешения министра финансов получить в лаборатории Монетного двора несколько фунтов остатков производства монет для проведения повторных исследований.

Русский академик А. Е. Арбузов отмечал в своих трудах, что для открытия нового элемента в те времена химику требовались чрезвычайное трудолюбие и настойчивость, наблюдательность и проницательность, а самое главное - тонкое экспериментальное чутье. Все вышеперечисленные качества в самой высокой степени были присущи молодому Карлу Клауссу.

Исследования ученого имели и практическое значение - дополнительное извлечение чистой платины из остатков руды. Разработав собственный план эксперимента, Клаусс сплавил рудный материал с селитрой и извлек растворимые элементы: осмий, иридий, палладий. Нерастворимую часть подверг воздействию смеси концентрированных кислот ("царской водки") и перегонке. В осадке гидроокиси железа он обнаружил наличие неизвестного металла и выделил его сначала в виде сульфида, а затем - и в чистом (около 6 граммов). Профессор сохранил за элементом название, предложенное Озанном, - рутений.

Открыть и доказать

Но как оказалось, история открытия химического элемента рутения только начиналась. После опубликования в 1844 году результатов исследования на Клаусса обрушился град критики. Выводы неизвестного казанского ученого были скептически восприняты крупнейшими химиками мира. Даже отправка образца нового элемента Берцелиусу не спасла ситуацию. По мнению шведского мэтра, рутений Клаусса являлся лишь "пробой нечистого иридия".

Только выдающиеся качества Карла Карловича как химика-аналитика и экспериментатора и серия дополнительных исследований позволили доказать ученому свою правоту. В 1846 году открытие получило официальное признание и подтверждение. За проведенную работу Клаусс был удостоен Демидовской премии Российской академии наук в размере 10 тыс. рублей. Благодаря таланту и настойчивости казанского профессора ряды платиноидов пополнил рутений - первый элемент, открытый в России (и на сегодняшний день, к сожалению отечественной химической школы, единственный).

Дальнейшие исследования

Области применения

Хотя все свойства благородного металла у рутения присутствуют в полной мере, широкого распространения в ювелирной индустрии элемент не получил. Его используют лишь для укрепления сплавов и придания дорогим украшениям большей прочности.

По количеству потребляемого рутения секторы промышленности расположились в следующем порядке:

  1. Электронный.
  2. Электрохимический.
  3. Химический.

Очень востребованы каталитические свойства элемента. Его применяют при синтезе синильной и азотной кислот, при получении предельных углеводородов, глицерина и полимеризации этилена. В металлургической промышленности добавки рутения используют для увеличения антикоррозийных свойств, придания сплавам прочности, химической и механической стойкости. Радиоактивные изотопы рутения нередко помогают ученым при проведении научных исследований.

Нашли применение и многие соединения элемента в качестве хороших окислителей и красителей. В частности, хлориды используют для усиления люминесценции.

Биологическое значение

Рутений обладает способностью накапливаться в клетках живых тканей, главным образом - мышечных (единственный из металлов платиновой группы). Может провоцировать развитие аллергических реакций, оказывать негативное воздействие на слизистую оболочку глаз и верхнего дыхательного тракта.

В медицине благородный металл используют как средство для распознавания пораженных тканей. Лекарственные препараты на его основе применяют для лечения туберкулеза и различных инфекций, поражающих кожные покровы человека. По этой причине весьма перспективным выглядит использование способности рутения образовывать прочные нитрозокомплексы в борьбе с заболеваниями, связанными с избыточной концентрацией нитратов в организме человека (гипертонии, артрита, септического шока и эпилепсии).

Кто виноват?

Совсем недавно ученые Западной Европы всерьез обеспокоили общественность сообщением, что над континентом растет содержание радиоактивного изотопа рутения Ru 106. Самообразование его в атмосфере специалисты полностью исключают. Как и аварийный выброс с АЭС, так как тогда в воздухе обязательно присутствовали бы радионуклиды цезия и йода, что не подтверждается экспериментальными данными. Воздействие этого изотопа на организм человека, как и всякого радиоактивного элемента, ведет к облучению тканей и органов, развитию онкологических заболеваний. Возможные источники загрязнения, по версии западных СМИ, расположены на территории России, Украины или Казахстана.

В ответ представитель Департамента коммуникаций Росатома заявил, что все предприятия госкорпорации работали и работают в штатных режимах. Международное агентство по атомной энергетике (МАГАТЭ) в своем заключении, основываясь на данных собственного мониторинга, назвало все обвинения в адрес Российской Федерации беспочвенными.

Рутений - элемент побочной подгруппы восьмой группы пятого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 44. Обозначается символом Ru (лат. Ruthenium ).

История открытия рутения

История открытия этого элемента началась в России, когда в 20-х годах XIX столетия на Урале были обнаружены месторождения платины. Весть об этом открытии быстро облетела мир и вызвала много тревог и волнений на международном рынке. Среди иностранных спекулянтов ходили слухи о чудовищных самородках, о платиновом песке, который платиноискатели черпают прямо лопатами. Месторождения платины, действительно, оказались богатыми, и граф Канкрин, бывший в то время министром финансов России, дал распоряжение о чеканке платиновых монет. Монеты стали чеканить достоинством в 3,6 и 12 рублей. Было выпущено 1 400 000 платиновых монет, на которые израсходовали более 20 т самородной платины.

В год распоряжения Канкрина о чеканке монет профессор Юрьевского университета Озанн, исследуя образцы уральской платины, пришел к заключению, что платину сопровождают три новых металла. Один из них Озанн назвал полураном, второй - полином, а третьему в честь латинского названия. России - Рутения дал имя - рутений. "Открытие" Озанна химики встретили с недоверием. Особенно протестовал шведский химик Берцелиус, авторитет которого в то время был поистине мировым. Возникший между Озанном и Берцелиусом спор взялся разрешить профессор химии Казанского университета К. К. Клаус. Получив в свое распоряжение небольшое количество остатков от чеканки платиновой монеты, Клаус обнаружил в них новый металл, за которым и сохранил название рутений, предложенное Озанном. 13 сентября 1844 г. Клаус сделал в Академии наук сообщение о новом элементе и его свойствах. В 1845 г. доклад Клауса под названием "Химические исследования остатков уральской платиновой руды и металла рутения" вышел в свет в виде отдельной книги. "...Малое количество изученного материала - не более шести граммов совершенно чистого металла - не позволило мне продолжать мои исследования", - писал Клаус в своей книге. Однако полученные данные о свойствах нового металла дали возможность Клаусу твердо заявить об открытии нового химического элемента.

Желая ознакомить иностранных ученых с открытием нового элемента, Клаус послал образец металла Берцелиусу. Ответ Берцелиуса был по меньшей мере странным. Имея в руках новый элемент с подробным описанием свойств, он не согласился с мнением Клауса. Берцелиус заявил, что полученный от Клауса металл есть "проба нечистого иридия", давно известного элемента. Позднее Берцелиус вынужден был признать свою ошибку.

Получение рутения

Разделение платиновых металлов и получение их в чистом виде (аффинаж) -очень сложная задача, требующая большой затраты труда, времени, дорогих реактивов, а также высокого мастерства. Самородную платину, платиновый «лом» и другой материал прежде всего обрабатывают «царской водкой» прислабом нагревании. При этом полностью переходят в раствор платина и палладий в видеН2 и H2, медь, железо и никель - в виде хлоридов CuCl2,FeCl3, NiCl2. Частично растворяются родий и иридий в виде H3 иH2. Нерастворимый в «царcкой водке» остаток состоит из соединения осмия с иридием, а также сопутствующих минералов (кварца SiO2, хромистого железняка FeCr2O4, магнитного железняка Fе3О4 и др.).Отфильтровав раствор, из него осаждают платину хлоридом аммония. Однако, чтобы осадок гексахлорплатината аммония не содержал иридия, который образует также труднорастворимый гексахлориридит (IV) аммония(NH4)2, необходимо восстановить Ir (IV) до Ir (III). Это производят прибавлением, например, тростникового сахара C12H22O14 (способ И.И.Черняева). Гексахлориридит (III) аммония растворим в воде и хлоридомаммония не осаждается. Осадок гексахлорплатината аммония отфильтровывают, промывают, высушивают и прокаливают. Полученную платиновую губку спрессовывают, а затем сплавляют вкислородо-водородном пламени или в электрической высокочастотной печи. Из фильтра от гексахлорплатината аммония извлекают палладий, родий ииридий; из сплава иридия выделяют иридий, осмий и рутений. Необходимые для этого химические операции очень сложны. В настоящее время главным источником получения платиновых металлов служат сульфидные медно-никелевые руды. В результате их сложной переработки выплавляют так называемые «черновые» металлы - загрязненные никель и медь. При их электролитическом рафинировании благородные металлы накапливаются в виде анодного шлама, который направляют на аффинаж.

Значительным источником рутения для его добычи является выделение его из осколков деления ядерных материалов (плутоний, уран, торий) где его содержание в отработанных ТВЭЛах достигает 250 граммов на тонну «сгоревшего» ядерного топлива.

Физические свойства рутения

По тугоплавкости (Тпл 2250 °C) рутений уступает лишь нескольким элементам - рению, осмию, вольфраму.

Наиболее ценные свойства Рутения - тугоплавкость, твердость, химическая стойкость, способность ускорять некоторые химические реакции. Наиболее характерны соединения с валентностью 3+, 4+ и 8+. Склонен к образованию комплексных соединений. Применяется как катализатор, в сплавах с платиновыми металлами, как материал для острых наконечников, для контактов, электродов и в ювелирном деле.

Химические свойства рутения

Рутений и осмий хрупки и очень тверды. При действии кислорода и сильных окислителей они образуют оксиды RuO4 и OsO4. Это легкоплавкие желтые кристаллы. Пары обоих соединений имеют резкий, неприятный запах и очень ядовиты. Оба соединения легко отдают кислород, восстанавливаясь до RuO2 иOsO2 или до металлов. Со щелочами RuO4 дает соли (рутенаты): 2Ru04 + 4КОН = 2K2RuO4 + 2Н2O + О2

Применение рутения
  • Небольшая добавка рутения (0,1 %) увеличивает коррозионную стойкость титана.
  • В сплаве с платиной используется для изготовления чрезвычайно износостойких электрических контактов.
  • Катализатор для многих химических реакций. Очень важное место рутения как катализатора в системах очистки воды орбитальных станций.

Уникальна также способность рутения к каталитическому связыванию атмосферного азота при комнатной температуре.

Рутений и его сплавы находят применение в качестве жаропрочных конструкционных материалов в аэрокосмической технике, и до 1500 °C по прочности превосходят лучшие сплавы молибдена и вольфрама (имея преимущество так же в высокой стойкости к окислению).

В последние годы широко изучается оксид рутения как материал для производства суперконденсаторов электроэнергии, удельная электрическая ёмкость свыше 700 Фарад/грамм.

Применение рутения для выращивания графена

Исследователи из Brookhaven National Laboratory (США) показали, что при эпитаксиальном росте графена на поверхности Ru(0001) формируются макроскопические графеновые области. При этом рост протекает послойно, и, хотя первый слой сильно связан с подложкой, второй практически с ней не взаимодействует и сохраняет все уникальные свойства графена.

Синтез основан на том, что растворимость углерода в рутении сильно зависит от температуры. При 1150 °С рутений насыщается углеродом, а при снижении температуры до 825 °С углерод выходит на поверхность, в результате чего формируются островки графена размером более 100 мкм. Островки разрастаются и объединяются, после чего начинается рост второго слоя.

Сергеева Екатерина

История открытия Рутения и его свойства.

Скачать:

Предварительный просмотр:

«Казанский химический элемент (Рутений)»

Сергеева Екатерина Юрьевна

ГАОУ СПО «Чистопольский политехнический колледж»

Руководитель Ионычева А.Л.

АННОТАЦИЯ

В данной работе меня заинтересовала история открытия, свойства и возможные области применения химического элемента Рутения, который был открыт Карлом Карловичем Клаусом в химической лаборатории Казанского университета и по праву может называться Казанским химическим элементом. 2011 год, был объявлен ЮНЕСКО Годом химии, учащимся Казани и Республики Татарстан стоит вспомнить об этом явно незаурядном событии в более чем 1000-летней истории города Казань и единственного в России человека К.К.Клауса, открывшего естественный химический элемент, тем более, что он по праву считается одним из родоначальников Казанской химической школы.

Данная тема показалась нам интересной и актуальной еще и потому, что

Рутений один из представителей платиновых металлов, но был открыт самым последним. Открытие Рутения представляло большие трудности.

Чтобы открыть во времена Клауса новый элемент платиновой группы - Рутений, надо было обладать чрезвычайной наблюдательностью, проницательностью, трудолюбием, настойчивостью и тонким экспериментальным искусством. Всеми этими качествами в высокой мере обладал Клаус, один из первых блестящих представителей химической науки тогда еще молодого Казанского университета.

Изучая проблему, мы пользовались материалами интернет – ресурса: сайта «Мир химии», Викисловарем, Популярной библиотекой химических элементов, Издательство «Наука»,2011г.

Во время проведения недели естественных наук мы провели (в ряду других мероприятий) научно – практическую конференцию: «Великие ученые-химики и их открытия», на которой были представлены исследовательские работы и ряд презентаций, которые стали хорошим подспорьем в работе преподавателей и заинтересованности обучающихся в изучении химии и других естественных дисциплин.

Казанский химический элемент (Рутений)

«Чтобы открыть во времена Клауса новый элемент платиновой группы – рутений, надо было обладать чрезвычайной наблюдательностью, проницательностью, трудолюбием, настойчивостью и тонким экспериментальным искусством. Всеми этими качествами в высокой мере обладал Клаус, один из первых блестящих представителей химической науки тогда еще молодого Казанского университета»

Академик А.Е. Арбузов

История открытия рутения

Рутений-первый химический элемент, открытый русским ученым-химиком Карлом Карловичем Клаусом. Рутений -представитель платиновых металлов, открыт последним среди них.

Исследованиями занимались А. Снядецкий, поляк по национальности, и русский ученый К.К. Клаус. Большую помощь ученому оказал Е.Ф. Канкрин, эанимавший в то время пост министра финансов

К.К. Клаус

Он то и предоставил Клаусу остатки сырой платины, из которой ученый выделил платину, а также другие металлы: родий, палладий, иридий и осмий. Кроме этих металлов выделил также смесь других, в которой по мнению Клауса должно было находиться новое, еще неизвестное вещество. Химик повторил опыты Г.В. Озанна, а затем, разработав свой план эксперимента, получил новый химический элемент-рутений. И опять отправил письмо И.Берцеллиусу, но тот как и в первый раз не согласился с доводами Клауса. Но русский химик не внял доводам Берцеллиуса и доказал, что открыл новый химический элемент платиновой группы. И в 1845 году Берцеллиус признал открытие рутения.

Назван химический элемент в честь России (латинское название России-Рутениа)

По просьбе министерства финансов профессор Казанского университета Карл Карлович Клаус в 1841 году приступил к поискам способа переработки остатков платиновых руд, накопившихся на Петербургском Монетном дворе, с целью более полного извлечения платины. Годом раньше, стараниями ректора Лобачевского для химической лаборатории было воздвигнуто отдельное двухэтажное здание с огромным подвалом, оснащённое самым современным оборудованием.

Клаус установил состав остатков платиновой руды и разработал методы разделения и получения в чистом виде платиновых металлов. Клаусу пришлось преодолеть исключительные экспериментальные трудности, учитывая уровень знаний тех времен. Кроме того, работа была опасна для здоровья, так как в процессе обработки руд образовывались крайне ядовитые вещества.

Среди выделенных компонентов Клаус обнаружил неизвестный ранее металл. Он изучил свойства как самого металла, так и его соединений, с особой тщательностью определил его атомный вес, отработал метод его выделения и очистки. В 1844 году Клаус опубликовал полученные результаты, назвав новый химический элемент рутением, в честь России. Мировая научная общественность сначала с сомнением приняла это открытие, так как тогда ошибочно «открывалось» много элементов.

Только в 1846 году, когда Клаус опубликовал новую работу о дальнейшем изучении рутения, его открытие было всеми признано. Вскоре казанскому профессору Российской академией наук была присуждена Демидовская премия за исследования в области платиновых металлов. Её величина в 10000 рублей тогда была гораздо большей, чем теперешняя Нобелевская премия.

Химическая лаборатория Казанского университета, где в 1842 году работал Клаус. Сто лет спустя в этой комнате начинал работу будущий Курчатовский институт.

Получение рутения

Разделение платиновых металлов и получение их в чистом виде (аффинаж) -очень сложная задача, требующая большой затраты труда, времени, дорогих реактивов, а также высокого мастерства.. В настоящее время главным источником получения платиновых металлов служат сульфидные медно-никелевые руды. В результате их сложной переработки выплавляют так называемые «черновые» металлы - загрязненные никель и медь. При их электролитическом рафинировании благородные металлы накапливаются в виде анодного шлама, который направляют на аффинаж.

Значительным источником рутения для его добычи является выделение его из осколков деления ядерных материалов (плутоний, уран, торий) где его содержание достигает 250 граммов на тонну «сгоревшего» ядерного топлива.

Физические свойства рутения.

По тугоплавкости (Тпл 2250 °C) рутений уступает лишь нескольким элементам - рению, осмию, вольфраму.

Наиболее ценные свойства Рутения - тугоплавкость, твердость, химическая стойкость, способность ускорять некоторые химические реакции. Наиболее характерны соединения с валентностью 3+, 4+ и 8+. Склонен к образованию комплексных соединений. Применяется как катализатор, в сплавах с платиновыми металлами, как материал для острых наконечников, для контактов, электродов и в ювелирном деле.

Химические свойства рутения.

Рутений и осмий хрупки и очень тверды. При действии кислорода и сильных окислителей они образуют оксиды RuO4 и OsO4. Это легкоплавкие желтые кристаллы. Пары обоих соединений имеют резкий, неприятный запах и очень ядовиты. Оба соединения легко отдают кислород, восстанавливаясь до RuO2 иOsO2 или до металлов. Со щелочами RuO4 дает соли (рутенаты). Исследование Рутения ставит сегодня перед химиками три задачи:

Задача №1: Как избавиться от рутения?

У рутения немало ценных и интересных свойств. По многим механическим, электрическим и химическим характеристикам он может соперничать со многими металлами и даже с платиной и золотом. Однако в отличие от этих металлов рутений очень хрупок, и поэтому изготовить из него какие-либо изделия пока не удается. Задача №1 поставлена перед учеными атомной техникой.

Радиоактивные изотопы рутения в природе не существуют, но они образуются в результате деления ядер урана и плутония в реакторах атомных электростанций, подводных лодок, кораблей, при взрывах атомных бомб. С теоретической точки зрения этот факт безусловно интересен. В нем даже есть особая «изюминка»: осуществилась мечта алхимиков – неблагородный металл превратился в благородный. Действительно, в наши дни предприятия по производству плутония выбрасывают десятки килограммов благородного металла рутения. Но практический вред, наносимый этим процессом атомной технике, не окупился бы даже в том случае, если бы удалось применить с пользой весь рутений, полученный в ядерных реакторах.

Чем же так вреден рутений?

Одно из главных достоинств ядерного горючего – его воспроизводимость. Как известно, при «сжигании» урановых блоков в ядерных реакторах образуется новое ядерное горючее – плутоний. Одновременно образуется и «зола» – осколки деления ядер урана, в том числе и изотопы рутения. Золу, естественно, приходится удалять.

Рутений начинает постепенно мигрировать в грунт, создавая опасность радиоактивного загрязнения на больших расстояниях от водоема. То же самое происходит при захоронении осколков в шахтах на большой глубине. Радиоактивный рутений, обладающий (в виде растворимых в воде нитрозосоединений) чрезвычайной подвижностью, или, правильнее сказать, миграционной способностью, может уйти с грунтовыми водами очень далеко.

Борьбе с радиоактивным рутением уделяют много внимания физики, химики, технологи и особенно радиохимики многих стран. На I и II Международных конференциях по мирному использованию атомной энергии в Женеве этой проблеме было посвящено несколько докладов. Однако до сих пор нет оснований считать борьбу с рутением оконченной успешно, и, видимо, химикам придется еще немало поработать для того, чтобы эту проблему можно было перевести в категорию окончательно решенных.

Задача №2: дальнейшее изучение химии рутения и его соединений.

Необычайная актуальность задачи №1 заставляет исследователей все глубже проникать в химию рутения и его соединений.

Рутений – редкий и очень рассеянный элемент. Известен единственный минерал, который он образует в естественных условиях. Это лаурит RuS 2 – очень твердое тяжелое вещество черного цвета, встречающееся в природе крайне редко. В некоторых других природных соединениях рутений – всего лишь изоморфная примесь, количество которой, как правило, не превышает десятых долей процента. Небольшие примеси соединений рутения были обнаружены в медно-никелевых рудах канадского месторождения Седбери, а потом и на других рудниках.

Одно из самых замечательных химических свойств рутения – его многочисленные валентные состояния. Легкость перехода рутения из одного валентного состояния в другое и обилие этих состояний приводят к чрезвычайной сложности и своеобразию химии рутения, которая до сих пор изобилует множеством белых пятен.

Советский ученый Сергей Михайлович Старостин всю свою жизнь посвятил изучению химии рутения и его соединений. Это он установил, что огромные трудности, возникающие при отделении рутения от плутония и урана, связаны с образованием и свойствами нитрозокомплексов рутения.

Некоторые ученые предполагают, что удастся выделить и неорганические полимеры на основе нитрозокомплексов рутения.

Несколько десятилетий назад комплексные соединения рутения сослужили теории химии важную службу, став прекрасной моделью, с помощью которой Вернер создал свою знаменитую координационную теорию. Возможно, полимерные соединения рутения послужат моделью и для создания теории неорганических полимеров.

Задача №3: использование рутения

Где же используется рутений и каковы перспективы его применения?

Рутений, так же как платина и палладий, обладает каталитическими свойствами, но часто отличается от них большей селективностью и избирательностью. В гетерогенном катализе используются металлический рутений и его сплавы. Наиболее эффективные катализаторы получаются при нанесении рутения на различные носители с сильно развитыми поверхностями. Во многих случаях его применяют вместе с платиной для того, чтобы увеличить ее каталитическую активность. Сплав родия, рутения и платины ускоряет окисление аммиака в производстве азотной кислоты. Рутений применяют для синтеза синильной кислоты из аммиака и метана, для получения предельных углеводородов из водорода и окиси углерода. За границей запатентован способ полимеризации этилена на рутениевом катализаторе.

Важное значение приобрели рутениевые катализаторы для реакции получения глицерина и других многоатомных спиртов из целлюлозы путем ее гидрирования.

Металлорганические соединения рутения находят применение в гомогенном катализе для различных реакций гидрирования, причем по селективности и каталитической активности они не уступают признанным катализаторам на основе родия.

Главное достоинство рутения-катализатора в его высокой избирательной способности. Именно она позволяет химикам использовать рутений для синтеза самых разнообразных органических и неорганических продуктов. Рутений-катализатор начинает всерьез конкурировать с платиной, иридием и родием.

Несколько меньше возможности элемента №44 в металлургии, но его применяют и в этой отрасли. Небольшие добавки рутения обычно увеличивают коррозионную стойкость, прочность и твердость сплава. Чаще всего его вводят в металлы, из которых изготовляют контакты для электротехники и радиоаппаратуры. Сплав рутения с платиной нашел применение в топливных элементах некоторых американских искусственных спутников Земли. Сплавы рутения с лантаном, церием, скандием, иттрием обладают сверхпроводимостью. Термопары, изготовленные из сплава иридия с рутением, позволяют измерять самые высокие температуры.

Многого можно ожидать и от использования рутениевых покрытий, нанесенных в виде тонкого слоя (пленки) на различные материалы и изделия. Подобная пленка существенно изменяет свойства и качество изделий, повышает их химическую и механическую стойкость, делает их коррозионно-устойчивыми, резко улучшает электрические свойства и т.д. Тонкие покрытия из благородных металлов, и в том числе из рутения, в последние годы приобретают все большее значение в различных областях электроники, радио- и электротехники, химической промышленности, а также в ювелирном деле.

Интересное свойство металлического рутения – сорбировать и пропускать водород – с успехом может быть использовано для извлечения водорода из смеси газов и получения сверхчистого водорода.

Полезными свойствами обладают многие соединения рутения. Некоторые из них используют в качестве добавок в стекла и эмали как стойкие красители; хлориды рутения, например, увеличивают люминесценцию люминола, полиамины рутения обладают флюоресцирующими свойствами, соль Na2 · 2H2O является пьезоэлектриком, RuО4 – сильнейший окислитель. Многие соединения рутения обладают биологической активностью.

«Вечное» перо

Перья авторучек постоянно трутся о бумагу и оттого стачиваются. Чтобы сделать перо действительно «вечным», на кончике его делают напайку. В состав некоторых сплавов для напайки «вечных» перьев входит рутений. Кроме него, в этих сплавах содержатся вольфрам, кобальт, бор.

Рутений применяют также при изготовлении сплавов для опор компасных игл. Эти сплавы должны быть твердыми, прочными и упругими. Из природных минералов такими свойствами обладает очень редкий осмистый иридий. В искусственные же материалы для компасных игл вместе с осмием и иридием, а иногда и другими металлами, входит элемент №44 – рутений.

Есть контакт!

В электротехнике для контактов издавна используется медь. Она – идеальный материал при передаче сильных токов. Что из того, что через определенное время контакты покрываются окисью меди? Их можно протереть шкуркой и они вновь заблестят, как новенькие. Иное дело в слаботочной технике. Здесь любая окисная пленка на контакте может нарушить работу всей системы. Поэтому контакты для слабых токов делают из палладия или серебряно-палладиевого сплава. Но эти материалы не обладают достаточной механической прочностью. Добавка к сплавам небольших количеств рутения (1...5%) придает контактам твердость и прочность. То же относится и к скользящим контактам, которые должны хорошо противостоять истиранию.

Рутениевая красная.

Так называется неорганический краситель, представляющий собой комплексный аммиачный хлорид рутения.. Рутениевую красную применяют при исследованиях в анатомии и гистологии (науке о живых тканях). Раствор этого красителя при разбавлении 1:5000 окрашивает в розовые и красные тона пектиновые вещества и некоторые ткани. Благодаря этому исследователь получает возможность отличить эти вещества от других и лучше проанализировать рассматриваемый под микроскопом срез.

Применение Рутения для выращивания графена.

Исследователи из Brookhaven National Laboratory (США) показали, что при эпитаксиальном росте графена на поверхности Ru(0001) формируются макроскопические графеновые области. При этом рост протекает послойно, и, хотя первый слой сильно связан с подложкой, второй практически с ней не взаимодействует и сохраняет все уникальные свойства графена.
Синтез основан на том, что растворимость углерода в рутении сильно зависит от температуры. При 1150 °С рутений насыщается углеродом, а при снижении температуры до 825 °С углерод выходит на поверхность, в результате чего формируются островки графена размером более 100 мкм. Островки разрастаются и объединяются, после чего начинается рост второго слоя.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Казанский химический элемент - Рутений.

Цель работы: Исследовать историю открытия Рутения Изучить свойства и основные области применения элемента

Рутений-первый химический элемент, открытый русским ученым-химиком Карлом Карловичем Клаусом. Рутений -представитель платиновых металлов, открыт последним среди них. К.К. Клаус

Химическая лаборатория Казанского университета, где в 1842 году работал Клаус. Сто лет спустя, в этой комнате, начинал работу будущий Курчатовский институт.

Рутений (лат. Ruthenium), Ru, химический элемент VIII группы периодической системы Менделеева, атомный номер 44, атомная масса 101,07; один из платиновых металлов. Назван химический элемент в честь России (латинское название России - Рутениа)

Думаю, вы слышали громкую историю о том, что в конце сентября над Европой был обнаружен радиоактивный элемент рутений-106. Ряд источников, в том числе и немецких (Германия одной из первых заявила о наличии в воздухе радиоизотопа) заявляют, что источником рутения-106 стал Южный Урал. Это вполне вероятная версия, так как как раз в тех местах до сих пор функционирует спецпредприятие "Маяк", на котором в 1957 году произошла ядерная авария — одна из самых крупных в истории человечества.

Итак, в сегодняшнем посте мы узнаем, что такое рутений-106, вспомним про аварию на "Маяке" в 1957 году и подумаем, что там могло произойти этой осенью. Заходите под кат, там интересно)

Что такое рутений-106.

Для начала немного о рутении, изотоп которого (рутений-106) и был обнаружен в воздухе.

Рутений — элемент восьмой группы пятого периода периодической системы химических элементов, атомный номер — 44. Был открыт профессором Казанского университета Карлом Клаусом в 1844 году, который в том же году опубликовал большую статью о новом элементе под названием "Химические исследования остатков Уральской платиновой руды и металла рутения". Клаус выделил рутений из уральской платиновой руды в чистом виде и назвал элемент в честь России (лат. Ruthenia).

Радиоактивные изотопы рутения в природе не существуют, но образуются в результате деления ядер урана и плутония везде, где происходит цепная реакция — в реакторах атомных станций, подводых лодок, а также при взрыве ядерных бомб. Большинство радиоизотопов рутения недолговечны, но два из них — рутений-103 и, собственно, рутени-106 имеют достаточно большие периоды полураспада — 40 суток и 1 год соответственно.

Спецкомбинат «Маяк» и закрытый город Озёрск.

Немецкие власти, одними из первых обраружившие рутений-106 в воздухе, назвали веротятным местом выброса радиоизотопа Южный Урал. Если посмотреть на карту, то как раз у подножия Уральских гор можно увидеть закрытый город Озёрск, который некогда назывался Челябинск-65. В Озёрске находится спецкомбинат "Маяк", на котором в сентябре 1957 года произошла масштабная и страшная авария, о которой я подробно рассказывал вот в этом посте .


Если пересказать вкратце, то в 1957 году на "Маяке" произошло следующее — до середины1950-х годов радиоактивные отходы просто сливали в реку Теча, на которой стоял завод. После того, как в окружающих сёлах стали болеть и умирать люди, в реку стали лить лишь низкоактивные отходы, среднеактивные отходы стали выливать в замкнутое озеро Карачай, а высокоактивные отходы стали хранить в "банках" из нержавейки в подземных хранилищах.

Одна из таких "банок" и рванула в 1957 году, разрушив бетонное перектие хранилища — в результате чего всё содержимое оказалось снаружи хранилища, у края разлома плиты радиоактивный фон достигал 1000 р/час. Ветер разнёс загрязнение на северо-восток, в результате чего образовался восточно-уральский радиоактивный след, ставший впоследствии зоной отчуждения.


"Маяк" продолжает успешно функционировать до сегодняшнего дня и занимается примерно тем же, чем он занимался в пятидесятые годы — производством начинки для ядерного вооружения, а также утилизацией и хранением ядерных отходов с высоким содержанием урана. Немецкие источники называют источником радиоактивного рутения-106 примерно этот район, и если в районе Урала что-то и случилось — то случилось оно именно в Озёрске на "Маяке".

Что могло произойти на « Маяке » ?

Сторонники той версии, что причиной радиационной утечки стал именно комбинат "Маяк", приводят следующую хронологию событий. 19 сентября на "Маяк" было вывезено облученное ядерное топливо из реактора ВВЭР-1000 Балаковской АЭС. Фотографии этого события появились позже в группе "Мы с Маяка" в соцсети "вконтакте":

22 сентября отработанное ядерное топливо в контейнере ТУК-131О было доставлено непосредственно на радиохимический завод "Маяк", где начались испытания нового технологического оборудования. Завершились испытания примерно 1-2 октября, о чём в той же группе был опубликован отдельный пост:

Вслед за этим утром 25 сентября (т.е. в то время, когда вероятнее всего испытания нового оборудования были в самом разгаре) на городских сайтах Озёрска стали появляться сообщения о том, что 25 и 26 сентября в городе будет проводиться плановая проверка сирен и передачи речевых сообщений по радиосети производственного вещания. На сайте "Озёрск.ru" была опубликована следующая инструкция действий:

Оповещение "Внимание всем". Услышав их, необходимо:

1. Немедленно включить телевизор, радиоприёмник, репродуктор радиотрансляции.
2. Внимательно прослушать экстренное сообщение о сложившейся обстановке и порядке действий.
3. Держать все эти средства постоянно включёнными в течение всего периода ликвидации аварий , катастроф или стихийных бедствий.


Разумеется, это могло быть протыми плановыми учениями служб ГО, но как раз накануне на "Маяке" начались испытания нового оборудования, а 29 сентября в Германии, Австрии и Италии было зафиксирован повышенный радиационный фон из-за наличия в воздухе радиоизотопа рутений-106.

Что могло произойти на "Маяке" в эти дни? Во время испытаний нового оборудования и работ с ним могла произойти утечка радиовещества — причём это могла быть как простая разгерметизация, так и нечто вроде взрыва, т.е. полностью нештатная ситуация. Власти Озёрска категорически отрицают, что на "Маяке" что-то случилось, но тем не менее власти Челябинской области решили провести своё расследование того, что произошло на Южном Урале.

Такие дела.

Напишите в комментариях, что вы думаете по этому поводу.

Уже несколько дней муссируется в СМИ тема про рутений. Не буду ее пересказывать - думаю вы в курсе.

Так что это такое, было ли это и если было, то чем опасно?


Что такое рутений и где его применяют?

Рутений - это платиновый металл. Сейчас известно семь стабильных и 27 радиоактивных изотопов рутения.

Рутений используют в сплавах для увеличения износостойкости - например, в титане доля рутения составляет 0,1%, а при производстве электрических контактов рутений сплавляют с платиной. Сплавы рутения чрезвычайно устойчивы к высокой температуре, поэтому они используются в аэрокосмической технике как конструкционные материалы. Соединения рутения применяются в ювелирном деле, в электронике - в частности, в тонкопленочных резисторах (это составляет 50% всех случаев применения рутения), а также в солнечных батареях. Кроме того, этот металл - важный катализатор для химических реакций: например, с его помощью на орбитальных станциях очищают воду.

Как открыли рутений?

Фактически этот элемент открывали трижды. Но официально открытие принадлежит профессору Казанского университета Карлу Клаусу. В 1844 году ученый исследовал остатки, которые были получены после извлечения платины и платиновых металлов из руды. Эти остатки Клаус сплавил с селитрой. Часть полученного сплава, которая не растворялась в воде, он подверг воздействию царской водки - смеси азотной и соляной кислоты, которая растворяет металлы, а то, что осталось, перегнал досуха. Из полученного вещества химик выделил гидроокись железа в виде осадка и растворил ее в соляной кислоте. Темный пурпурно-красный цвет раствора навел его на мысль о присутствии неизвестного элемента. Клаусу удалось выделить этот элемент - правда, не в чистом виде, а в соединении с серой.

Новый элемент был назван в честь России - рутением (от лат. Ruthenia). Изначально идея названия принадлежала другому ученому, немецкому химику Готфриду Озанну - он дал это имя одному из трех платиновых металлов, полученных им также при анализе уральской платиновой руды в 1928 году. Однако открытие Озанна не подтвердилось в ходе проверки. Тем не менее, Клаус полагал, что Озанн получил именно рутений, и упомянул об этом. Существует также версия, что элемент на три десятилетия раньше открыл польский профессор Анджей Снядецкий - он предлагал назвать металл вестием, в честь астероида Веста, открытого в 1807 году.


А что известно о рутении-106?

Это радиоактивный изотоп с периодом полураспада чуть более года - из всех нестабильных изотопов рутения этот наиболее долгоживущий. В природе он отсутствует: он появляется при делении урана и плутония в ядерных реакторах - по сути, это побочный продукт утилизации отработанного ядерного топлива (ОЯТ).На момент окончания облучения топлива в реакторе активность 106Ru достигает 2,01 Бк на тонну ОЯТ - это довольно большая цифра.

Основная проблема рутения-106 в том, что во время переработки ядерного топлива он вступает в устойчивые соединения, которые мешают производству новой продукции. Химикам приходится очищать компоненты от рутения на каждом этапе технологического процесса, чтобы получить из отработавшего ядерного топлива новое.

Рутений-106 используется в лучевой терапии при злокачественных опухолях глаз. Также его можно использовать в радиоизотопных термоэлектрических генераторах, которые применяются, в частности в электроснабжении удаленных от Солнца космических аппаратов. Однако для этих целей на практике применяют плутоний-238, изотопы рутения же не используются.

Опасен ли рутений-106 для здоровья?

Рутений-106, как и любой другой источник ионизирующего излучения, оказывает воздействие на организм. Он входит в группу Б - вторую по радиотоксичности. В группу А входят особо опасные радионуклиды: полоний-210, радий-226, плутоний-238 и другие альфа-излучатели. От потока альфа-частиц легко защититься листом бумаги, так как у них низкая проникающая способность - но если они все же попадают в организм, они вызывают лучевую болезнь.

Рутений-106 является бета-излучателем - проще говоря, он испускает поток электронов. В ходе бета-распада образуется сначала родий-106, который моментально распадается до стабильного палладия-106. На обеих стадиях испускаются электроны, а также небольшая компонента гамма-излучения. Если бета-частица попадает в организм, вреда от нее в 20 раз меньше, чем от альфа частицы - но ее проникающая способность выше.


А откуда такая шумиха по поводу рутения?

12 октября Росгидромет опубликовал бюллетень о радиационной обстановке в России за сентябрь 2017 года, в котором были указаны случаи повышения бета-активности в воздухе и во время выпадения атмосферных осадков. В частности, говорилось о повышенной активности рутения-106 - например, в микрорайоне Дема в Уфе 26 — 27 сентября прошел «рутениевый дождь». Еще раньше, в сентябре европейские мониторинговые станции зафиксировали превышение содержания рутения-106 в воздухе. Немецкие Федеральное ведомство по защите от радиации и Федеральное министерство по охране окружающей среды, охране природы и безопасности реакторов предположили, что источник рутения находится на Южном Урале.

И что, это действительно опасно?

Не так страшен черт, как его малюют. Активность рутения-106 на несколько порядков ниже предельно допустимой нормы и вреда здоровью не несет - это изначально и подчеркивал Росгидромет в своем заявлении.

«Определить рутений в атмосфере очень сложно, особенно в таких малых концентрациях», - говорит сотрудник кафедры радиохимии СПбГУ.

Например, для Аргаяша в бюллетене указаны данные в 7,72 х 10 -5 Бк/м3 , в то время как допустимое значение активности рутения-106 по современным стандартам составляет 4,4 Бк/м3. Появление же в отчете данных о превышении содержания рутения-106 в пробах относительно предыдущего периода в «сотни» раз в Росгидромете объяснили тем, что в предыдущих пробах этот радионуклид вообще отсутствовал. Как поясняет главный редактор портала «Геоэнергетика.ру» Борис Марцинкевич, то, что станции радиологического контроля смогли зафиксировать столь малые концентрации 106Ru, можно считать «тестированием, которое убедительно доказало, что станции работают на хорошем техническом уровне». Международное агентство по атомной энергии (МАгАтЭ) изучило предоставленные данные и отвергло обвинения в адрес России.

Кроме того, существует множество естественных альфа-, бета- и гамма-излучателей.

«Если выйти на набережную в Санкт-Петербурге, там радиационный фон будет выше, чем у нас в лаборатории», - говорит сотрудник кафедры радиохимии СПбГУ. «Потому что гранит от природы обладает высоким радиационным фоном».

А почему активность рутения-106 внезапно выросла?

Точно неизвестно. Как заявили в Росатоме, крупных выбросов радиоактивных веществ на российских предприятиях не было. Производственное объединение «Маяк», в свою очередь, категорически отрицает причастность к возможному загрязнению атмосферы изотопом рутений-106. Крупное загрязнение атмосферы рутением может происходить при нарушении герметичности оболочки тепловыделяющего элемента в реакторе, а также при разрушении источников ионизирующего излучения на основе изотопа. ПО «Маяк» утверждает, что выделение изотопа из отработанного ядерного топлива, равно как и изготовление из него источников излучения на предприятии не проводятся уже много лет. Более того, при первом варианте обычно происходит выброс других, «осколочных» изотопов, что обязательно сказалось бы на показателях этих элементов.


Говорят, что рутений прилетел из космоса - это правда?

«Интерфакс» опубликовал версию, что выброс рутения-106 мог произойти при разрушении спутника. Однако академик Российской академии космонавтики имени Циолковского Александр Железняков говорит, что рутений-106 не используется в электрогенераторах спутников - и если бы такой аппарат сводили с орбиты, его траекторию бы тщательно отслеживали. Поэтому эта версия на грани фантастики.

Откуда же тогда он мог взяться?

Правдоподобным выглядит предположение заведующего кафедры радиохимии химического факультета МГУ имени Ломоносова, член-корреспондента РАН Степана Калмыкова. Он считает, что высокочистый раствор радионуклида мог попасть в атмосферу из медицинского учреждения или предприятия, где работают или производят радиофармпрепараты. Это могло произойти на стадии технического процесса, где рутений превращается в аэрозоль - благодаря летучести он мог распространиться в атмосфере. Хотя другие эксперты говорят, что на утечку рутения, предназначенного для медицинских целей (его используют в лучевой терапии), не похоже: облако слишком большое. Но авария, связанная с ядерным топливом или с его отходами, практически исключена, говорит эксперт.

А вице-губернатор Челябинской области Олег Климов сообщил, что «25 сентября, еще до сообщений о рутении в Европе, были зафиксированы концентрации рутения на постах контроля на Южном Урале. Их размер в 20 тыс. раз меньше допустимой годовой дозы. Проверка показала, что это чистый рутений, который к нам пришел из другого места, — отметил Олег Климов. — Ситуация искусственно напряжена и не имеет под собой оснований».

Может быть, напуганным европейцам стоит искать источник в другой стране? Но, оказывается, в Старом Свете, предприятия, имеющие мало-мальское отношение к работе с радиоактивными веществами, строго засекречены. У нас же всё известно, и жертвами этой прозрачности стали российские метеорологи, которые заявили, что да, содержание изотопов рутения в двух пунктах сбора превысило фон предыдущего месяца в сотни раз. Когда речь идет о радиоактивных веществах — все это выглядит страшно для дилетантов. А специалист, глядя на цифры понимает, что и в России, и в Европе концентрация рутения-106 была в тысячи раз ниже хоть сколько-нибудь опасного уровня. И чтобы в будущем не пугать людей, решили впредь в отчетные таблицы вносить сравнения с этими самыми предельными концентрациями.

Вряд ли дело бесхозного рутения будет раскрыто. Радиация здесь лишь фон для шумихи. Ведь в феврале над Европой гуляло облако изотопа йода, куда более опасного, чем рутений, но разве кто-нибудь слышали об этом?

источники