Логарифмическая функция как строить. Логарифмическая функция. Выражения через комплексные числа

Логарифмическая функция базируется на понятии логарифма и свойства показательной функции , где (основание степени а больше нуля и не равно единице).

Определение:

Логарифмом числа b по основанию а называется такой показатель степени, в которую нужно возвести основание а, чтобы получить число b.

Примеры:

Напомним основное правило : чтобы получить число, стоящее под логарифмом, необходимо основание логарифма возвести в степень - значение логарифма:

Напомним важные особенности и свойства показательной функции.

Рассмотрим первый случай, когда основание степени больше единицы: :

Рис. 1. График показательной функции, основание степени больше единицы

Такая функция монотонно возрастает на всей своей области определения.

Рассмотрим второй случай, когда основание степени меньше единицы :

Рис. 2. График показательной функции, основание степени меньше единицы

Такая функция монотонно убывает на всей своей области определения.

В любом случае, показательная функция монотонна, принимает все положительные значения и, в силу своей монотонности, каждое положительное значение достигает при единственном значении аргумента. То есть, каждое конкретное значение функция достигает при единственном значении аргумента , корнем уравнения и есть логарифм:

По сути, мы получили обратную функцию. Прямая функция - это когда у нас есть независимая переменная х (аргумент), зависимая переменная у (функция), мы задали значение аргумента и по нему получаем значение функции. Обратная функция: пусть независимой переменной будет у, ведь мы уже оговорили, что каждому положительному значению у соответствует единственное значение х, определение функции соблюдается. Тогда х становится зависимой переменной.

Для монотонной прямой функции существует обратная функция . Суть функциональной зависимости не изменится, если мы введем переобозначение:

Получаем:

Но нам привычнее обозначать независимую переменную за х, а зависимую - за у:

Таким образом, мы получили логарифмическую функцию.

Используем общее правило получения обратной функции для конкретной показательной функции .

Заданная функция монотонно возрастает (согласно свойствам показательной функции), значит, существует обратная ей функция. Напоминаем, что для ее получения необходимо выполнить два действия:

Выразить х через у:

Поменять местами х и у:

Итак, получили функцию, обратную заданной: . Как известно, графики прямой и обратной функции симметричны относительно прямой у=х. проиллюстрируем:

Рис. 3. Графики функций и

Данная задача решается аналогично и справедлива для любого основания степени.

Решим задачу при

Заданная функция монотонно убывает, значит, существует обратная ей функция. Получим ее:

Выразить х через у:

Поменять местами х и у:

Итак, получили функцию, обратную заданной: . Как известно, графики прямой и обратной функции симметричны относительно прямой у=х. проиллюстрируем:

Рис. 4. Графики функций и

Заметим, что мы получили логарифмические функции как обратные к показательным.

У прямой и обратной функций есть много общего, но есть и отличия. Рассмотрим это подробнее на примере функций и .

Рис. 5. Графики функций (слева) и (справа)

Свойства прямой (показательной) функции:

Область определения: ;

Область значений: ;

Функция возрастает;

Выпукла вниз.

Свойства обратной (логарифмической) функции:

Область определения: ;

Приведены основные свойства логарифма, график логарифма, область определения, множество значений, основные формулы, возрастание и убывание. Рассмотрено нахождение производной логарифма. А также интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение логарифма

Логарифм с основанием a - это функция y(x) = log a x , обратная к показательной функции с основанием a: x(y) = a y .

Десятичный логарифм - это логарифм по основанию числа 10 : lg x ≡ log 10 x .

Натуральный логарифм - это логарифм по основанию числа e : ln x ≡ log e x .

2,718281828459045... ;
.

График логарифма получается из графика показательной функции зеркальным отражением относительно прямой y = x . Слева изображены графики функции y(x) = log a x для четырех значений основания логарифма : a = 2 , a = 8 , a = 1/2 и a = 1/8 . На графике видно, что при a > 1 логарифм монотонно возрастает. С увеличением x рост существенно замедляется. При 0 < a < 1 логарифм монотонно убывает.

Свойства логарифма

Область определения, множество значений, возрастание, убывание

Логарифм является монотонной функцией, поэтому экстремумов не имеет. Основные свойства логарифма представлены в таблице.

Область определения 0 < x < + ∞ 0 < x < + ∞
Область значений - ∞ < y < + ∞ - ∞ < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 x = 1 x = 1
Точки пересечения с осью ординат, x = 0 нет нет
+ ∞ - ∞
- ∞ + ∞

Частные значения


Логарифм по основанию 10 называется десятичным логарифмом и обозначается так:

Логарифм по основанию e называется натуральным логарифмом :

Основные формулы логарифмов

Свойства логарифма, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей преобразуются в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов преобразуются в произведения сомножителей.

Доказательство основных формул логарифмов

Формулы, связанные с логарифмами вытекают из формул для показательных функций и из определения обратной функции.

Рассмотрим свойство показательной функции
.
Тогда
.
Применим свойство показательной функции
:
.

Докажем формулу замены основания.
;
.
Полагая c = b , имеем:

Обратная функция

Обратной для логарифма по основанию a является показательная функция с показателем степени a .

Если , то

Если , то

Производная логарифма

Производная логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Для нахождения производной логарифма, его нужно привести к основанию e .
;
.

Интеграл

Интеграл от логарифма вычисляется интегрированием по частям : .
Итак,

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
.
Выразим комплексное число z через модуль r и аргумент φ :
.
Тогда, используя свойства логарифма, имеем:
.
Или

Однако, аргумент φ определен не однозначно. Если положить
, где n - целое,
то будет одним и тем же числом при различных n .

Поэтому логарифм, как функция от комплексного переменного, является не однозначной функцией.

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Логарифмическая функция обозначается

её y, соответствующее значению х, называется натуральным числа х. В силу определения соотношение (1) равносильно

(е - ). Т. к. e y > 0 при любом действительном у, то Логарифмическая функция определена только при х > 0. В более общем смысле Логарифмическая функция называют функцию

где а > 0 (а ¹ 1) - произвольное . Однако в математическом анализе особое имеет функция InX; функция log a X приводится к ней по формуле:

где М = 1/In а. Логарифмическая функция - одна из основных ; её график (рис. 1 ) носит название . Основные Логарифмическая функция вытекают из соответствующих свойств показательной функции и логарифмов; например, Логарифмическая функция удовлетворяет функциональному уравнению

Рис. 1 к ст. Логарифмическая функция.

Для 1 < х, 1 справедливо разложение Логарифмическая функция в степенной ряд:

ln(1 + x) = x

Многие выражаются через Логарифмическая функция; например

,

.

Логарифмическая функция постоянно встречается в математическом анализе и его приложениях.

Логарифмическая функция была хорошо известна 17 в. Впервые зависимость между переменными , выражаемая Логарифмическая функция, рассматривалась Дж. (1614). Он представил зависимость между числами и их логарифмами с помощью двух точек, движущихся по параллельным прямым (рис. 2 ). Одна из них (У) движется равномерно, исходя из С, а другая (X), начиная движение из А, перемещается со , пропорциональной её до В. Если положить СУ = у, ХВ = х, то, согласно этому определению, dx/dy = kx, откуда .

Логарифмическая функция на комплексной является многозначной (бесконечнозначной) функцией, определённой при всех z ¹ 0 обозначается Lnz. Однозначная ветвь этой функции, определяемая как

Inz = In½ z½ + i arg z,

Cтраница 1


Логарифмическая функция (80) осуществляет обратное отображение всей плоскости w с разрезом на полосу - я / /: я, бес-конечнолистную риманову поверхность на полную z - плоскость.  


Логарифмическая функция: у logaх, где основание логарифмов а-положительное число, не равное единице.  

Логарифмическая функция играет специальную роль в разработке и анализе алгоритмов, поэтому ее стоит рассмотреть подробнее. Поскольку мы часто имеем дело с аналитическими результатами, в которых опущен постоянный множитель, мы используем запись log TV, опуская основание. Изменение основания логарифма меняет значение логарифма лишь на постоянный множитель, однако, в определенном контексте возникают специальные значения основания логарифма.  

Логарифмическая функция обратна показательной. График ее (рис. 247) получается из графика показательной функции (при том же основании) перегибом чертежа по биссектрисе первого координатного угла. Так же получается график всякой обратной функции.  

Логарифмическая функция вводится Затем как обратная показательной. Свойства обеих функций выводятся без труда из этих определений. Именно это определение получило одобрение Гаусса, который вместе с тем выразил несогласие с оценкой, данной ему в рецензии Геттинген-ских ученых известий. При этом Гаусс подошел к вопросу с более широкой точки зрения, чем да Кунья. Последний ограничился рассмотрением показательной и логарифмической функций в действительной области, между тем как Гаусс распространил их определение на комплексные переменные.  

Логарифмическая функция y logax монотонна во всей области своего определения.  

Логарифмическая функция непрерывна и дифференцируема во всей области определения.  

Логарифмическая функция монотонно возрастает, если а I, При 0 а 1 логарифмическая функция с основанием а монотонно убывает.  

Логарифмическая функция определена только для положительных значений х и взаимно однозначно отображает интервал (0; 4 - ос.  

Логарифмическая функция у loga х является обратной функцией по отношению к показательной функции уах.  

Логарифмическая функция: y ogax, где основание логарифмов а - положительное число, не равное единице.  

Логарифмические функции хорошо сочетаются с физическими представлениями о характере ползучести полиэтилена в условиях, когда скорость деформации невелика. В этом отношении они совпадают с уравнением Андрааде, поэтому их иногда применяют для аппроксимации экспериментальных данных.  

Логарифмическая функция, или натуральный логарифм, и In z, определяется решением трансцендентного уравнения г еи относительно и. В области действительных значений х и у при условии х 0 это уравнение допускает единственное решение.  

Понятие логарифмической функции

Для начала вспомним, что же вообще такое логарифм.

Определение 1

Логарифмом числа $b\in R$ по основанию $a$ ($a>0,\ a\ne 1$) называется число $c$, в которое нужно возвести число $a$, чтобы получить число $b$.

Рассмотрим показательную функцию $f\left(x\right)=a^x$, где $a >1$. Эта функция возрастает, непрерывна и отображает действительную ось на интервал $(0,+\infty)$. Тогда, по теореме о существовании обратной непрерывной функции, у нее в множестве $Y=(0,+\infty)$ существует обратная функция $x=f^{-1}(y)$, которая также непрерывна и возрастает в $Y$ и отображает интервал $(0,+\infty)$ на всю действительную ось. Эту обратную функцию называют логарифмической функцией по основанию $a\ (a >1)$ и обозначается $y={{log}_a x\ }$.

Теперь рассмотрим показательную функцию $f\left(x\right)=a^x$, где $0

Таким образом, мы определили логарифмическую функцию при всех возможных значениях основания $a$. Рассмотрим далее два этих случая отдельно.

1%24"> Функция $y={{log}_a x\ },\ a >1$

Рассмотрим свойства данной функции.

    С осью $Oy$ пересечений нет.

    Функция положительна, при $x\in (1,+\infty)$ и отрицательна, при $x\in (0,1)$

    $y"=\frac{1}{xlna}$;

    Точки минимума и максимума:

    Функция возрастает на всей области определения;

    $y^{""}=-\frac{1}{x^2lna}$;

    \[-\frac{1}{x^2lna}Функция выпукла на всей области определения;

    ${\mathop{lim}_{x\to 0} y\ }=-\infty ,\ {\mathop{lim}_{x\to +\infty } y\ }=+\infty ,\ $;

    График функции (Рис. 1).

Рисунок 1. График функции $y={{log}_a x\ },\ a >1$

Функция $y={{log}_a x\ }, \ 0

Рассмотрим свойства данной функции.

    Область определения -- интервал $(0,+\infty)$;

    Область значения -- все действительные числа;

    Функция не является ни четной, ни нечетной.

    Точки пересечения с осями координат:

    С осью $Oy$ пересечений нет.

    При $y=0$, ${{log}_a x\ }=0,\ x=1.$ Пересечение с осью $Ox$: (1,0).

    Функция положительна, при $x\in (0,1)$ и отрицательна, при $x\in (1,+\infty)$

    $y"=\frac{1}{xlna}$;

    Точки минимума и максимума:

    \[\frac{1}{xlna}=0-корней\ нет\]

    Точек максимума и минимума нет.

    $y^{""}=-\frac{1}{x^2lna}$;

    Промежутки выпуклости и вогнутости:

    \[-\frac{1}{x^2lna}>0\]

    График функции (Рис. 2).

Примеры исследования и построения логарифмических функций

Пример 1

Исследовать и построить график функции $y=2-{{log}_2 x\ }$

    Область определения -- интервал $(0,+\infty)$;

    Область значения -- все действительные числа;

    Функция не является ни четной, ни нечетной.

    Точки пересечения с осями координат:

    С осью $Oy$ пересечений нет.

    При $y=0$, $2-{{log}_2 x\ }=0,\ x=4.$ Пересечение с осью $Ox$: (4,0).

    Функция положительна, при $x\in (0,4)$ и отрицательна, при $x\in (4,+\infty)$

    $y"=-\frac{1}{xln2}$;

    Точки минимума и максимума:

    \[-\frac{1}{xln2}=0-корней\ нет\]

    Точек максимума и минимума нет.

    Функция убывает на всей области определения;

    $y^{""}=\frac{1}{x^2ln2}$;

    Промежутки выпуклости и вогнутости:

    \[\frac{1}{x^2ln2} >0\]

    Функция вогнута на всей области определения;

    ${\mathop{lim}_{x\to 0} y\ }=+\infty ,\ {\mathop{lim}_{x\to +\infty } y\ }=-\infty ,\ $;

Рисунок 3.