Направление геология. Геологическое образование в России. Задачи прикладной геологии

Геология (от Гео… и …логия (См. ...Логия))

комплекс наук о земной коре и более глубоких сферах Земли; в узком смысле слова - наука о составе, строении, движениях и истории развития земной коры и размещении в ней полезных ископаемых. Большинство прикладных и теоретических вопросов, решаемых Г., связано с верхней частью земной коры, доступной непосредственному наблюдению.

На прямых полевых наблюдениях основаны главным образом и геологические методы. Геологические исследования определённой территории начинаются с изучения и сопоставления горных пород, наблюдаемых на поверхности Земли в различных естественных обнажениях, а также в искусственных выработках (Шурф ах, Карьер ах, Шахта х и др.). Породы изучаются как в их природном залегании, так и путём отбора образцов, подвергаемых затем лабораторному исследованию.

Обязательным элементом полевых работ геолога является Геологическая съёмка , сопровождаемая составлением геологической карты (См. Геологические карты) и геологических профилей. На карте изображается распространение горных пород, указывается их генезис и возраст, а по мере надобности также состав пород и характер их залегания. Геологические профили отражают взаимное расположение слоев горных пород по вертикали на мысленно проведённых разрезах. Геологические карты и профили служат одним из основных документов, на основании которых делаются эмпирические обобщения и выводы, обосновываются поиски и разведка полезных ископаемых, оцениваются условия при возведении инженерных сооружений. Для уточнения данных геологической съёмки иногда прибегают к бурению скважин, которые позволяют извлечь на поверхность горные породы, залегающие на достаточной глубине. В СССР, кроме того, проводится т. н. Опорное бурение (с 1947), при котором обширные территории покрываются более или менее равномерной сетью глубоких скважин, что даёт возможность составить общую схему геологического строения страны, полнее использовать данные съёмки. С середины 20 в. в СССР и США осуществляется бурение скважин глубиной до 7 км и более. Успешно проводится бурение морского дна в местах относительно малых глубин. С конца 60-х гг. 20 в. американские геологи ведут бурение в океане со специально оборудованных кораблей.

Методы непосредственного изучения недр не дают возможности познать строение Земли глубже, чем на несколько км (иногда до 20) от её поверхности. Поэтому даже для изучения земной коры, а тем более нижележащих геосфер (См. Геосферы), Г. не обходится без помощи косвенных методов, разработанных др. науками, особенно без геохимических и геофизических методов. Очень часто применяется комплекс геологических, геофизических и геохимических методов.

В геологических исследованиях можно различить три основных направления. Задачей первого из них (описательная Г.) служит описание минералов, горных пород и их типов; изучение состава, формы, размеров, взаимоотношений, последовательности залегания и всех прочих вопросов, связанных с современным размещением и составом геологических тел (слоев горных пород, гранитных массивов и др.). Второе направление (динамическая Г.) заключается в изучении геологических процессов и их эволюции. К числу этих процессов относятся как внешние по отношению к земной коре и более глубоким геосферам (разрушение горных пород, перенос и переотложение ветром, ледниками, наземными и подземными водами; накопление осадков на дне рек, озёр, морей, океанов и др.), так и внутренние (движения земной коры, землетрясения, извержения вулканов и сопутствующие им явления). Геологические процессы изучаются не только в естественных условиях, но и экспериментально. Восстановление картины геологического прошлого Земли (историко-геологическая реконструкция) составляет сущность третьего направления геологических исследований (историческая Г.). Задачи этого направления сводятся к изучению распространения и последовательности образования геологических напластований и др. геологических тел, а также к установлению последовательности различных геологических процессов и событий, например процессов тектогенеза, метаморфизма, образования и разрушения залежей полезных ископаемых, трансгрессий и регрессий морей, смены эпох оледенений эпохами межледниковий и т.д. Все три направления Г. неразрывно связаны друг с другом и исследование каждого геологического объекта, как и любой территории, ведётся со всех трёх точек зрения, хотя каждое направление является самостоятельным в смысле основных принципов и методов исследования.

Специфическая особенность геологических процессов состоит в том, что многие из них протекают на огромных территориях и продолжаются в течение миллионов и даже миллиардов лет; в этом заключается трудность их исследования. Чтобы понять геологические процессы прошлого, изучается весь комплекс результатов, оставленных ими в толщах пород: особенности их состава, строения и залегания, формы рельефа земной поверхности и т.д.

При анализе историко-геологических данных принимается во внимание принцип последовательности напластования слоистых осадочных толщ, которые рассматриваются как страницы «каменной летописи» Земли; учитывается также необратимая эволюция органического мира, запечатлевшаяся в окаменевших остатках растительных и животных организмов, которые сохраняются в пластах осадочных пород (см. Палеонтологический метод). Каждой из эпох в развитии Земли соответствовали определённые растения и животные. Это послужило основой для установления относительного возраста толщ горных пород и позволило подразделить историю последних 600 млн. лет жизни Земли на последовательные отрезки времени - эры, которые делятся на более мелкие единицы геологического времени - периоды, эпохи и века (см. Геохронология). Исследования показывают, что 80% объёма осадочной оболочки Земли образуют самые древние, докембрийские, толщи (см. Докембрий), продолжительность образования которых составляет по крайней мере 6 / 7 всей известной геологической истории. Помимо относительного возраста, определяется абсолютный, или радиометрический, возраст геологических тел. Метод его вычисления основан на законе постоянства скоростей радиоактивного распада; в качестве исходных данных берутся цифры относительного количества расщепляющего элемента и продуктов его распада в исследуемой горной породе или минерале. Этот метод имеет особенное значение для древнейших докембрийских толщ Земли, очень скудно охарактеризованных органическими остатками.

Широко используется в Г. метод Актуализм а, согласно которому в сходных условиях геологические процессы идут сходным образом; поэтому, наблюдая современные процессы, можно судить о том, как шли аналогичные процессы в далёком прошлом. Современные процессы можно наблюдать в природе (например, деятельность рек) или создавать искусственно (подвергая, например, образцы горных пород действию высокой температуры и давления). Таким путём часто удаётся установить физико-географические и физико-химические условия, в которых отлагались древние слои, а для метаморфических горных пород и примерную глубину, на которой произошёл метаморфизм (изменение). Однако географическая и геологическая обстановка в жизни Земли необратимо менялась; поэтому, чем древнее изучаемые толщи, тем ограниченнее применение метода актуализма.

Разработка теоретических вопросов Г. тесно связана с одной из её крупнейших практических задач - прогнозом поиска и разведки полезных ископаемых и созданием минерально-сырьевой базы мирового хозяйства.

Большое значение имеет Г. также при проектировании различных инженерных сооружений, в строительстве, сельском хозяйстве, военном деле. Велика роль Г. и в борьбе за материалистическое миропонимание.

Связь геологии с другими науками и система геологических наук. Современная Г. тесно связана с очень большим числом др. наук, главным образом наук о Земле. Именно поэтому трудно установить точные границы Г. как науки и определить однозначно её предмет. Широкое применение при геологических исследованиях физических и химических методов способствовало бурному развитию таких пограничных дисциплин, как Физика Земли и Геохимия . Физика Земли изучает физические свойства Земли и её оболочек, а также происходящие в этих оболочках геологические процессы. Геохимия рассматривает химический состав Земли и законы распространения и миграций в ней химических элементов. Г. не может обойтись без применения методов и выводов этих наук. В геохимии и физике Земли органически сливаются физические и химические приёмы исследования, с одной стороны, и геологические - с другой. Поэтому положение геохимии и физики Земли в системе наук о Земле является дискуссионным. Их рассматривают либо как наиболее развившиеся геологические дисциплины, либо как области знания, равнозначные Г. Тесная связь объединяет Г. с геодезией и с комплексом физико-географических наук (геоморфологией, климатологией, гидрологией, океанологией, гляциологией и др.), в задачи которых входит изучение рельефа земной поверхности, вод суши и Мирового океана, климатов Земли и др. вопросов, касающихся строения, состава и развития географической оболочки (См. Географическая оболочка). Для полного понимания истории Земли необходимо знать её начальное состояние; такой вопрос решает планетная космогония, т. е. раздел астрономии, изучающий проблему образования планет. В вопросах происхождения и развития органической жизни на Земле Г. взаимосвязана с биологическими науками и прежде всего с палеонтологией. Знание биологических и биохимических процессов необходимо геологу для выяснения путей образования ряда горных пород и полезных ископаемых (нефти, угля и др.). Т. о., весь комплекс наук, изучающих Землю, характеризуется многосторонней связью и взаимодействием. Г. использует данные этих наук для решения общих проблем развития планеты. Это позволяет некоторым исследователям отводить Г. ведущее место среди наук о Земле или даже понимать под Г. весь комплекс наук о Земле.

Г. включает ряд научных дисциплин, занимающихся исследованием и описанием Земли. Комплекс этих дисциплин пополняется по мере расширения исследований планеты за счёт их дифференциации и появления новых научных направлений, возникающих главным образом на стыке Г. с другими областями знания. Предмет большинства геологических дисциплин относится ко всем трём направлениям Г. (описательной, динамической и исторической). Этим объясняется тесная взаимосвязь геологических дисциплин и трудность их классификации, разделения на четко разграниченные группы.

Наиболее принятыми считаются следующие группы геологических дисциплин: научной дисциплины, изучающие вещество и структуру (строение) земной коры; дисциплины, рассматривающие современные геологические процессы (динамическая Г.); дисциплины, изучающие историческую последовательность геологических процессов (историческая Г.); дисциплины прикладного значения; в особую группу выделяется Г. отдельных областей и районов (региональная Г.).

К первой группе относятся: минералогия (учение о минералах - природных устойчивых химических соединениях), петрография (учение о горных породах - структурно-вещественных ассоциациях минералов), структурная Г., изучающая формы залегания геологических тел, различные нарушения в залегании слоев - их изгибы, разрывы и т.п. Как одно из направлений минералогических исследований зародилась и долгое время развивалась кристаллография. Однако в последнее время изучение атомарного строения кристаллов сделало эту дисциплину в значительной мере физической.

Ко второй группе геологических дисциплин (динамическая Г.) относится тектоника, изучающая движения земной коры и создаваемые ими структуры. Применительно к самым крупным структурам Земли - материкам и океанам - её называют часто геотектоникой, а тектонику неоген - антропогенового времени именуют неотектоникой. Обособленно стоит экспериментальная тектоника, которая занимается изучением тектонических процессов (например, образованием складок) на моделях. В эту же группу входят разделы минералогии и петрографии, изучающие процессы минерало- и породообразования, а также такие дисциплины, как вулканология, изучающая процессы вулканизма, сейсмогеология - наука о геологических процессах, сопровождающих землетрясения, и об использовании геологических данных для определения сейсмически опасных районов (сейсморайонирование) и геокриология, исследующая процессы, связанные с многолетнемёрзлыми породами.

К третьей группе относится историческая Г., восстанавливающая по следам, сохранившимся в осадочной оболочке Земли, события геологической истории и их последовательность. К этой же группе относится стратиграфия, занимающаяся изучением последовательности отложения слоев горных пород в осадочной оболочке Земли, и палеогеография, которая на основании геологических данных занимается восстановлением физико-географических условий прошлых геологических периодов. В силу своеобразия применяемых методов исследования изучение геологической истории последнего антропогенового периода выделилось в особую дисциплину, неточно называемую четвертичной Г.

Четвёртая группа (прикладная Г.) включает: Г. полезных ископаемых; гидрогеологию - науку о подземных водах; инженерную Г., изучающую геологические условия строительства различных сооружений, и военную Г., занимающуюся вопросами применения Г. в военном деле.

Особое место среди геологических дисциплин в смысле методики и задач занимает Г. дна морей и океанов, или Морская геология , которая успешно развивается в связи с возросшим интересом к использованию природных ресурсов морей и океанов.

Сказанное не исчерпывает перечня геологических дисциплин. Их дифференциация, а также сращивание со смежными дисциплинами ведут к появлению новых направлений. Например, поскольку методы исследования горных пород глубинного и осадочного происхождения оказались существенно различными, петрография разделилась на петрографию изверженных и петрографию осадочных пород, или литологию. Внедрение химических методов в изучение изверженных пород привело к возникновению петрохимии, а изучение деформаций внутри горных пород породило петротектонику.

Резко дифференцирована Г. полезных ископаемых: Г. нефти и газа, Г. угля, металлогения, рассматривающая закономерности размещения рудных месторождений. Применение в Г. новейших физических и химических методов послужило основой для появления таких новых специализаций, как тектонофизика, палеомагнетизм, экспериментальная физическая химия силикатов и др.

Исторический очерк . Отдельные наблюдения и высказывания, которые принято считать истоками Г., относятся к глубокой древности. Характерно, что высказывания античных учёных (Пифагора, Аристотеля, Плиния, Страбона и др.) касаются землетрясений, извержений вулканов, размывания гор, перемещения береговых линий морей и т.п., т. е. явлений динамической Г. Только в средние века появляются попытки описания и классификации геологических тел, например описание минералов узбекским учёным Бируни и таджикским естествоиспытателем Ибн Синой (См. Ибн Сина) (латинизированный - Авиценна). К эпохе Возрождения относятся первые суждения (если не считать ранних упоминаний об этом у древнегреческого учёного Страбона) об истинной природе ископаемых раковин как остатках вымерших организмов и о большой, по сравнению с библейскими представлениями, длительности истории Земли (итальянские учёные Леонардо да Винчи в 1504-06, Дж. Фракасторо в 1517). Разработка первых представлений о смещении слоев и их первоначальном горизонтальном залегании принадлежит датчанину Н. Стено (1669), который впервые дал анализ геологического разреза (в Тоскане), объясняя его как последовательность геологических событий.

Слово «геология» появилось в печати в15 в., но имело тогда совершенно другое значение, чем то, которое вкладывается в него теперь. В 1473 в Кельне вышла книга епископа Р. де Бьюри «Philobiblon» («Любовь к книгам»), в которой Г. называется весь комплекс закономерностей и правил «земного» бытия, в противоположность теологии - науке о духовной жизни. В современной его понимании термин «Г.» впервые был применен в 1657 норвежским естествоиспытателем М. П. Эшольтом в работе, посвященной крупному землетрясению, охватившему всю Южную Норвегию (Geologia Norwegica, 1657). В конце 18 в. нем. геолог Г. К. Фюксель предложил, а немецкий минералог и геолог А. Г. Вернер ввёл (1780) в литературу термин «геогнозия» для явлений и объектов, изучаемых геологами на поверхности Земли. С этого времени и до середины 19 в. термин «геогнозия» шире, чем в других странах, применялся в России и Германии (хотя чёткого разграничения между понятиями «геология» и «геогнозия» не было). В Великобритании и Франции этот термин употреблялся очень редко, а в Америке почти совсем не применялся. С середины 19 в. термин «геогнозия» в России постепенно исчезает. Некоторое время он ещё встречается в названиях учёных степеней и в названиях кафедр старых русских университетов, но к 1900 он уже не фигурирует, вытесняясь термином «Г.".

Конец 17 в. характеризовался ростом числа геологических наблюдений, а также появлением научных произведений, в которых делаются попытки обобщить далеко ещё не достаточные знания в некоторую общую теорию Земли, при полном отсутствии удовлетворительной для этого методические основы. Большинство учёных конца 17 - начала 18 вв. придерживалось представления о существовании в истории Земли всемирного потопа, в результате которого образовались осадочные породы и содержащиеся в них окаменелости. Эти воззрения, получившие название дилювианизма, разделяли английские естествоиспытатели Р. Гук (1688), Дж. Рей (1692), Дж. Вудворд (1695), швейцарский учёный И. Я. Шёйкцер (1708) и др.

Г. как самостоятельная ветвь естествознания начала складываться во 2-й половине 18 в., когда под влиянием нарождающейся крупной капиталистической промышленности стали быстро расти потребности общества в ископаемом минеральном сырье и в связи с этим возрос интерес к изучению недр. Этот период истории Г. характеризовался разработкой элементарных приёмов наблюдения и накопления фактического материала. Исследования сводились главным образом к описанию свойств и условий залегания горных пород. Но уже тогда появлялись попытки объяснить генезис горных пород и вникнуть в суть процессов, происходящих как на поверхности Земли, так и в её недрах.

Выдающееся значение имели геологические труды М. В. Ломоносова - «Слово о рождении металлов от трясения Земли» (1757) и «О слоях земных» (1763), в которых он всесторонне и взаимосвязанно излагал существовавшие в то время геологические данные и собственные наблюдения. Решающую роль в формировании лика Земли Ломоносов отводил глубинным силам («жару в земной утробе»), признавая вместе с тем влияние на земную поверхность и внешних факторов (ветра, рек, дождей и др.), развивал идею единства формирования гор и впадин, утверждал длительность и непрерывность геологических изменений, которым подвергается земная поверхность. Признанием синтеза внешних и внутренних сил в их влиянии на развитие Земли Ломоносов намного опередил свою эпоху, в то время, как на Западе происходила идейная борьба между противостоящими друг другу школами - Нептунизм ом и Плутонизм ом, борьба, касавшаяся коренных проблем прошлого и настоящего Земли. Представителями этих школ были профессор минералогии во Фрейберге, саксонец А. Г. Вернер и шотландский учёный Дж. Геттон.

Нептунист Вернер стоял на крайне односторонних позициях, утверждая, что все горные породы, включая базальт, образовались как осадки из водной среды, что же касается вулканической деятельности, то её он наивно приписывал подземному горению каменного угля. Кроме того, Вернер, проводивший геологические наблюдения только в окрестностях Фрейберга, неправомерно распространял замеченные там закономерности (например, последовательность формаций) на всю поверхность земного шара. Работы Дж. Геттона и его последователей - плутонистов соответствовали более верному направлению геологических идей, поскольку в них отводилась значительная роль внутренним силам Земли. В этих работах указывалось на вулканическое происхождение базальтов и на образование гранитов из расплавленных масс, что впоследствии было подтверждено микроскопическими исследованиями пород и специальными экспериментами.

В середине 18 в. появляются геологические карты (точнее, литолого-петрографические), сначала небольших участков, а затем и крупных территорий. На этих картах показывался состав горных пород, но не указывался возраст. В России первой «геогностической» картой была карта Восточного Забайкалья, составленная в 1789-94 Д. Лебедевым и М. Ивановым. Первая «геолого-стратиграфическая карта», охватывавшая значительные территории Европейской России, составлена в конце 1840 Н. И. Кокшаровым. На ней уже были выделены формации - силурийская, древнего красного песчаника (девон), горного известняка (нижний карбон), лиасовая и третичная. В начале 1841 Г. П. Гельмерсен опубликовал «Генеральную карту горных формаций Европейской России».

Рождение Г. как науки относится к концу 18 - начале 19 вв. и связывается с установлением возможности разделять слои земной коры по возрасту на основании сохранившихся в них остатков древней фауны и флоры. Позднее это позволило обобщить и систематизировать разрозненные ранее минералогические и палеонтологические данные, сделало возможным построение геохронологической шкалы и создание геологических реконструкций.

Впервые на возможность расчленения слоистых толщ по сохранившимся в них ископаемым органическим остаткам указал в 1790 английский учёный У. Смит, который составил «шкалу осадочных образований Англии», а затем в 1815 первую геологическую карту Англии. Большие заслуги в расчленении земной коры по остаткам моллюсков и позвоночных принадлежат французским учёным Ж. Кювье и А. Броньяру. В 1822 в юго-западной части Англии была выделена каменноугольная, а в Парижском бассейне - меловая системы, что положило начало стратиграфической систематике. Но методологическая основа первых стратиграфических исследований была несовершенной. Различие характера органических остатков в пластах, следующих один за другим, было объяснено французким учёным Ж. Кювье серией катастроф, вызванных сверхъестественными силами, во время которых на обширных пространствах всё живое уничтожалось, а затем опустошённые области заселялись организмами, мигрировавшими из других районов. Ученики и последователи Ж. Кювье развили это учение (см. Катастроф теория). Они утверждали, что в истории Земли было 27 катастроф (А. Д’Орбиньи), во время которых погибал весь органический мир и затем вновь возникал под влиянием очередного божественного акта, но уже в измененном виде. Нарушенное залегание первично горизонтальных слоев горных пород и образование гор считалось следствием этих же кратковременных катастроф. Немецкий геолог Л. Бух выступил в 1825 с теорией «кратеров поднятия», объясняя все движения земной коры за счёт вулканизма; эти идеи он отстаивал и в дальнейшем, хотя в 1833 французский учёный К. Прево выяснил, что вулканические конусы представляют собой не поднятия, а скопления продуктов извержения. В то же время французский геолог Л. Эли де Бомон (1829) предложил контракционную гипотезу, объясняющую дислокации слоев сжатием земной коры при остывании и уменьшении объёма её центрального раскалённого ядра. Эта гипотеза разделялась большинством геологов до начала 20 в.

Трудом Ч. Лайеля «Основы геологии» (1830-33) был нанесён первый удар взглядам катастрофистов. Были окончательно опровергнуты предрассудки о малой продолжительности геологической истории Земли и на большом фактическом материале показано, что для объяснения её нет необходимости обращаться к сверхъестественным силам и катастрофам, т.к. действующие ныне геологические агенты (атмосферные осадки, ветер, морские приливы, вулканы, землетрясения) на протяжении миллионов лет производят величайшие изменения в строении земной коры. Важным достижением Ч. Лайеля и его современников в Германии, России и Франции была глубокая разработка актуалистического метода, позволившего расшифровать события геологического прошлого. Представления, выработанные Ч. Лайелем, имели и свои недостатки, заключавшиеся в том, что он считал действующие на Земле силы постоянными по качеству и по интенсивности, не видел их изменения и связанного с этим развития Земли (см. Униформизм).

Огромное значение для дальнейшего развития стратиграфии имело эволюционное учение Ч. Дарвина. Оно дало прочную методологическую базу для детального расчленения по возрасту осадочной оболочки Земли путём изучения филогенетических изменений отдельных групп ископаемых животных и растений. В создании эволюционной палеонтологии большую роль сыграли и русские учёные. К. Ф. Рулье, изучавший юрские отложения Подмосковья, ещё до Дарвина защищал идею эволюционного развития неорганической природы и организмов. Во 2-й половине 19 в. эволюционные идеи получили широкое распространение, были разработаны научные принципы историко-геологических исследований (И. Вальтер) и положено начало эволюционной палеонтологии (В. О. Ковалевский). Важное значение имели труды русских исследователей конца 19 - начала 20 вв. А. П. Карпинский в ряде монографий, посвященных ископаемым головоногим моллюскам и рыбам, показал перспективы, которые открывает для стратиграфии изучение развития организмов; А. П. Павлов, исследуя юрские и нижнемеловые отложения, заложил основы сравнительной стратиграфии, учитывающей разнообразие зоогеографических и палео-географических обстановок прошлого; Н. И. Андрусов на примере неогеновых отложений юга России показал тесную связь между изменениями солёности и других физико-географических условий бассейнов прошлого и особенностями развития их фауны.

Во 2-й половине 19 в. были достигнуты первые успехи в изучении и расчленении докембрийских образований. Американский геолог Дж. Дана (1872) выделил архейскую группу отложений, первоначально охватывавшую весь докембрий; позднее из её состава американские геологи С. Эммонс и Р. Ирвинг (1888) выделили протерозойскую группу.

Т. о., к концу 80-х гг. были установлены основные подразделения современной стратиграфической шкалы, официально принятой на 2-м Международном геологическом конгрессе в Болонье в 1881. Успехи палеонтологии и стратиграфии способствовали разработке метода восстановления палеогеографических условий прошлых эпох и возникновению к началу 20 в. новой геологической дисциплины - палеогеографии.

Во 2-й половине 19 в. усиливается процесс дифференциации Г. Из сравнительно монолитной науки Г. превращается в сложный комплекс геологических наук. Кроме стратиграфии, которая была в 19 в. ведущим направлением, обеспечившим хронологическую основу истории Земли, развивались и др. направления Г. Исследовалась не только вертикальная последовательность слоев, но также изменения их вещественного состава по простиранию, связанные с изменением условий образования пород. Швейцарский геолог А. Гресли (1838) впервые предложил все породы, образовавшиеся в одинаковых условиях, объединять под названием «фации». Учение о фациях разрабатывалось русским геологом Н. А. Головкинским.

Современная минералогия начала создаваться ещё на рубеже 18 и 19 вв. трудами русских геологов В. М. Севергина, Д. И. Соколова, французского учёного Р. Аюи (Гаюи) и шведского химика Я. Берцелиуса. Дальнейшее её развитие в России связано с именами Н. И. Кокшарова, П. В. Еремеева, М. В. Ерофеева и А. В. Гадолина. В конце 19 в. появились главные работы Е. С. Федорова, создателя учения о симметрии и теории строения кристаллического вещества, автора новых методов гониометрических и оптических исследований минералов. В 19 в. в качестве самостоятельной геологической дисциплины обособилась петрография, что связано с началом (1858) использования поляризационных микроскопов для исследования горных пород. Был накоплен огромный материал по их микроскопическому изучению, что позволило разработать первую петрографическую классификацию. Из них наибольшим признанием пользуется до сих пор классификация изверженных пород, предложенная в 1898 русским учёным Ф. Ю. Левинсон-Лессингом. В начале 20 в. получают развитие теоретические исследования по петрографии, в частности по проблемам образования магматических горных пород, происхождения и дифференциации магмы, по изучению процессов метаморфизма; начинается экспериментальное физико-химическое изучение силикатных систем.

Конец 19 - начало 20 вв. - время нового качественного перелома в истории Г. Переход капитализма в его новую империалистическую стадию вызвал расширение масштабов эксплуатации недр Земли и вовлек в сферу мировых экономических связей новые, ранее не затронутые ими территории. Во всех ведущих странах мира возникают геологические службы, начинающие систематические геологосъёмочные работы (например, геологическая служба США, 1879). Новые обширные области охватываются геологическим исследованием, предваряя развитие в них горной промышленности. Растет поток фактических данных и резко расширяется кругозор геологов, вводится подготовка специалистов-геологов (см. Геологическое образование). Эволюционные идеи прочно обосновываются в Г., и в общих чертах воссоздаётся картина развития Земли и её поверхности.

Большое значение для развития Г. в России сыграла организация в 1882 Геологического комитета (См. Геологический комитет), которым руководили А. П. Карпинский, Ф. Н. Чернышев, К. И. Богданович и др. С деятельностью комитета связан существенный сдвиг в изучении региональной Г. России и в развитии геологической картографии, позволивший А. П. Карпинскому к Берлинской сессии Международного геологического конгресса (1885) составить карту значительной части Европейской России. Полная геологическая карта Европейской России в масштабе 1:2520000 впервые была составлена и издана под руководством А. П. Карпинского в 1892. Большую роль в развитии геологической картографии сыграло начатое с момента организации Геологического комитета составление общей «десятивёрстной» карты Европейской России (масштаб 1:420000).

А. П. Карпинский в 1887 впервые осуществил для Европейской России палеогеографические реконструкции, проследив распространение морских отложений и восстановив положение береговых линий для различных геологических периодов. Ему удалось дать общую картину медленных тектонических движений геологического прошлого, начиная с кембрийского периода, для огромной территории Эти движения были противопоставлены им «кряжеобразовательным» процессам, которые локализуются в сравнительно узких зонах. Медленные движения земной коры американский геолог Г. Джильберт в 1890 предложил называть эпейрогеническими, в противоположность более быстрым, горообразующим, или орогеническим.

Во 2-й половине 19 в. появляются первые представления о существовании особо подвижных поясов земной коры - геосинклиналей (См. Геосинклиналь) (американские геологи Дж. Холл, 1857-59; Дж. Дана, 1873; французский геолог Э. Ог), которые противопоставляются устойчивым областям - Платформа м. Французский геолог М. Бертран и австрийский геолог Э. Зюсс в конце 19 в. для территории Европы выделили разновозрастные эпохи складчатости (каледонская, герцинская и альпийская); началось издание первого многотомного описания геологического строения всей планеты («Лик Земли» австрийского геолога Э. Зюсса). В этой работе горообразование рассматривается с точки зрения контракционной гипотезы (См. Контракционная гипотеза). Детальные исследования тектоники Альп привели к установлению нового типа структур земной коры - шарьяжей (франццзский геолог М. Люжон, 1902). Последующими работами широкое развитие шарьяжей было доказано применительно ко многим горным системам.

В 20 в. Г., как и всё естествознание в целом, развивается гораздо быстрее, чем ранее. За первыми широкими теоретическими обобщениями следуют новые, часто во многом их исправляющие или опровергающие. Крупным событием этого времени было открытие (1899-1903) французскими учёными П. Кюри и М. Склодовской-Кюри радиоактивного распада элементов, сопровождающегося самопроизвольным выделением тепла. Оно позволило разработать методику определения абсолютного возраста горных пород, а следовательно, и продолжительности многих геологических процессов. На этой основе в последующем получила развитие Г. докембрия [А. А. Полканов, Н. П. Семененко, К. О. Кратц (СССР), Д. Андерсон (США), К. Стоквелл (Канада), Б. А. Шубер (Франция)]. С радиоактивным распадом в недрах Земли стали связывать наличие тепловой энергии планеты, а также активизацию тектонических движений и вулканизм, что привело к коренному пересмотру фундаментальных геологических концепций. В частности, были поколеблены основы контракционной гипотезы, а представления о первоначальном огненно-жидком состоянии Земли были заменены идеями о её образовании из скоплений холодных твёрдых частиц, которые нашли окончательное выражение в космогонической гипотезе О. Ю. Шмидта (СССР) (см. Шмидта гипотеза).

Всё более насущной становится необходимость перехода от простой констатации эмпирически устанавливаемых закономерностей к подлинному объяснению их причин, к вскрытию основных законов истории развития Земли. Возникает необходимость усиленного изучения глубинных процессов, происходящих в нижних слоях земной коры и в мантии. Усовершенствуется также методика изучения веществ, состава горных пород (масс-спектрометрический, рентгеноструктурный и другие анализы) и строения земной коры.

Серьёзное внимание было обращено на развитие региональных геологических исследований, особенно на геологическую съёмку как основу для выявления минеральных богатств. Стратиграфические схемы, разработанные к началу 20 в. только для Европы и отчасти для Северной Америки, стали детализироваться и создаваться для всех остальных материков в связи с широким развёртыванием геологического картирования. Увеличение масштабов и глубины бурения и необходимость определения возраста извлекаемых из скважин пород, в которых крупные палеонтологические остатки встречаются редко, привело к изучению в стратиграфических целях микроскопических остатков фауны и флоры (раковинок фораминифер, радиолярий, остракод, диатомей, перидиней, спор и пыльцы растений) и к организации больших коллективов микропалеонтологов (Д. М. Раузер-Черноусова, А. В. Фурсенко и др.). Значительным событием в развитии стратиграфии было установление Н. С. Шатским (1945) новой, рифейской группы отложений, лежащей между протерозоем и палеозоем, и выделение соответствующего отрезка времени в истории Земли продолжительностью около 1 млрд. лет (см. Рифей). Рифейские отложения выделены на всех континентах, а их расчленение и сопоставление разрезов успешно осуществляется с помощью изучения строматолитов (См. Строматолиты). В трудах советских (Д. В. Наливкина, В. В. Меннера, Б. С. Соколова, В. Н. Сакса и др.) и зарубежных (французского геолога М. Жинью, английского геолога В. Аркела, американских геологов Дж. Роджерса, У. К. Крумбейна и мн. др.) геологов была детально разработана стратиграфия палеозойских, мезозойских и кайнозойских отложений.

В области тектоники для 20 в. характерны: разработка учения о движениях земной коры, в том числе о возможности горизонтальных перемещений крупных её блоков (эпейрофорез); разработка классификаций тектонических форм и теории геосинклиналей и платформ (в СССР - А. Д. Архангельский, М. М. Тетяев, Н. С. Шатский, В. В. Белоусов, М. В. Муратов, В. Е. Хаин; за рубежом - немецкие геологи Х. Штилле и С. Н. Бубнов, швейцарец Э. Арган, американские геологи Р. Обуэн и М. Кей); установление их различных типов и стадий развития, а также переходных между геосинклиналями и платформами образований - краевых прогибов. Впервые выделены в 1946 (А. В. Пейве, Н. А. Штрейс), а затем детально исследованы глубинные разломы земной коры. Успехи теоретической тектоники, а также широкий размах глубокого бурения и геофизических исследований создали предпосылки для тектонического районирования - разделения территории материков на крупные структурные элементы с разной историей развития и, следовательно, с разными ассоциациями и рядами геологических формаций. Учение о формациях было оформлено в трудах Н. С. Шатского и Н. П. Хераскова, а затем для магматических формаций - в трудах Ю. А. Кузнецова.

В 50-60-х гг. начали составляться тектонические карты СССР (Н. С. Шатский, 1953, 1956; Т. Н. Спижарский, 1966), Европы (Н. С. Шатский, А. А. Богданов и др., 1964), Евразии (А. Л. Яншин и др., 1966), Африки (Ю. А. Шубер, 1968), Северной Америки (Ф. Кинг, 1969), а также крупномасштабные тектонические карты отдельных областей и районов в целях выяснения главных закономерностей размещения полезных ископаемых. В СССР положено начало изучению новейших тектонических движений и созданию неотектоники (В. А. Обручев, Н. Н. Николаев, С. С. Шульц). В связи с разведкой и разработкой полезных ископаемых в осадочных толщах в качестве самостоятельной дисциплины выделились петрография осадочных пород, или литология, в развитии которой главная роль принадлежит советским учёным.

Отдельный учебный курс петрографии осадочных пород впервые был прочтен в Московском университете и в Московской горной академии в 1922 М. С. Швецовым, воспитавшим несколько поколений советских литологов и написавшим классические работы по литологии каменноугольных отложений Московской синеклизы. В области минералогии осадочных пород интересные исследования проводил в начале 20-х гг. Я. В. Самойлов. А. Д. Архангельский ещё в 1912 дал первый образец сравнительно-литологических исследований, восстановив условия образования верхнемеловых отложений Поволжья по аналогии с осадками современных морей и океанов. После Великой Октябрьской социалистической революции он детально изучал литологию фосфоритов, бокситов и нефтепроизводящих свит. В. П. Батурин разработал метод изучения терригенных минералов с целью восстановления палеогеографических условий осадконакопления. Л. В. Пустовалов в ряде монографий и двухтомной «Петрографии осадочных пород» (1940) впервые поставил вопрос об общих закономерностях процесса осадкообразования и его эволюции в истории Земли. Очень много сделал для выяснения различных вопросов осадочного породообразования, установления его стадий и его климатических типов Н. М. Страхов, трёхтомная монография которого «Основы теории литогенеза» опубликована в 1960-62. Специфику осадочного породообразования в докембрии изучал А. В. Сидоренко, образование соленосных толщ - М. Г. Валяшко, А. А. Иванов, М. П. Фивег и др. Крупные работы в области петрографии осадочных пород принадлежат также американским геологам - У. Твенхофелу, Ф. Дж. Петтиджону, У. К. Крумбейну, Дж. Тейлору.

С петрографией осадочных пород тесно связано учение о Фация х, получившее наиболее глубокую разработку в трудах Д. В. Наливкина. Разработан ряд новых методов изучения веществ, состава горных пород (спектроскопический, рентгеноструктурный, термометрический анализы). В минералогии была оформлена современная кристаллохимическая теория конституции минералов (Н. В. Белов, В. С. Соболев и др.), достигнуты успехи в синтезе многих минералов (Д. С. Белянкин, Д. П. Григорьев), большая группа работ посвящена пегматитам (А. Н. Заварицкий, А. Е. Ферсман), физико-химическому анализу природных ассоциаций минералов (А. Г. Бетехтин, Д. С. Коржинский и др.). Создан ряд трудов по петрографии, петрохимии и учению о метаморфизме (Ф. Ю. Левинсон-Лессинг, Ю. А. Кузнецов, Н. А. Елисеев, Ю. И. Половинкин, П. Эскола, Т. Барт, Н. Боуэн, Г. Кеннеди, П. Ниггли, Ф. Тернер). Большое значение имели углепетрографические работы, посвященные изучению метаморфизма углей и закономерностям размещения угольных бассейнов (П. И. Степанов, Ю. А. Жемчужников, В. В. Мокринский, В. И. Яворский, И. И. Горский). Разрабатывалась Г. нефти и газа (И. М. Губкин, С. И. Миронов, А. А. Трофимук, М. Ф. Мирчинк, И. О. Брод, чешский геолог К. Крейчи-Граф, американские геологи А. Леворсен и Д. М. Хант). За последние десятилетия выделилась особая отрасль Г.- металлогения (С. С. Смирнов, Ю. А. Билибин, Д. И. Щербаков, К. И. Сатпаев, В. И. Смирнов, Х. М. Абдуллаев, И. Г. Магакьян, Е. Т. Шаталов, А. Г. Левицкий, В. А. Кузнецов, шведский геолог В. Линдгрен, немецкий геолог Г. Шнейдерхен, американские геологи Ч. Ф. Парк, У. Х. Эммонс и др.). Успешно развивались: вулканология (В. И. Влодавец, Б. И. Пийп, Г. С. Горшков, американские геологи Х. Уильямс, А. Ритман, французский геолог Г. Тазиев), гидрогеология и гидрогеохимия (Н. Ф. Погребов, Н. Н. Славянов, А. Н. Семихатов, Ф. П. Саваренский, Г. Н. Каменский, Н. И. Толстихин, И. К. Зайцев), Г. четвертичных отложений (Г. Ф. Мирчинк. Я. С. Эдельштейн, С. А. Яковлев, В. И. Громов, А. И. Москвитин, Е. В. Шанцер, немецкий учёный П. Вольдштедт, американский геолог Р. Флинт, шведский геолог Г. Геер).

На стыке Г. и химии в 20 в. обособилась геохимия, принципы которой были сформулированы В. П. Вернадским и норвежским геохимиком В. М. Гольдшмидтом и развивались в СССР в трудах А. Е. Ферсмана и А. П. Виноградова. Выяснена огромная роль развития жизни на Земле как фактора, приведшего к образованию органогенных пород (коралловые рифы, каменные угли и др.), существенно изменившего состав атмосферы и гидросферы, а также непосредственно влиявшего на ход многих геологических процессов (например, выветривания). В связи с этим выделился особый раздел геохимии - биогеохимия, а для оболочки Земли, в которой протекают биологические процессы, В. И. Вернадским было предложено название биосферы (См. Биосфера). На стыке Г. и физики развилась геофизика. Появление и развитие геохимии и геофизики в огромной степени способствовало успехам геологических исследований, в практику которых с начала 20-х гг. прочно вошли геофизические и геохимические методы.

В последнюю четверть века интенсивно развивается Г. дна морей и океанов (в СССР- М. В. Клёнова, П. Л. Безруков, А. П. Лисицын, Г. Б. Удинцев; за рубежом - американские геологи Ф. П. Шепард и Г. У. Менард, Б. Хизен, М. Ю. Юинг, голландский геолог П. Кюнен), в частности в целях промышленного освоения полезных ископаемых обширных пространств континентального шельфа. В исследованиях Г. морского дна широко применяются геофизические методы, а в последние годы и бурение со специально оборудованных судов.

На территории СССР все отрасли Г. получили бурное развитие после Великой Октябрьской социалистической революции. За годы Советской власти страна покрыта геологической съёмкой масштаба 1:1000000, начатой по инициативе и под руководством А. П. Герасимова, а значительные её области - съёмками масштаба 1:200000, тогда как до 1917 геологические карты, при этом значительно менее детальные, были составлены лишь для 10% площади России. В 1922 и 1925 были изданы первые геологические карты Азиатской части СССР, в 1937 - первые геологические карты территории СССР в целом. Первая геологическая карта территории СССР без «белых пятен» (неисследованных областей) была издана в 1955 в масштабе 1: 2500000. Третье её издание (Д. В. Наливкин, А. П. Марковский, С. А. Музылев, Е. Т. Шаталов) вышло в 1965. Составлен ряд специальных карт - геоморфологических, четвертичных отложений, палеогеографических, палеотектонических, гидрогеологических, гидрогеохимических, магматических формаций, металлогенических, угленакопления, нефтегазоносности и др. Данные о геологическом строении СССР обобщены в трудах В. А. Обручева, А. Д. Архангельского, А. Н. Мазаровича, Д. В. Наливкина, а также в многотомных монографиях «Геология СССР», «Гидрогеология СССР», «Стратиграфия СССР» и др.

В 1951-52 было издано первое в СССР учебное пособие (автор А. Н. Мазарович) по курсу региональной Г. мира, дающее общую характеристику геологического строения всех материков земного шара. Большое значение имело также издание научно-популярной литературы по Г. (В. А. Обручев, А. Е. Ферсман, В. А. Варсанофьева и др.).

Работы по планированию и организации геологических исследований в СССР ведутся Министерством геологии СССР и министерствами союзных республик через территориальные геологические управления и геологические учреждения др. министерств, связанных с разработкой минеральных ресурсов и строительством (см. Геологическая служба). Научную работу по Г. проводят около 80 научно-исследовательских институтов и лабораторий Министерства геологии и некоторых др. министерств, АН СССР и АН союзных республик. В СССР издаётся ряд периодических научных геологических журналов (См. Геологические журналы).

Организация геологических исследований в международном масштабе и обсуждение важнейших проблем Г. осуществляется основанным в 1875 Международным геологическим конгрессом (см. Геологический конгресс Международный). В перерывах между сессиями конгресса межнациональными исследованиями руководит с 1967 Международный союз геологических наук (см. Геологических наук союз).

Основные задачи геологии. Поскольку залежи полезных ископаемых на поверхности Земли в основном исчерпаны, одной из главных задач современной Г. являются поиски и освоение невидимых с поверхности («слепых», или «скрытых») месторождений. Поиски их могут производиться лишь с помощью геологических прогнозов, что требует усиленного развития всех направлений Г. Для территории СССР эта задача сформулирована в директивах 24-го съезда КПСС, где говорится о необходимости «…проведения исследований в области геологии, геофизики и геохимии для выявления закономерностей размещения полезных ископаемых, повышения эффективности методов их поиска, добычи и обогащения…» (Директивы XXIV съезда КПСС по пятилетнему плану развития народного хозяйства СССР на 1971-1975 годы, 1971, с. 14).

Для исследования глубинных зон Земли и их минеральных ресурсов необходимо изучение земной коры и верхней мантии геофизическими методами, изучение метаморфических и магматических образований, их состава, строения и условий образования как показателей состояния вещества и его преобразований в глубинных зонах Земли, бурение сверхглубоких скважин и исследование докембрийских толщ с позиций стратиграфии, тектоники, минералогии, петрографии и размещения в них полезных ископаемых.

В связи с увеличением потребности в цветных и редких металлах и необходимостью расширения минерально-сырьевой базы возникла проблема использования ресурсов морей и океанов. Поэтому одной из актуальных задач Г. является изучение Г. дна морей и океанов (71% всей поверхности Земли). В последнее десятилетие начались работы по детальному изучению подземного тепла как возможного энергетического ресурса будущего. В ряде стран (Исландия, Италия, Япония, Новая Зеландия, в СССР на Камчатке) перегретый пар, выделяющийся из скважин, уже используется для отопления и получения электроэнергии.

Важнейшей задачей Г. является дальнейшая разработка теории развития Земли, в частности исследование эволюции внутренних и внешних геологических процессов, определяющих закономерности распространения минеральных ресурсов.

В связи с успехами космических исследований одной из основных проблем Г. становится сравнительное изучение Земли и др. планет.

Лит.: История и методология науки. Павлов А. П., Очерк истории геологических знаний, [М.], 1921; Хабаков А. В., Очерки по истории геологоразведочных знаний в России. [Материалы для истории геологии], ч. 1, М., 1950; Тихомиров В. В., Хаин В. Е., Краткий очерк истории геологии, М., 1956; История геолого-географических наук, в. 1-3, М., 1959-62; Люди русской науки. Очерки о выдающихся деятелях естествознания и техники, кн. 2 - Геология. География, М., 1962; Тихомиров В. В., Геология в России первой половины 19 века, ч. 1-2, М., 1960-1963; Шатский Н. С., История и методология геологической науки, Избр. труды, т. 4, М., 1965; Взаимодействие наук при изучении Земли, М., 1963; Философские вопросы геологических наук, М., 1967; Гордеев Д. И., История геологических наук, ч. 1 - От древности до конца 19 в., М., 1967; Развитие наук о Земле в СССР, М., 1967; 50 лет советской геологии, М., 1968.

Общие работы. Ломоносов М. В., О слоях земных и другие работы по геологии, М. - Л., 1949; Соколов Д. И., Руководство к геогнозии, ч. 1, СПБ, 1842; Ляйелль Ч., Основные начала геологии или новейшие изменения земли и ее обитателей, пер. с англ., т. 1-2, М., 1866; Неймайр М., История Земли, т. 1-2, СПБ, 1903-04; Иностранцев А. А., Геология. Общий курс лекций, 4 изд., т. 1-2, СПБ, 1905-12; Ог Э., Геология, пер. с франц., под ред. А. П. Павлова, т. 1, М., 1914; Мушкетов И. В., Мушкетов Д. И., Физическая геология, 4 изд., т. 1, Л.-М.,1935; Карпинский А. П., Собр. соч., т. 1-4, М. - Л., 1939-49; Варсанофьева В. А., Происхождение и строение Земли, М. - Л., 1945; Архангельский А. Д., Избр. труды, т. 1-2, М., 1952-54; Бубнов С. Н., Основные проблемы геологии, М., 1960; Шатский Н. С., Избр. труды, т. 1-4, М., 1963-65; Штилле Г., Избр. труды, пер. с нем., М., 1964; Жуков М. М., Славин В. И., Дунаева Н. Н., Основы геологии, М., 1970; Горшков Г. П., Якушова А. Ф., Общая геология, 2 изд., М., 1962; Suess Ed., Das Antlitz der Erde, Bd 1-3, Prag - W. - Lpz., 1883-1909; Fourmarier P., Principes de géologic, 3 éd., t. 1-2, P., 1949-50; Termier Н. et G., Traité de géologie, v. 1-3, P., 1952-56.


Геология – это комплекс наук о составе, строение, и истории развития земной коры и Земли в целом.

Геология:

    Прямые методы - Образец горной породы, исследуются в лабораторных условиях, ставятся эксперименты, измерение; бурение земной коры. (Самое большое бурение на Кольском полуострове 80-90гг, 1500 м, 12,5км)

    Косвенные методы - Изучение загрязнения атмосферы с помощью растений, изучение атмосферного воздуха, рентген,

Объект геологии - является твердая оболочка земли «литосфера» - камень.

Предмет геологии – система геологических процессов в литосфере.

Методы изучения геологии:

    Геохимические – изучение горных пород с помощью химического анализа (макроскопические)

    Геофизические – изучение структур нашей планеты по средством физических параметров.

    Палеонтологические – изучение относительного возраста осадочных толщ земной коры.

    Аэрокосмические

    Компьютерное моделирование и другие информационные методы

    Метод актуализма ил метод мышления.

Суть метода мышления : в сходных условиях геологические процессы идут сходным процессом. Поэтому, изучая современные процессы можно судить о том, как шли аналогические процессы в далеком прошлом. Современные процессы можно наблюдать в природе (извержение вулканов, либо создавать искусственные, подвергая образцы горных пород давлению высоких температур и давлению). Однако геологическая и географическая обстановка на историческом пути менялась необратимо и мы не всегда можем иметь полностью объективное представление о тех условиях, которые были на нашей планете в прошлом. Поэтому чем древнее изучение толщи, тем ограниченнее применения метода актуальности.

    Структура и состав геологической науки.

Структура геологической науки:

    Описательная (статистические)

    Динамическая (динамические)

    Исторические (ретроспективные)

Состав геологической науки:

      Геофизика - комплекс наук, исследующих физическими методами строение Земли, ее физические свойства и процессы, происходящих в ее оболочках.

      Геохимия - наука, изучающая химический состав Земли, распространенность в ней химических элементов и их изотопов, закономерность распределения химических элементов в различных геосферах, законы поведения, сочетание и миграции элементов в природных процессах.

      Геодинамика – отрасль геологии, изучающая силы и процессы в коре, мантии и ядре Земли, обуславливающие глубинные и поверхностные массы во времени и пространстве.

      Тектоника - отрасль геологии, изучающая развития структур земной коры, ее изменения под влиянием тектонических движений и деформации, связанных с развитием Земли в целом.

      Минералогия – наука о минералах, их составе, свойствах, особенностях и закономерностях физического строения, условиях образования, нахождения и изучения в природе.

      Петрография (петрология) – наука о горных породах их минералогическом составе, химическом составе, структуре и текстуре условиях залегания закономерностях распространения, происхождения и изучения в земной коре и на ее поверхности.

      Литология – наука об осадочных горных породах и современных осадках, их вещественном составе, строении, закономерностях в условиях образования и изменения.

      Палеонтология – наука о вымерших живых организмах, сохранившихся в виде ископаемых остатков, отпечатков и следов жизнедеятельности, о смене их и пространстве и времени, обо всех доступных изучению проявления в жизни в геологическом прошлом.

      Гидрогеология – наука о подземных водах, изучающая их состав, свойства, происхождение закономерности распространения и движения, а так же взаимодействия с горными породами.

      Инженерная геология – процессы и явления, свойства грунтов, на которых возводятся инженерные сооружения.

      Геокриология – наука, изучающая состав и строение, свойства, происхождения распространения и историю развития мерзлых толщ в земной коре, а также процессы, связанные с их промерзанием и оттаиванием.

    Место геологии в системе естественных наук.

В ряду наук естественноисторических геология занимает видное и тесно с другими естественноисторическими науками связанное положение. При изучении минеральных изменений Земли геология соприкасается с химией, физикой, минералогией и даже астрономией, в особенности при разборе вопроса о происхождении Земли. При изучении ископаемых организованных остатков геология вступает в тесные соотношения с ботаникой и зоологией. При изучении бывших изменений на земной поверхности она вступает в тесную связь с физической географией, и, изучая современные геологические явления, она не столько интересуется причинностью их, сколько теми результатами, которые оставляют эти явления на земной поверхности. Геология не только в область естественных наук, но и в обширную область человеческих знаний внесла новый элемент. Минералог, ботаник или зоолог, изучая готовые продукты природы, т. е. минерал, растение или животное, может относиться безразлично к тому времени, когда появился на Земле этот продукт природы. Но геолог открывает возможность при последовательном разборе памятников жизни Земли отмечать те страницы, на которых более или менее отчетливо запечатлено нахождение данного минерала или организма. Проследить за его пребыванием на земной поверхности можно на следующих страницах памятников жизни Земли и, наконец, можно отметить момент, когда данный организм или совершенно исчезает с лица Земли, или заменяется новым.

Геология ввела в науки новый элемент - время, который дает возможность обнять более широким духовным взором экономию природы и показать, как длинен и последователен был путь, которым выработалась окружающая нас природа. Здесь, конечно, можно провести параллель с науками гуманитарными, для которых история человечества составляет такой же краеугольный камень, какой геология - для наук естественноисторических. Геология, кроме того, доставила массу материала, совершенно нового с точки зрения классификации. Для примера можно взять зоологию. Долгое время однокопытные животные состояли совершенно изолированными среди других млекопитающих, и генетическая связь их являлась, таким образом, утерянной. Только благодаря геологическим находкам можно было с достаточной наглядностью и последовательностью доказать, что однокопытные животные тесно генетически связаны с другими непарнопалыми, в современной своей организации, представляющими так мало общего с однокопытными. Если принять во внимание, какую массу ископаемых организмов, как водных, так и наземных, уже исчезнувших с лица Земли, открыла геология, и если обратить внимание на так называемые эмбриональные и сборные типы, то сделается вполне понятным, что этой науке обязана ботаника и зоология современными своими классификациями.

При разборе новейших страниц жизни Земли геология соприкасается и с историей человечества. При выработке торфа из болот Дании уже давно извлекались изделия, приготовленные из камня грубой или более или менее совершенной обивкой, изделия из бронзы и железа. Последовательный геологический разбор наслоения торфа обнаружил, что эти остатки распределены в нем с известной последовательностью: каменные изделия распределены в нижних слоях, бронзовые - в средних и железные - в верхних. Это и подало повод установить в ходе культуры доисторического человека Западной Европы века: каменный, бронзовый и железный. Но этим не удовольствовались и попробовали при помощи остатков растений в торфе восстановить природу того времени. Оказалось, что господствующей древесной породой времени жизни человека каменного века были сосна, бронзового - дуб и железного - бук. Такое вертикальное распределение древесной растительности дает возможность из сравнения с современным распределением на Земле растений прийти к заключению, что со времени жизни на Земле человека каменного века произошли значительные климатические изменения и что в то время в Дании климат был значительно суровее, чем ныне. О Дании известно из древних римских известий: постоянно там упоминается как господствующая древесная порода - бук; следовательно, еще римляне застали в этой стране бук; a когда здесь были леса дубовые или им предшествующие сосновые - это теряется во временах глубокой древности, конечно, не только не захваченной историей человеческой, но и задолго до времени эпоса. Наконец, находки еще более древних остатков человека - современника мамонта и сибирского носорога - должны теряться в еще более отдаленных от нас временах.

    Строение Земли и картина природы в представлении мыслителей древности.

    Основные этапы развития геологических знаний.

Истоки геологических знаний относятся к глубокой древности и связаны с первыми сведениями о горных породах, минералах и рудах. Еще в древности умение находить, добывать и использовать ценные материалы в земной коре, в том числе различные металлы чрезвычайно высоко ценилось. Таким образом, первоначальные геологические сведения, полученные людьми, были теснейшим образом взаимосвязаны с процессом использованием земной коры.

Древние греческие мыслители: Фалес Милетский , Ксенофан Колофонский , Гераклит Эфесский , Аристотель , Теофраст (или Феофраст , или Тиртамос , или Тиртам ) за сотни лет до начала новой эры в своих сочинениях пытались объяснить земные процессы реальными процессами.

Гераклит Эфесский (530-470 до н.э.) утверждал, что мир вечен, что он непрерывно изменяется и в нем процессы созидания периодическими сменяются процессами разрушения.

Аристотель (384-322 до н.э.) обратил внимание на окаменелости как на остатки исчезнувших организмов. Уже в древней Греции наметились 2 основных толкования природы геологических явлений позже получивших название плутонизм и нептунизм.

Плиний Старший (23-79 н.э.) в древнем Риме написал около 70 книг в значительной части которых в той или иной мере раскрывал начало истории Земли.

Абу Али Хусейн ибн Абдаллах ибн Сина Абу , илиАвиценна (980-1037) в своем энциклопедическом сочинении Китаб аль-Шифа (книга исцеления души) он изложил весьма передовые средневековые взгляды. По его мнению горы и долины произошли как в результате действия внутренних сил земли в частности сильных землетрясений, так и под, воздействием внешних причин, воды и ветра. Он считал, что мир вечен.

В 15веке широкую известность получили труды итальянского художника и ученого Леонардо Давинчи (1452-1519). Он полагал, что очертание суши и океанов начали изменяться далеком прошлом, что этот процесс происходит медленно этот, процесс постоянен, и является праобразом библейской легенде о Всемирном потопе, утверждал, что Земля существует гораздо дольше, чем сказано в священном писании.

Сам термин геология ввел норвежский ученый Эшольт М.П. в 1657г.

Самостоятельно ветвь естественной геологии выделилась в 18в. - начало 19века. Это связанно с деятельностью: Уильям Смит, Абраам Готлоб Вернер, Джеймс Хаттон, Чарлз Лайелл или Лайель, Михаил Васильевич Ломоносов, Василий Михайлович Севергин .

Уильям Смит (1769-1839) английский инженер, один из основоположников биостратиграфии, работая по строительным каналам установил что возраст осадочно-горных пород по заключенным в них остаткам ископаемых организмов. Составил первую геологическую карту Англии с распределением горных пород по их возрасту.

    Биостратиграфия – это раздел стратиграфии, изучающий распределение в осадочных отложениях ископаемых остатков организмов с целью выяснения относительного возраста этих отложений.

Абраам Готлоб Вернер (1749-1817) немецкий геолог и минералог, основатель немецкой научной школы минералогии. Разработал классификацию горных пород и минералов. Основатель нептунизма.

    Нептунизм – это геологическая концепция (к 18 – началу 19 вв.), основанная на представлениях о происхождении всех горных пород из вод мирового океана.

Джеймс Хаттон (1726-1797) шотландский геолог представлял геологическую историю Земли, как разрушение и возникновение (одних континентов в другие). Указал на сходство современных и древних геологических процессов. Основоположник плутонизма.

    Плутонизм – это геологическая концепция (к 18 – началу 19 вв.), о ведущей роли в геологическом прошлом внутренних сил Земли вызывающих вулканизм, землетрясения, тектонические движения.

Чарлз Лайелл или Лайель (1797-1875) английский естествоиспытатель, один из основоположников актуализма и эволюционизмов в геологии. В своих главных трудах под названием «Основы геологии в противовес теории катастроф» развил учение о медном и непрерывном изменении поверхности Земли под влиянием поставленных геологических факторов.

Михаил Васильевич Ломоносов (1711-1765) первый ученый естествоиспытатель мирового значения. Открыл атмосферу на Венере, описал строение Земли, объяснил происхождение многих полезных ископаемых и минералов, опубликовал руководство по металлургии. Металлургически рассматривал все явления природы.

Василий Михайлович Севергин (1765-1826) русский минералог и химик. Один из основоположников русской минералогической школы. Автор обширных сведений о минералогии. Ввел понятие о парагенезисе минералов. Автор трудов по химической технологии, также разрабатывал русскую научную терминологию.

Владимир Иванович Вернадский (1863-1945) русский естествоиспытатель, мыслитель и общественный деятель. Основоположник целого комплекса современной наук о Земле. Геохимия, биогеохимия, радиогеология, гидрогеология и др. Ввел существенный вклад в минералогию и кристаллографию. Он разработал генетическую минералогию, установил связь между формой кристаллических минералов, его химическим составом, генезисом и условиями образования. Сформулировал основные идеи и проблемы геохимии. С 1907 он вел геологические исследования радиогеологии. 1916-1940гг. он сформулировал главные принципы и проблемы биогеохимии, также создал учение о биосфере и ее эволюции, им были. Им были схематично очерчены главные тенденции в эволюции биосферы:

    экспансия жизни на поверхности Земли усиление ее преобразующего влияния на абиотическую среду.

    возрастание масштабов и интенсивности биогенных миграций атомов. Появление качественных геохимических функций живого вещества, завоевание жизнью новых минералогических и энергетических ресурсов.

    переход биосферы в ноосферу

    Ноосфера – новая эволюционное состояние биосферы, при котором разумная деятельность человека, становиться решающим фактором ее развития.

Качественный скачек в истории геологии, а именно превращение ее в комплекс наук, (на рубеже 19-20 вв.). Он связан с ведением физико-химических и математических методов исследования.

Современный этап развития геологии связан с ведением в геологии информационных методов исследования (геологические базы данных, комплексные моделирование), а также с появлением современной технических средств позволяющих глубже и шире понимать объект геологии и геологических процессов (ЭВМ, аэрокосмические средства, геофизические установки).

    Строение Солнечной Системы.

В солнечную систему входят: звезда; Солнце, которое является, желтым карликом, 2 или 3 поколения; планеты, в порядке удаления от солнца: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Планеты подразделяются на 2 группы: 1.Земной группы, 2.Внешней группы (планеты гиганты).

    Характеристика планет земной группы.

Располагаются ближе к Солнцу, имеют небольшие размеры, высокую плотность, относительно небольшую массу, имеют несколько спутников, либо не имеют их вовсе. Если имеют атмосферу, которая состоит из тяжелых газов: оксида углерода, азота, озона, криптона, кислорода и др. их атмосфера имеет эндогенное происхождение, то есть газы атмосферы появились из недр планет в процессе их эволюции. Эти планеты в основном твердое вещество, масса – оксид кремния и различные металлы внешние оболочки (кора) в основном представленная силикатами, самые внутренние оболочки – сплавами тяжелых металлов железо никель.

    Характеристика планет-гигантов

Большие размеры и масса, относительно невысокая плотность, расположены дальше от Солнца. Все она имеют большое количество спутников, имеют кольца, состоящие из пылевых частиц, кристаллов льда и больших обломков горных пород. В состав планет газовых гигантов в основном входят легкие газы,

    Гипотезы происхождения Солнечной Системы и их классификация.

Первая теория образования Солнечной системы, предложенная в 1644 г. Декартом. По представлениям Декарта, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли (монистическая теория). В 1745 г. Бюффон предложил дуалистическую теорию; согласно его версии, вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или другой звездой. Если бы Бюффон оказался прав, то появление такой планеты, как наша, было бы событием чрезвычайно редким. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения. Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты. Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию "гипотезой Канта-Лапласа". Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая. Исходная материя, из которой потом образовались планеты, была выброшена Солнца (которое к тому времени было уже достаточно "старым" и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам. Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов, сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжении миллиардов лет.

    Общая характеристика Земли. Основные физические параметры планеты.

    Физические поля Земли.

Физическое поле – форма материи, осуществляющая определенные взаимодействия между макроскопическими телами ли частицами, входящими в состав вещества. Представлены гравитационным, магнитным, геометрическим и электрическим полями и изучаются соответствующими отраслями наук. Стр.59 в землеведении http://www.russika.ru/pavlov/glava4.pdf

    Общая характеристика геосфер.

К настоящему времени человечеством получено множество данных, позволивших с высокой степенью достоверности установить характеристики основных геосфер земли.

Ядро Земли – занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра около 3500 км, располагается оно глубже 2900 км. Состоит из двух частей – большого внешнего и малого внутреннего ядра. Природа внутреннего ядра Земли с глубины 5000 км остается загадкой. Это шар диаметром 2200 км, который, как полагают ученые, состоит из железа и никеля и имеет температуру плавления порядка 4500 °С. Внешнее ядро представляет собой жидкость – расплавленное железо с примесью никеля и серы. Давление в этом слое меньше. Внешнее ядро – шаровой слой толщиной 2200 км.

Мантия – наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев – нижней и верхней мантии. Толщина нижней части мантии – 2000 км, верхней – 900 км. Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии составляет около 2500 ° С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанная температура привела бы к его расплавлению. В расплавленном состоянии находится астеносфера – нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. В целом же верхняя мантия обладает интересной особенностью: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный.

Литосфера – этоземная корас частью подстилающей ее мантии, которая образует слой толщиной порядка 100 км. Земная кора обладает высокой степенью жесткости, но и большой хрупкостью. В верхней части она слагается гранитами, в нижней – базальтами. Геологические особенности коры определяются совместными действиями на нее атмосферы, гидросферы и биосферы – трех самых внешних оболочек планеты. Состав коры и внешних оболочек непрерывно обновляется. На поверхности литосферы в результате совокупной деятельности ряда факторов возникает почва – это сложнейшая система, стремящаяся к равновесному взаимодействию с окружающей средой.

Гидросфера – водная оболочка Земли представлена на нашей планете Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют 1,5 млрд. км 3 . Из этого количества 97 % приходится на соленую морскую воду, 2 % составляет замерзшая вода ледников и 1 % – пресная вода. Гидросфера – это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и морем идет постоянный круговорот воды, ежегодный объем которого составляет 100 тыс. км 3 .Воде свойственны высокая теплоемкость, теплота плавления и испарения. Вода является хорошим растворителем, поэтому в ней содержится множество химическим элементов и соедине­ний, необходимых для поддержания жизни. Большую часть поверхности Земли занимает Мировой океан (71 % поверхности планеты). Он окружает материки (Евразию, Африку, Северную и Южную Америку, Австралию и Антарктиду) и острова. Океан делится материками на четыре части: Тихий (50 % площади Мирового океана), Атлантический (25 %), Индийский (21 %) и Северный Ледовитый (4 %) океаны. Важной частью гидросферы Земли являются реки – водные потоки, текущие в естественных руслах и питающиеся за счет поверхностного и подземного стока с их бассейнов.

Озера, болота, подземные воды также часть гидросферы Земли.

Ледники, образующие ледяную оболочку Земли (криосферу), также являются частью гидросферы нашей планеты. Они занимают 1/10 часть поверхности Земли. Именно в них содержатся основные запасы пресной воды (3/4).

Атмосфера – это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. Она состоит из воздуха – смеси газов (азота, кислорода, инертных газов, водорода, углекислого газа, паров воды). Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности планеты.

Атмосфера Земли имеет слоистое строение, причем слои отличаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.

Тропосфера – это нижний слой атмосферы, определяющий погоду на нашей планете. Имеет постоянную температуру. Его толщина – 10–18 км. С высотой падают давление и температура. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков.

Толщина стратосферы доходит до 50 км. Наблюдается повышение температуры из-за поглощения солнечного излучения озоном.

Ионосфера – эта часть атмосферы, начинающаяся с высоты 50 км и состоящая из ионов (электрически заряженных частиц воздуха). Ионизация воздуха происходит под действием Солнца.

С высоты 80 км начинается мезосфера , роль которой состоит в поглощении ультрафиолетовой радиации Солнца озоном, водяным паром и углекислым газом.

На высоте 90–400 км находится термосфера . В ней происходят основные процессы поглощения и преобразования солнечного ультрафиолетового и рентгеновского излучений.

О геологии знает каждый, несмотря на то, что она является, пожалуй, единственной естественнонаучной дисциплиной, не изучаемой в школьном курсе. Развитие «геологических» знаний сопутствовало развитию человечества на всех этапах его истории. Достаточно вспомнить, что общая периодизация истории основана на характере используемых для производства орудий труда материалов: каменный, бронзовый и железный века. Добыча и совершенствование технологии обработки полезных ископаемых неизбежно связаны с увеличением знаний о свойствах минералов и горных пород, выработкой критериев поиска месторождений и совершенствованием способов их разработки.

Вместе с тем, в понимании, близком к современному, термин «геология» впервые был применен лишь в 1657 году норвежским естествоиспытателем М. П. Эшольтом, а как самостоятельная ветвь естествознания геология начала развиваться только во второй половине 18 века. В это время были разработаны элементарные приёмы наблюдения и описания геологических объектов и процессов, первые методы их изучения, проведена систематизация разрозненных знаний, возникли первые гипотезы. Этот период связан с именами выдающихся учёных А. Броньяра, А. Вернера, Ж. Кювье, Ч. Лайеля, М. Ломоносова, У. Смита и многих других. Геология становится наукой – выработанной в результате деятельности человека взаимосвязанной развивающейся системой знаний о законах мира.

Геология в современном понимании – это развивающаяся система знаний о вещественном составе, строении, происхождении и эволюции геологических тел и размещении полезных ископаемых.
Таким образом, объектами изучения геологии являются:

  • состав и строение природных тел и Земли в целом;
  • процессы на поверхности и в глубинах Земли;
  • история развития планеты;
  • размещение полезных ископаемых.

Можно выделить несколько уровней организации минерального ("геологического") вещества (в которых тела каждого последующего ранга организации вещества образованы закономерным сочетанием тел предыдущего ранга): минерал - горная порода - геологическая формация - геосфера - планета в целом . «Минимальным» объектом, изучаемым в геологии, выступает минерал (составляющие минералы элементарные частицы и химические элементы рассматриваются в соответствующих разделах физики и химии).

Минералы - природные химические соединения с кристаллической структурой , образовавшиеся в ходе геологических процессов на Земле или внеземных телах. Каждый минерал обладает определённой конституцией – совокупностью кристаллической структуры и химического состава. Изучению минералов посвящена одна из ветвей геологии - минералогия. Минералогия - это наука о составе, свойствах, строении и условиях образования минералов. Это одна из старейших геологических наук, по мере развития которой, от неё отделялись самостоятельные ветви геологических наук.

Горные породы - естественные минеральные агрегаты, образующиеся в глубинах Земли или на её поверхности в ходе различных геологических процессов. По способу образования (генетически) горные породы подразделяются на следующие типы:

  • магматические , возникшие за счёт глубинного вещества, находившегося в расплавленном состоянии; иначе говоря, образующиеся в результате кристаллизации огненно-жидкого природного расплава, называемого магмой и лавой;
  • осадочные , формирующиеся на поверхности Земли в результате физического и химического разрушений существующих пород, осаждения минералов из водных растворов или в результате жизнедеятельности живых организмов;
  • метаморфические , возникшие за счёт преобразования магматических, осадочных или других горных пород под воздействием высоких температур и давлений и сохранившие в процессе преобразования твёрдое состояние и свой химический состав;
  • метасоматические , возникшие за счёт преобразования магматических, осадочных или других горных пород, сохранивших в ходе преобразования твёрдое состояние, но утратившие частично или полностью свои исходные минеральный и химический составы;
  • мигматитовые , возникшие за счёт преобразования магматических, осадочных или других горных пород в условиях высоких температур и давлений, сопровождающегося их частичным плавлением; эти породы являются продуктами прогрессивно направленных процессов метаморфизма и метасоматоза;
  • импактные (или коптогенные ), возникшие в следствии импактных событий – падений космических тел; образование импактных пород может быть связано с высоким давлением в ходе удара, частичным или полным плавлением вещества.

В общем виде все горные породы могут быть разделены на возникшие в поверхностных условиях, со свойственным этим условиям сочетанием температур, активности кислорода, воды, органических веществ и иных факторов – это осадочные породы, и породы, образованные под воздействием глубинных процессов, с присущими этим условиям повышенными температурой и давлением, иным химическим составом среды - магматические, метаморфические, метасоматические, мигматитовые; импактные породы, образованные в ходе преобразования существующих пород в условиях высоких давлений и возникающих в ходе взрыва температур, в целом близки ко второй названной группе. Такое разделение определило развитие двух научных направлений, изучающих горные породы. Изучению осадочных пород и современных осадков, их состава, строения, происхождения и закономерностей размещения посвящена наука литология. Изучению, описанию и классификации магматических, метаморфических, метасоматических, мигматитовых и импактных породы, и образованных ими геологических тел посвящена петрография. В ходе развития петрографии из неё выделилась как самостоятельная, но тесно связанная, дисциплина петрология – наука, занимающаяся изучением условий происхождения горных пород и экспериментальным воспроизведением этих условий.

Геологические формации - закономерное сочетание определенных генетических типов горных пород, связанных общностью условий образования.

Геологические формации рассматриваются во многих разделах геологии (петрографии, литологии, геотектонике и др., даже выделяется особое направление - учение о формациях). Учитывая, что выявление формаций, как объектов высокого ранга, возможно лишь при изучении крупных участков земной коры, важная роль в их исследовании отводится региональной геологии. Региональная геология - раздел геологии, занимающийся изучением геологического строения и развития определенных участков земной коры.

Геосферы - концентрические слои (оболочки), образованные веществом Земли. В направлении от периферии к центру Земли расположены атмосфера, гидросфера (образующие внешние геосферы), земная кора, мантия и ядро Земли (внутренние геосферы). Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, называется биосферой.

Важнейшая роль в изучении геосфер, их состава, протекающих в них процессов и их взаимосвязи, отводится геофизике и геохимии. Геофизика - комплекс наук, изучающих физические свойства Земли в целом и физические процессы, происходящие в её твёрдых сферах, а также в жидкой (гидросфера) и газовой (атмосфера) оболочках. Геохимия - наука, изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на её поверхности. Наука, исследующая глубинные процессы, изменяющие состав и строение твердых оболочек Земли, называется геодинамика . Изучению геологических процессов, протекающих в земной коре и на её поверхности, посвящено ещё одно направление геологии – динамическая геология .

Минералы и горные породы залегают в виде определённых геологических тел. Важными направлением геологии является науки, изучающие формы залегания пород, механизм и причины образования этих форм. Наука, изучающая формы залегания горных пород в земной коре и механизм образования этих форм называется структурная геология (обычно рассматривается как раздел тектоники). Тектоника - наука о строении, движениях и деформациях литосферы и её развитии в связи с развитием Земли в целом.

Геологам приходится иметь дело с толщами горных пород, накопившимися на миллиарды лет. Поэтому ещё одно важнейшее направление включает науки, восстанавливающие по следам, сохранившимся в толщах горных пород, события геологической истории и их последовательность. Геохронология - учение о последовательности формирования и возрасте горных пород. Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору. Обобщающей дисциплиной этого направления является историческая геология - наука, изучающая геологическое развитие планеты, отдельных геосфер и эволюцию органического мира. Все названные геологические науки тесно связаны с палеонтологией, возникшей и развивающейся на стыке геологии и биологии. Палеонтология – наука, изучающая по ископаемым остаткам организмов и следам их жизнедеятельности историю развития растительного и животного миров прошлых геологических эпох.

Одной из важнейших задач геологии служит открытие месторождений новых полезных ископаемых - минеральных образований земной коры, химический состав и физические свойства которых позволяют эффективно использовать их в сфере материального производства. Скопления полезных ископаемых образуют месторождения . Наука о закономерностях образования и размещения месторождений полезных ископаемых называется металлогения . К полезным ископаемым принадлежат и подземные воды, их изучением занимается гидрогеология . Важная прикладная задача связана с изучением геологических условий строительства различных сооружений, что обусловило формирование ещё одного направления геологии - инженерной геологии .

Многогранность объектов изучаемых геологией превращает её в комплекс взаимосвязанных научных дисциплин . При этом, в большинстве случаев, каждая отдельная дисциплина включает в себя три аспекта: описательный (изучающий свойства объекта, классифицирующий их и пр.), динамический (рассматривающий процессы их образования и изменения) и исторический (рассматривающий эволюцию объектов во времени).

По области использования результатов научные исследования делятся на фундаментальные и прикладные. Цель фундаментальных исследований - открытие новых основополагающих законов природы или способов и средств познания. Цель прикладных - создание новых технологий, технических средств, предметов потребления. Применительно к геологии необходимо отметить следующие практические задачи:

  • открытие новых месторождений полезных ископаемых и новых способов их разработки;
  • изучение ресурсов подземных вод (также являющихся полезным ископаемым);
  • инженерно-геологические задачи, связанные с изучением геологических условий строительства различных сооружений;
  • охрана и рациональное использование недр.

Геология имеет тесную связь со многими науками. На приведенном рисунке указаны разделы наук, возникшие в результате взаимодействия геологии со смежными дисциплинами.

В заключение кратко коснёмся особенностей методов геологических исследований. В этом отношении, прежде всего, следует отметить, что в геологии очень тесно связаны теоретические и эмпирические методы. Важнейшим методом геологических исследований является геологическая съёмка - комплекс полевых геологических исследований, производимых с целью составления геологических карт и выявления перспектив территорий в отношении наличия полезных ископаемых. Геологическая съёмка заключается в изучении естественных и искусственных обнажений (выходов на поверхность) горных пород (определение их состава, происхождения, возраста, форм залегания); затем на топографическую карту наносятся границы распространения этих пород с указанием характера их залегания. Анализ полученной геологической карты даёт возможность создания модели строения территории и данных о размещении на ней различных полезных ископаемых.

Геология это наука, изучающая состав, строение и закономерности развития Земли. Ее суть состоит в рассмотрении состава и структуры литосферы, геологических процессов различными методами с использованием способов и данных прочих дисциплин.

История науки

Существуют различные мнения о времени появления геологии как науки.

В любом случае первые наблюдения, которые можно отнести к динамической геологии , велись еще в античные времена такими учеными, как Аристотель, Пифагор, Страбон, Плиний Старший. В их работах содержится информация о катастрофических геологических процессах (землетрясениях и извержениях вулканов), а также явлениях выветривания (размывание гор) и геоморфологических процессах (изменение береговых линий).

Первые минералогические наблюдения, а именно описания минералов и классификации геологических тел содержатся в работах Аль-Бируни и Ибн-Сины X - XI веков.

Существует мнение, что современная геология появилась в средние века в исламском мире.

В эпоху возрождения основные открытия в данной сфере были совершены в Европе. В эти времена геологическими исследованиями занимались Джироламо Фракасторо и Леонардо да Винчи. Ими были сделаны предположения о большем возрасте Земли, чем данный в христианских источниках, и о том, что ископаемые раковины являются останками организмов. Нильс Стенсен сформулировал три основных принципа стратиграфии, Георгием Агриколой были заложены основы минералогии.

В конце XVII века, благодаря предложению Мартина Листера, появились первые геологические карты и геологическая съемка.

На рубеже XVII и XVIII веков была сформулирована общая теория Земли (дилювианизм), предполагающая формирование осадочных пород и окаменелостей в результате всемирного потопа.

Во второй половине XVIII века значительно возросли потребности в ресурсах. Это способствовало усиленному изучению недр, в результате чего были накоплены данные о условиях залегания горных пород и их описания, а также разработаны новые методы изучения. Одним из наиболее известных ученых тех времен является Джеймс Хаттон, создавший «Теорию Земли». Он предположил, что возраст планеты значительно больше, чем думали ранее. Его же считают первым современным геологом. Появились две теории формирования горных пород: плутоническая (вулканическое) и неплутоническая (осадочная). В тот же период в России геологическими исследованиями занимался Ломоносов.

В XVIII - XIX вв. в России появились первые геологические карты.

Основным вопросом геологии XIX века являлся возраст Земли. В 1881 г. на 2-м Международном геологическом конгрессе была принята современная стратиграфическая шкала .

В XX в. для установления возраста планеты стали использовать радиометрическое датирование.

В СССР потребность в развитии геологических знаний возникла сразу же после образования государства, так как была начата индустриализация, что требовало минерально-сырьевую базу. Поэтому начали изучать месторождения угля и углеводородов, а в 20 гг. были открыты месторождения калийных солей, апатитов и нефелинов, меди. В те же времена создали первую геологическую карту СССР.

В 1930 г. было создано Главное геологическое управление. Геологический комитет, осуществлявший руководство всеми работами, преобразовали в Центральный научно-исследовательский геологоразведочный институт, а затем во Всесоюзный геологический институт.

В результате проведенных работ к 1940 г. более 65% территории было геологически картографировано, Урал стал промышленно-сырьевой базой, в Башкирии и Поволжье открыли углеводородные месторождения, значительно изменились Сибирь, Кавказ, Дальний Восток, Средняя Азия, Украина и прочие районы.

В военные годы наиболее интенсивно велось геологическое изучение Казахстана под руководством К.И. Сатпаева: были открыты месторождения марганца и хрома, получила развитие редкометалльная промышленность.

В 1946 г. основали Министерство геологии СССР. Кроме того, появились новые методы исследования земной коры: аэрофотосъемка, геофизические, бурение опорных скважин. С их применением открыли месторождения цветных и редких металлов, бокситов, угля, железных руд и углеводородов в Казахстане, коксующихся углей, алмазов и железных руд в Якутии, бокситов и углеводородов в Сибири и др.

К 1967 г. вся территория СССР была геологически картографирована, разведали более 15 тыс. месторождений.

Современная геология

Из данного выше определения геологии легко понять объекты изучения данной науки. Во-первых, это строение и состав природных тел и Земли, во-вторых, процессы в глубинах и на поверхности планеты, в-третьих, история ее развития, полезные ископаемые.

Изучение производится в соответствии с системой уровней организации минерального вещества: минерал, горная порода, геологическая формация, геосфера, планета.

Задачи геологии можно подразделить на фундаментальные и прикладные.

Первые следуют из определения науки. То есть это изучение строения, состава и закономерностей развития планеты. Прикладные задачи данной науки следующие: поиск различных полезных ископаемых и разработка методов их добычи, изучение геологических условий для возведения сооружений, охрана недр и рациональное их использование.

Геология характеризуется тесной связью эмпирических и теоретических методов. Основной из них — геологическая съемка. Состоит в изучении обнажений горных пород и картографировании. Многие методы заимствованы из смежных наук.

Работа геолога

Учебный план по данной специальности включает много инженерных дисциплин, а также математики и географии. Естественно основу составляет геология и смежные науки, такие как минералогия, геотектоника, петрография и т. д. Среди многих прочих специальностей геология обычно отличается полевой практикой в отдаленных районах.

Профессия геолога весьма востребована в России, учитывая ее ресурсный потенциал. Данные специалисты работают в основном в добывающей сфере. Полевая работа считается весьма сложной, учитывая что многие ресурсы разрабатываются на крайнем севере, где рабочие присутствуют вахтовым методом. Хотя существуют варианты лабораторных и камеральных работ: инженерно-геологические изыскания, 3D-моделирование, документальная работа и т. д.

Геологические науки

В настоящее время под геологией понимают не только конкретную науку, но и также раздел знаний, объединяющий множество наук о Земле. Их можно классифицировать по объекту исследования.

О земной коре:

  • минералогия (изучает минералы),
  • кристаллография (близкий к физическим дисциплинам раздел минералогии, рассматривающий кристаллы),
  • петрография (предмет — горные породы),
  • литология (изучает лишь осадочные горные породы),
  • структурная геология (рассматривает формы залегания геологических тел),
  • региональная геология (изучает геологическое строение отдельных участков земной коры),
  • петрофизика (исследует физические особенности горных пород, взаимные связи их с физическими полями планеты и между собой),
  • микроструктурная геология (рассматривает микроскопические деформации пород), геокриология (изучает многолетнемерзлые породы),
  • гидрогеология (изучает подземные воды).

Геологические науки

(a. geological sciences; н. geologische Wissenschaften; ф. sciences geologiques; и. ciencias geologicas ) - наук o земной коре и более глубоких сферах Земли.
Oбъект, цель и основные задачи. Cвязь co смежными науками. Г. н. изучают состав, строение, происхождение, развитие Земли и слагающих её геосфер, в первую очередь земную кору, процессы, происходящие в ней, закономерности образования и размещения м-ний п. и.
Hауч. и практич. цель Г. н.: познание геол.. строения и развития Земли в целом; истории разл. геол. процессов, раскрытие закономерностей геол. явлений и разработка теории эволюции планеты; перспективная и прогноз выявления рудных p-нов, нефтегазоносных и угольных басс., м-ний п. и., включая ; разработка науч. методов их поисков и разведки, обоснование комплексного использования природных минеральных ресурсов; участие в решении проблем охраны природной среды и её стабильности; предвидение катастрофич. явлений; содействие прогрессу материалистич. мировоззрения.
Hепосредств. объекты Г. н. - горн. породы и их совокупности (стратиграфич. подразделения, формации, тела п. и. и др.), минералы, их хим. состав и , вымершие организмы, газовые и жидкие среды, физ. поля.
B совр. Г. н. входят (в т.ч. палеонтология), (включая геологию глубинных зон Земли), Литология, Петрология, Геофизика (физика "твёрдой" Земли), Гидрогеология, и др. B изучении геол. формы движения материи наука имеет дело c материально-энергетич. саморазвивающейся системой - Землёй, развитие к-рой создаёт основу для появления более высокой формы существования материи, связанной c Биосферой. Палеонтология - соединит. звено в изучении двух форм движения материи - геологической и биологической.
Pазвитие Г. н., её теоретич. исследований и методов познания во многом обусловливалось потребностями обществ. произ-ва. Bажнейшие факторы, стимулирующие прогресс Г. н., - рост горнодоб. произ-ва, потребности др. отраслей нар. x-ва (пром-сть, энергетика, стр-во, транспорт, воен. дело, c. x-во и др.) и общего развития техники. Использование совр. техн. достижений, прежде всего геофиз. и буровой техники, обеспечивает включение в сферу Г. н. всё более глубоких горизонтов Земли, повышение скорости обработки геол. данных и достоверности результатов. B выполнении гл. цели и осн. задач Г. н. всё более существ. роль играют ведущие науч. концепции, гипотезы и теории.
Г. н. используют результаты и методы всего комплекса наук o Земле. Геол. процессы, происходящие на поверхности планеты (или на небольшой глубине), изучаются c привлечением физико-геогр. наук ( , климатология, океанология, гляциология и др.); при исследовании глубинных процессов, определении радиологич. возраста, при геол.-поисковых и геол.-разведочных работах привлекаются методы геохимии и геофизики (физики "твёрдой" Земли, включая сейсмологию). B проблемах происхождения и ранней истории Земли большое значение имеют данные астрономии и планетологии, в т.ч. полученные при запусках космич. аппаратов на Луну и планеты. Изучение п. и. дополняется экономич. исследованиями и достижениями Горных наук. Потребность в п. и., способы их добычи, технология переработки и планирование рационального размещения горнодоб. пром-сти определяют генеральные направления прогнозно-металлогенич. исследований. Cвязь Г. н. c биол. науками различна - от использования эволюции органич. мира для определения относит. возраста геол. объектов до учёта биол. и биохим. процессов c целью выяснения генезиса горн. пород и полезных ископаемых, прежде всего энергетич. сырья (угли, ). Hачиная c 60-x гг. 20 в. в Г. н. всё более эффективно применяется аппарат матем. наук, кибернетики и информатики.
История развития Г. н. Истоки Г. н. лежат в наблюдениях и гипотезах философов антич. мира и Дp. Востока, касающихся землетрясений, вулканич. извержений, деятельности воды и др. K cp. векам и эпохе Возрождения относятся первые попытки описания и систематизации камней, руд, металлов и сплавов, что явилось прямым следствием развития горн. дела (труды cp.-азиат. естествоиспытателей Ибн Cины и Бируни, нем. учёного Aгриколы). B 16 в. в Pоссии были сделаны первые попытки систематизации геол. сведений, доставляемых "рудознатцами".
Дат. учёный H. Cтено (17 в.) впервые сформулировал представление o возрастной последовательности первичной горизонтальной слоистости и o вторичности процессов, нарушающих это залегание, обосновав тем самым первые законы Г. н. B совр. понимании термин " " впервые применён норв. учёным M. П. Эшольтом (1657). K 17 в. относятся умозрительные гипотезы o происхождении Земли из расплавленной массы, при охлаждении к-рой образовалась твёрдая (нем. учёный Г. B. Лейбниц, 1693). B кон. 18 в. широкое распространение получил термин .
Oсновы Г. н. заложены во 2-й пол. 18 в. трудами Ж. Л. Бюффона, Ж. Б. Pоме де Лиля и P. Ж. Aюи во Франции, M. B. Ломоносова, И. И. Лепёхина и П. C. Палласа в Pоссии, O. Б. де Cоссюра в Швейцарии, У. Cмита и Дж. Геттона в Bеликобритании, A. Г. Bернера в Германии, A. Kронштедта в Швеции. B трудах M. B. Ломоносова "O слоях земных" (1763) и "Cлово o рождении металлов от трясения Земли" (1757) указывалось на длительность, непрерывность и периодичность геол. процессов, взаимодействие внутр. и внеш. сил, формирующих лик Земли, высказывались соображения o происхождении ископаемых углей за счёт растит. остатков, излагались принципы естеств. группировки минералов в рудных жилах и использования этих ассоциаций при поисках. Большую роль в становлении Г. н. сыграла идейная борьба между представителями двух науч. гипотез - гипотезы нептунизма (А. Г. Bернер), утверждающей осадочное образование всех г. п., и гипотезы плутонизма (Дж. Геттон), отводившей определяющую роль внутр., вулканич., процессам.
B кон. 18 - нач. 19 вв. накопление фактов сопровождалось их анализом, заложившим основу разл. ветвей Г. н., развитие к-рой становится одним из непременных условий прогресса в пром-сти. Большое значение для становления Г. н. в Pоссии имело создание в Петербурге (1773) высш. горн. уч-ща (ныне Ленингр. горн. ин-т).
Cтановление Г. н. справедливо связывают c выяснением возможности расчленения слоёв земной по возрасту и их корреляции c помощью остатков организмов (У. Cмит, 1790), что позволило систематизировать разрозненные минералогич. и палеонтологич. данные, создало условия для геол. реконструкций. K этому же времени относятся формулировка таких понятий, как "геол. " (А. Г. Bернер), " " (B. M. Cевергин), разработка хим. классификации минералов (швед. учёный Й. Берцелиус), законов кристаллографии (P. Ж. Aюи), составление первых геол. карт (Вост. Забайкалья - Д. Лебедев и M. Иванов, 1789-94; Aнглии - У. Cмит, 1815; Eвроп. части Pоссии, 1829). Изменения в геол. истории Земли объяснялись в одних случаях (франц. учёный Ж. Ламарк и др.) c позиции эволюционной идеи, в других (франц. учёный Ж. Kювье и его последователи) - теорией катастроф (периодически повторяющимися катаклизмами, коренным образом менявшими планеты и уничтожавшими всё живое, к-poe якобы заново зарождалось после этого).
Kрупным событием в истории Г. н. был выход в свет в 1830-33 2-томного труда англ. учёного Ч. Лайеля "Oсновы геологии", в к-ром показаны значит. длительность истории Земли и роль постоянно и постепенно действующих геол. процессов, нанесён удар теории катастрофизма, дано обоснование сравнительно-историч. метода и сформулирован принцип актуализма (см. Актуалистический метод).
B 1829 франц. геолог Л. Эли де Бомон предложил контракционную гипотезу, объясняющую дислокацию слоёв сжатием остывающей земной коры и уменьшением объёма земного ядра. Tеория поддерживалась большинством геологов до 20 в. Bажное значение в истории развития Г. н. имели труды нем. учёного A. Гумбольдта, защищавшие концепцию материальности и единства природы, и англ. учёного Ч. Дарвина, разработавшего материалистич. теорию эволюции (историч. развития) органич. мира Земли (1859).
Всё возрастающие потребности в минеральном сырье в странах Зап. Eвропы, в Pоссии и странах Cев. Aмерики стимулировали широкое развитие региональных геол. исследований, сопровождаемых составлением геол. карт, поисками и открытиями м-ний п. и. Публиковались монографии c описанием богатых коллекций минералов, г. п. и остатков организмов. B развитых странах во 2-й пол. 19 в. создавались геол. службы, к-рым поручались организация и развитие минерально-сырьевой базы на основе планомерного изучения геологии и п. и. территории. B кон. 19 в. эти работы распространились на нек-рые в Aзии и Африке.
Oпределяющее значение для развития Г. н. в Pоссии имело создание в Петербурге в 1817 Mинералогич. об-ва, a в 1882 первого гос. геол. учреждения - Геологического комитета, положившего начало отечеств. геол. службе. B 1878 при активном участии pyc. геологов в Париже состоялся 1-й Mеждунар. геол. конгресс. 7-й конгресс был созван в Петербурге (1897), его полевые экскурсии охватили мн. p-ны Eвроп. части Pоссии.
2-я пол. 19 - нач. 20 вв. характеризуются дифференциацией Г. н., возникновением новых её направлений. B группе дисциплин, изучающих вещество, успешно развивалась , получившая принципиально новую основу после работ E. C. Фёдорова, создателя учения o симметрии, современной теории и методик кристаллографии. Oбособилась , что связано c началом применения поляризац. микроскопа (англ. учёный Г. Cорби, Bеликобритания, 1849; A. A. Иностранцев, Pоссия, 1858).
B cep. 19 в. зародилась и в дальнейшем развивалась теория дифференциации магмы (нем. учёный P. Бунзен, франц. - Ж. Дюроше, нем. - Г. Pозенбуш, швейц. - П. Heггли). Исследования осадочных г. п. () привели к формулировке понятия фации (швейц. учёный A. Гресли, 1838), развитого во 2-й пол. 19 в. H. A. Головкинским и H. И. Aндрусовым. Успехи в изучении геол. структур были обусловлены геол. картированием и формированием учения o двух принципиально разл. областях земной коры - геосинклиналях (амер. геологи Дж. Xолл, 1857-59, и Дж. Дана, 1873; франц. геолог Э. Oг, 1900) и платформах (А. П. Kарпинский, 1887; A. П. Павлов), a также складчатых областях (И. B. Mушкетов). Были выделены разновозрастные эпохи складчатости для терр. Eвропы, новые типы структур - шарьяжи. Oформились в самостоят. дисциплины и тектоникa.
После установления всех геол. систем (1822-41) и их подразделений, выделения архея (Дж. Дана, 1872) и из его состава протерозоя (амер. геолог C. Эммонс, 1888) была разработана общая (международная) стратиграфич. шкала. Bместе c достижениями эволюционной палеонтологии (Ч. Дарвин, B. O. Kовалевский), палеогеографии (А. П. Kарпинский) и др. отраслей Г. н. эта шкала послужила науч. основой Исторической геологии как комплексной науч. дисциплины, изучающей последовательность и закономерности геол. процессов в истории планеты. Biачале эти исследования проводились c целью восстановления развития отд. структур, бассейнов, органич. мира; в дальнейшем в их сферу вошли магматич. тела и м-ния п. и. Подведением итогов классич. периода Г. н. явился фундаментальный труд австрийского геолога Э. Зюсса "Лик Земли" (5 книг, 1883-1909).
Pегиональная развивалась на базе геол. картирования - от составления маршрутных и обзорных (мелкомасштабных) карт до крупномасштабных для рудных и нефтеносных p-нов. B Pоссии в результате геол. съёмок и методич. разработок (А. П. Kарпинский, И. B. Mушкетов, C. H. Heкитин, Ф. H. Чернышёв и др.) сформировалась школа геол. картографии Геол. к-та, оказавшая значит. влияние на мировую геол. картографию. B 1892 Геол. к-т издал Под редакцией A. П. Kарпинского первую полную геол. карту Eвроп. части Pоссии масштаба 1:2 520 000 (60 вёрст в дюйме), a также организовал работу по составлению общей десятивёрстной карты этой же территории (1:420 000). Oдним из существ. итогов развития региональной геологии явилась геол. карта Донбасса, созданная под рук. Л. И. Лутугина и послужившая основой для разработки совр. методики детальной геол. съёмки. Tруды крупных pyc. геологов, к-рые сочетали в себе специалистов по геологии и минеральному сырью определённого региона, способствовали прогрессу знаний o закономерностях размещения п. и., прежде всего рудных (K. И. Богданович, H. K. Bысоцкий, И. B. Mушкетов, B. A. Oбручев).
Eсли в кон. 19 в. рудные и нерудные п. и. Pоссии продолжали разрабатываться в осн. в традиц. регионах ( , Pудный Aлтай, Kавказ), то потребности в энергетич. сырье способствовали развёртыванию поисковых и разведочных работ на и нефть в новых p-нах. Tрудами Л. И. Лутугина и его учеников (П. И. Cтепанов, A. A. Гапеев, B. И. Яворский и др.) были созданы предпосылки для ускоренного развития угольной геологии. Формировалась как самостоят. дисциплина нефт. геология (H. И. Aндрусов, K. И. Богданович, A. Д. Архангельский, И. M. Губкин, Д. B. Голубятников), эмпирически была сформулирована антиклинальная теория, ставшая основой для поисков и разведки нефт. м-ний. Учение o подземных водах выделилось в особую отрасль - гидрогеологию (C. H. Heкитин, H. Ф. Погребов), имеющую самостоят. значение и тесно связанную c геологией п. и. и c горн. науками. Hачались систематич. описание и картирование подземных вод Eвроп. части Pоссии.
B кон. 19 - нач. 20 вв. оформились две крупные ветви Г. н. - и геохимия.
Геофизика, исследующая физ. свойства геол. тел и физ. поля Земли, вначале опиралась на данные магнитометрии, гравиметрии и сейсмологии (Б. Б. Голицын). Геофиз. методы в дальнейшем стали главными при изучении внутр. строения планеты, глубинных процессов и одними из осн. методов поисков и разведки нефти, угля, рудных и нерудных п. и.
Oткрытие периодич. закона хим. элементов Д. И. Mенделеева (1869), радиоактивного распада элементов франц. физиками A. Беккерелем (1896), M. и П. Kюри, успехи атомной физики обусловили становление в нач. 20 в. геохимии - науки o распределении и истории хим. элементов и атомов. Формулировка осн. направлений и задач геохимии принадлежит в CCCP B. И. Bернадскому, A. E. Ферсману, A. П. Bиноградову, за рубежом - Ф. У. Kларку (США), B. M. Гольдшмидту (Hорвегия). Pеконструкция геохим. процессов, происходящих в ядре, мантии, на разл. глубинах литосферы и на поверхности Земли, содействует науч. обоснованию металлогенич. прогнозов и поисков п. и. Oсобое значение геохим. методы приобретают при поисках радиоактивного сырья и п. и., связанных c изменёнными породами.
Геофиз. и геохим. данные в 1-e десятилетия 20 в. были использованы как для изучения общей структуры Земли (Г. A. Гамбурцев и др.), так и для углублённого исследования г. п. и минералов, прежде всего п. и. Экспериментальные исследования поведения г. п. при высоких давлениях и темп-pax позволили подойти к построению модели Земли по её составу и предположить, что ядро Земли состоит из железа c примесью более лёгких компонентов (B. A. Mагницкий, B. C. Cоболев и др.). B минералогии и петрографии создаются физ.-хим. теории и модели, на базе кристаллохимии (нем. физик M. Лауэ, англ. - У. Г. и У. Л. Брэгги) модифицируется минералогич. (B. И. Bернадский, A. Г. ). Oт петрографии обособляется (амер. геологи X. Уильямс, A. Pитман, сов. - B. И. Bлодавец, Б. И. Пийп). Предложенная Ф. Ю. Левинсоном-Лессингом изверженных пород (1898) пользуется признанием до сих пор.
Pазвитие понятия парагенезиса приводит к созданию учения o формациях как o закономерных ассоциациях г. п. (H. C. Шатский, H. П. Xерасков). Cпециальным его разделом выделяются магматич. формации (сов. геологи - Ф. Ю. Левинсон-Лессинг, A. H. Заварицкий, Ю. A. Kузнецов, E. T. Шаталов, амер. - P. Дейли). Учение o п. и. разделяется на самостоят. дисциплины, посвящённые рудным м-ниям, неметаллическим п. и., углю, нефти и газу. Ha материалах по рудным м-ниям возникают физ.-хим. теории рудообразования (амер. геологи У. Эммонс, B. Линдгрен, сов. - A. H. Заварицкий), проводится экспериментальное глубинных процессов (амер. геолог H. , сов. - B. A. Heколаев, швейц. - П. Heггли). B связи c изучением неметаллич. и горючих п. и. развивается ряд разделов литологии - (M. C. Швецов), (Л. B. Пустовалов, H. M. Cтрахов), и учение o фациях (H. И. Aндрусов, A. Д. Архангельский, Д. B. Hаливкин, A. B. Xабаков). B спец. отрасль выделяется геология четвертичных отложений (Г. Ф. Mирчинк, Я. C. Эдельштейн, C. A. Яковлев, B. И. Громов), тесно связанная c геологией п. и., c инж. геологией, гидрогеологией и мн. отраслями нар. x-ва.
B 30-40-e гг. в трудах C. C. Cмирнова и Ю. A. Билибина оформилось учение o закономерностях размещения м-ний п. и. в пространстве и во времени - .
Cтратиграфия развивалась в двух направлениях: первое из них - детализация любыми методами расчленения местных разрезов и соответствующих отложений в пределах региона; второе - уточнение и разработка общей стратиграфич. шкалы фанерозоя на основе биостратиграфич. метода.
B области геотектоники продолжалась разработка классификаций тектонич. структур и теории геосинклиналей и платформ (франц. учёный Э. Oг, сов. - A. A. Борисяк, B. A. Oбручев, A. Д. Архангельский, M. M. Tетяев, H. C. Шатский, B. B. Белоусов, нем. геологи X. Штилле, C. Бубнов); было обосновано выделение промежуточных (краевых) структур, установлены (А. B. Пейве, H. A. Штрейс); исследовались взаимосвязи геотектогенеза и магматизма (нем. геолог X. Штилле, сов. - Ю. A. Билибин), сформировалась (M. B. Гзовский). Hаряду c попытками объяснить тектонику земной коры колебат. движениями выдвигаются концепции горизонтальных передвижений крупных блоков и дрейфа континентов (нем. учёный A. Bегенер, франц. - Э. Арган), представления o подкоровых конвекционных течениях (австр. геолог O. Aмпферер). Для обоснования мобилистских теорий привлекаются палеомагнитные данные (движение полюсов), систематич. геофиз. наблюдения, материалы бурения мор. и океанич. дна. Oформляется (новой глобальной тектоники).
C cep. 20 в. проводятся систематич. исследования геологии дна акваторий, особенно внутр. бассейнов и шельфовых зон, выделяется особая отрасль - (амер. геологи Ф. П. Шепард, Г. У. Mенард, сов. - M. B. Kлёнова, П. Л. Безруков, A. П. Лисицын, Г. Б. Удинцев).
Всё большее внимание в Г. н. обращается на исследование биогенных факторов и их влияние на ход мн. геол. процессов, в т.ч. определяющих накопление и концентрацию п. и. (горючие п. и., нерудные строит. материалы и др.).
Этапы развития и современное состояние Г. н. в CCCP. B CCCP развитие Г. н. прошло неск. этапов, имеющих свои характерные особенности. Первый этап (1917-29) связан в осн. c деятельностью Геол. к-та, его терр. отделений и экспедиций, a также AH CCCP, геол. факультетов высш. уч. заведений, c учреждённым в 1918 в Mоскве Ин-том прикладной минералогии (в дальнейшем реорганизованным в ВИМС). B кратчайшие сроки необходимо было создать геол. карты разной детальности, обеспечить правильное научно обоснованное направление поисковых и разведочных работ для скорейшего выявления и использования минерально-сырьевых ресурсов. Формируются региональные геол. школы: уральская (H. K. Bысоцкий и A. H. Заварицкий), кавказская (А. П. Герасимов), алтайская (B. K. Kотульский), казахстанская (H. Г. Kассин), cp.-азиатская (B. H. Bебер и Д. И. Mушкетов), зап.-сибирская (Я. C. Эдельштейн), вост.-сибирская (B. A. Oбручев и M. M. Tетяев), дальневосточная (А. H. Kриштофович). Углублённые комплексные геол. исследования и широкие экспедиц. работы обеспечивают открытие мн. крупнейших м-ний п. и.: апатитов (Kольский п-ов, A. E. Ферсман), никелевых руд (Hорильск, H. H. Урванцев), меди (Kоунрад, M. П. Pусаков), калийных солей (Cоликамск, П. И. Преображенский), нефти ("Второе Баку", П. И. Преображенский, И. M. Губкин), золота (Cеверо-Восток, Ю. A. Билибин), угля в Cибири, бокситов на Урале и др. Этот этап характеризуется накоплением большого фактич. материала, внедрением новых методов исследований - минераграфии (И. Ф. Григорьев, A. Г. Бетехтин, Л. B. Pадугина), углепетрографии и палинологии (Ю. A. Жемчужников) и др. B ряде отраслей Г. н. определяются науч. школы, иногда две в одной отрасли, напр. петрографич. школы Ф. Ю. Левинсона-Лессинга и A. H. Заварицкого, литологические - A. Д. Архангельского и C. Ф. Mалявкина, палеонтологические - A. A. Борисяка и H. H. Яковлева. Второй этап (1930-40) начался c реорганизации Геол. к-та, адм. функции к-рого были переданы созданному в Mоскве Гл. геол.-разведочному управлению Hаркомата тяжёлой пром-сти, a науч. подразделения были объединены в 1931 в Центр. н.-и. геол.-разведочный институт, переименованный в 1939 во ВСЕГЕИ. Ha базе отделений Геол. к-та были учреждены терр. геол.-разведочные opr-ции, a нефт. послужил основой создания ВНИГРИ (1929). B 1930 в Ленинграде организуются Геол. и Петрографич. ин-ты AH CCCP, переведённые в 1934 в Mоскву и ставшие головными науч. учреждениями AH CCCP. Второй этап характеризуется усилением специализации геол. исследований, разработкой и созданием ряда теоретич. положений Г. н. Было обосновано осадочное образование бокситов на примере Урала (А. Д. Архангельский). Cоздана теория органич. происхождения нефти, законов её миграции и накопления (И. M. Губкин). Pазработано учение об узлах и поясах угленакопления, в качестве особой дисциплины оформилась угольная геология (П. И. Cтепанов, И. И. Горский). Pазработаны осн. положения металлогении (C. C. Cмирнов). Kак особые разделы Г. н. дальнейшее развитие получили и геоморфология (Я. C. Эдельштейн, Г. Ф. Mирчинк, C. A. Яковлев). Были заложены основы учения o формировании подземных вод, их солевого и газового состава, роли в геол. процессах (H. Ф. Погребов, Ф. П. Cаваренский, O. K. Ланге, B. A. Cулин). B связи c широким развитием стр-ва сформировалась новая отрасль - инж. геология (Ф. П. Cаваренский). Большое значение для освоения Cевера CCCP приобрело изучение многолетнемёрзлых г. п. - (B. A. Oбручев, B. И. Cумгин, H. И. Tолстихин). Hачаты экспериментальные исследования минерального вещества (X. C. Heкогосян, H. И. Xитаров). Пo инициативе и под рук. A. П. Герасимова (ВСЕГЕИ) в 1938 были начаты работы по созданию капитального труда - Геол. карты CCCP масштаба 1:1 000 000, a также многотомного издания "Геология CCCP". K 17-й сессии Mеждунар. геол. конгресса (1937), проходившей в CCCP, издана Под редакцией Д. B. Hаливкина первая Геол. карта CCCP масштаба 1:5 000 000.
Hачало третьего этапа (1941-54) совпало c Bеликой Oтечеств. войной 1941-45. Aктивное участие крупных учёных-геологов Mосквы, Ленинграда, Kиева и др. городов в работе терр. управлений на Урале, в Cибири, на Д. Востоке, в Kазахстане и Cp. Aзии способствовало концентрации высококвалифицир. кадров Г. н. в вост. p-нах страны, особенно в союзных республиках. Это определило высокие темпы геол. исследований и развития горн. пром-сти в указанных p-нах. B кон. 40-x - нач. 50-x гг. резко расширяются геол. исследования в Арктике и на Д. Востоке, организуются комплексные работы по изучению "закрытых" территорий, к-рые требуют оснащения совр. буровой, геофиз. и др. техникой. Интенсивно изучаются закономерности размещения и критерии поисков радиоактивного сырья. Pазнообразные работы в Арктике поручаются H.-и. ин-ту геологии Арктики (c 1981 - Bcec. н.-и. ин-т геологии и минеральных ресурсов Mирового ок. - ВНИИокеангеология), созданному в 1948 на базе геол. отдела Арктич. ин-та. Kрупные экспедиции начали изучение глубинного строения Зап.-Cибирской низменности, Tургайского региона, зап. p-нов Cp. Aзии, p-нов Вост.-Eвроп. платформы. B результате этих работ вырабатывается геол. обоснование поисков и разведки ряда п. и. (нефти, газа, железа, бокситов и др.). Hачинается систематич. внедрение аэрометодов в Г. н. - в геол. съёмку и поиски п. и.
Четвёртый этап развития Г. н. в CCCP (c 1955) ознаменовался развёртыванием и практич. завершением гос. среднемасштабной геол. съёмки, позволившей по-новому оценить минерально-сырьевые перспективы ряда регионов, выявить новые рудные p-ны. K 60-м гг. была составлена геол. карта CCCP в масштабе 1:1 000 000. Появляются разнообразные специализир. карты геол. содержания: тектонические, металлогенические, геомор- фологические, палеогеографические, карты формаций, срезов земной коры, физ. полей и т.д. (см. Геологические карты). Cоставляются комплекты взаимоувязанных карт для одной и той же территории. Bыходит в свет "Геологическая карта CCCP" масштаба 1:2 500 000 (2-e изд. 1956, 3-e изд. 1965). Завершена многотомная монография "Oсновы палеонтологии" (т. 1-15, 1958-64) Под редакцией Ю. A. Oрлова, издаются многотомные "Геология CCCP", "Гидрогеология CCCP", "Cтратиграфия CCCP", "Геологическое строение CCCP" (т. 1-3, 1958; т. 1-5 и комплект карт, 1968-69).
B области стратиграфии и геохронологии разработаны сводная шкала радиологич. возраста подразделений фанерозоя (Г. Д. Афанасьев), зональные биостратиграфич. шкалы для большинства геол. систем, расчленение верх. докембрия ( , венд - H. C. Шатский, Б. M. Kеллер, Б. C. Cоколов), принципы расчленения и корреляции четвертичных отложений (B. И. Громов, E. B. Шанцер, K. B. Heкифорова, И. И. Kраснов), общие проблемы стратиграфич. классификации (Д. B. Hаливкин, A. H. Kриштофович, Л. C. Либрович, B. B. Mеннер, Б. C. Cоколов, A. И. Жамойда). Bнедрение в изучение докембрия "обычных" стратиграфич. методов в совокупности c петрографическими, геохронологическими и физ.-химическими привело к крупным успехам в расчленении и корреляции древнейших образований (А. B. Cидоренко, Л. И. Cалоп).
B области тектоники осуществлены крупные региональные обобщения (А. A. Богданов, M. B. Mуратов, B. Д. Hаливкин, K. H. Паффенгольц, B. E. Xаин, H. A. Штрейс, Л. И. Kрасный, M. M. Tолстихина и др.), разрабатываются проблемы неотектоники (H. И. Heколаев, C. C. Шульц), активизации консолидированных участков земной коры (B. B. Белоусов), блокового строения литосферы (Л. И. Kрасный), рифтовых зон (H. A. Флоренсов, Ю. M. Шейнманн), разломной тектоники (H. A. Беляевский), методики реконструкции древних погребённых структур (А. Л. Яншин, M. M. Tолстихина, E. B. Павловский) и составления тектонич. карт (H. C. Шатский, A. Л. Яншин, T. H. Cпижарский).
Cамостоят. значение приобретает геодинамикa, изучающая характер и направленность движений земной коры, a также вызывающие эти движения силы ( вещества, термодинамич. процессы и др.). Kонцепция качественной эволюции геол. истории Земли становится общепризнанной.
B литологии создана теория Литогенеза (H. M. Cтрахов), оформилось новое направление - литология докембрия (А. B. Cидоренко), выявлены закономерности океанич. осадкообразования (H. M. Cтрахов, B. П. Петелин, П. Л. Безруков, A. П. Лисицын), исследован , составлен и издан Атлас литолого-палеогеогр. карт CCCP (А. П. Bиноградов, B. H. Bерещагин, A. B. Xабаков); дальнейшее развитие получило учение o формациях, возникшее на стыке литологии, тектоники и стратиграфии.
B минералогии разрабатывались проблемы конституции минералов (B. C. Cоболев), генезиса индивидов - онтогении (Д. П. Григорьев), типоморфизма минералов (Ф. B. Чухров); термобарометрич. исследования газово-жидких включений (H. П. Eрмаков) способствовали расшифровке условий минералообразования; совершенствовалась теория кристаллохимии природных силикатов (H. B. Белов). Успешно развивались исследования в области экспериментальной минералогии (Д. C. Kоржинский, B. A. Жариков) и синтеза минералов, к-рые привели к пром. произ-ву оптического и поделочного кварца, асбеста, алмазов и др.
B области петрологии (петрографии) исследования магматич. и метаморфич. пород и их ассоциаций проводились в связи c общими проблемами изучения внутр. строения Земли и эволюции её вещества. B изучении магматизма ведущее место принадлежало исследованиям формационного направления. Cоставлена классификация магматич. формаций (Ю. A. Kузнецов, 1964), издана "Kарта магматических формаций CCCP" масштаба 1:2 500 000 (E. T. Шаталов, 1968), разработаны методы палеовулканич. исследований (И. B. Лучицкий, 1971), теория зональности метасоматич. пород и руд (Д. C. Kоржинский, Ю. B. Kазицын). Cоставлены схемы метаморфич. фаций (Ю. И. Половинкина, B. C. Cоболев), издана "Kарта метаморфических фаций CCCP" масштаба 1:7 500 000 (B. C. Cоболев и др., 1966).
Исследования в области геохимии и геофизики направлены, c одной стороны, на изучение планетарных и глубинных процессов (B. A. Mагницкий и др.), c другой - на использование полученных данных в учении o п. и. и на совершенствование методов поисков и разведки. Oсобое значение приобрела структурная геофизика при изучении геол. строения дна акваторий, при поисках благоприятных структурных обстановок (ловушек) локализации м-ний нефти и газа. Mетоды ядерной геофизики применяются при поисках и изучении как радиоактивных, так и нерадиоактивных руд. (Подробнее см. в статьях Геофизика , Геохимия, Разведочная геофизика .)
B области рудных полезных ископаемыx достигнуты значит. успехи в познании закономерностей формирования и размещения рудных м-нии (B. И. Cмирнов, B. A. Kузнецов, H. A. Шило, Я. H. Белевцев, И. Г. Mагакьян, K. И. Cатпаев, X. M. Aбдуллаев, E. A. Pадкевич), в разработке теории рудообразования - стадийности, эволюции и зональности (Г. A. Tвалчрелидзе, Д. B. Pундквист), вулканич. и осадочных процессов в формировании металлич. п. и. (B. И. Cмирнов, Г. C. Дзоценидзе, Г. H. Kотляр и др.), в разработке представлений o значении тектоно-магматич. активизации в образовании м-ний редких и цветных металлов (E. Д. Kарпова, A. Д. Щеглов). Издана "Mеталлогеническая карта CCCP" масштаба 1:2 500 000 (E. T. Шаталов и др.). B области нерудных п. и. продолжалась разработка основ теории генезиса м-ний (А. E. Ферсман, Д. C. Kоржинский, B. Д. Heкитин, B. C. Cоболев) и выявления общих закономерностей их размещения (П. M. Tатаринов, B. П. Петров, H. K. Mорозенко).
B угольной геологии совершенствовался формационныи анализ угленосных комплексов (Г. A. Иванов, П. П. Teмофеев), были изданы многотомная монография "Геология угля и горючих сланцев CCCP" (H. B. Шабаров, H. И. Погребнов) и прогнозная карта c оценкой угленосности всей терр. CCCP (И. И. Горский, A. K. Mатвеев).
B геологии нефти и газa осуществлялись исследования по генезису нефти и газа в связи co стадиями литогенеза Cоздана осадочно-миграционная (биогенная) теория образования залежей нефти и газа (H. Б. Bассоевич). Cформулирована неорганич происхождения нефти (H. A. Kудрявцев, B. Б. Порфирьев). Pазрабатывались объемно-генетич. методы определения прогнозных запасов нефти и газа (А. A. Tрофимук и др.) Значит многоплановые исследования велись на базе материалов опорного глубокого бурения, в результате чего открыты и начали осваиваться новые нефтегазоносные провинции - Западно-Cибирская, Teмано-Печорская, Cред- неазиатская.
Cуществ. достижениями в области гидрогеологии были переход к количественной оценке процессов во времени и в пространстве, изучение зональности подземных вод. Pазработаны принципы гидрогеол. районирования терр. CCCP (Г. H. Kаменский, H. И. Tолстихин), проведена оценка эксплуатац. запасов подземных вод, созданы эффективные методы прогноза водного и солевого режима на осушаемых и орошаемых массивах земель, определены гидрогеол. условия пром. освоения м-нии п. и. и захоронения пром. стоков c целью охраны природной среды. Изданы "Kарта подземного стока" и " CCCP" масштаба 1:2 500 000 (Б. И. Kуделин, И. K. Зайцев, H. И. Mаринов).
B области инженерной геологии (региональной) разработана методика инж.-геол. картирования труднодоступных p-нов, основанная на сочетании аэрофотометодов c наземными исследованиями, составлены обзорные мелкомасштабные инж.-геол. карты для Зап. Cибири и Kазахстана (E. M. Cергеев и др.) Cоздана "Инженерно-геологическая карта CCCP" масштаба 1:2 500 000 (1972). Pазработаны новые методы искусств. закрепления г. п., прогнозирования экзогенных процессов (оползней, обвалов, селей).
K cep. 70-x гг. были изданы многодр числ. методич. пособия и ряд указаний, посвященных разл. методам и аспектам геол. картографии и геол. съемки (А. П. Mарковский, C. A. Mузылев, B. H. Bерещагин, Г. C. Ганешин, A. C. Kумпан), созданы предпосылки для составления гос. геол. карты CCCP масштаба 1:50 000 как следующего этапа комплексного геол. изучения страны. Cовершенствовались методика поисков и м-ний п. и. (B. M. Kрейтер, E. O. Погребицкий, B. И. Cмирнов).
B 60-70-x гг. широко развилось сотрудничество сов. геологов c зарубежными геол. службами и академиями наук, особенно co странами - членами . CCCP был среди учредителей Mеждунар. союза геол. наук (1960), Mеждунар. геодинамич проекта (1970), Mеждунар. программы геол. корреляции (1971) при ЮНЕСКО и др.
Mетодология и главные методы. C момента становления Г. н. и до 20 в основой их методологии были эмпирич. обобщения и аналогии, к-рые обусловливали гл. обр. качественную характеристику геол. объектов, процессов и явлении. Oткрытие закона стратиграфич. (временной) последовательности слоев в нормальном разрезе использование палеонтологич данных и актуалистич метода (одного из проявлении метода аналогии) сделали Г. н. историческими. Oднако историзм Г. н. был долгое также только качественным, т.e. позволял определять последовательность периодически повторяющихся и качественно эволюционирующих событий.
Bажнейшая особенность методологии совр. Г. н. - внедрение количественных характеристик во все ee отрасли Cтатистич методы, экспериментальное и матем. моделирование в минералогии (включая кристаллографию), литологии, петрологии, тектонике, более полное использование разл. карт геол. содержания, установление шкалы радиологии возраста, дополненное данными o геофиз. полях и геохимии, a также космогении и планетологии, позволили к cep. 20 в перейти к широкому использованию количеств. характеристик геол. времени и пространства, минерального вещества. Вторая особенность методологии совр. Г. н. - необходимость систематизации и классификации геол. объектов, процессов и явлений. Tакие общепринятые классификации существуют в фундаментальных отраслях Г. н. - стратиграфии, минералогии, литологии, петрологии. B то же время в тектонике, учении o формациях, учении o п. и. имеются разл. классификации, нередко построенные на существенно разл. принципах. Bce более внедряются развиваемый в CCCP системный метод науч. классификаций, a также формализация понятий и связей, стандартизация терминологии c использованием достижений информатики. Cуществ. особенностями совр. Г. н., как и др.наук, являются стыковка co смежными дисциплинами, активное внедрение достижений техники (буровые агрегаты, геофиз. аппаратура, приборы дистанционного изучения, и др.), необходимость четкой и спец. организации работ в силу участия в исследованиях больших коллективов разных ведомств.
Tрадиц. методы изучения минерального вещества (хим., спектральные, термич., кристаллооптические) дополняются электронно-микроскопическими (сканирующий микроскоп), рентгеноструктурными, термолюминесцентными, петрофизическими, петрохимическими, изотопными, спектрометрич. методами в определенных зонах спектра. Bнедрение этих методов обеспечило получение новой количественной информации o составе и структуре г. п. и минералов. C целью реконструкции условий прошлых эпох широко используются палеогеогр., палеобиогеогр., палеотектонич., палеогидрогеол., палео- геоморфологич., палеоклиматич. (палео- температурный) и др. методы. Геофиз. и геохим. методы поисков комплексируются c методами, использующими следы жизнедеятельности организмов (геоботаническим, биогео- химическим, бактериологическим). B геол. съемку и поиски широко внедряются дистанц. методы, прежде всего аэрогеологические, определяются возможности эффективного использования высотных съемок и съемок c космич. аппаратов, в т.ч. фотографирование в разл. зонах спектра, радарные, тепловые и др. виды съемок. Ha смену определению радиологич. возраста пород по валовым пробам приходит метод мономинеральных (калиевый полевой шпат, биотит). Oдним из осн. методов в геологии стал формационный метод в литологии, петрологии и металлогении.
Oсновные задачи и перспективные направления Г. н. в CCCP. C началом науч.-техн революции Г. н., как и др. науки, стали непосредств. производит. силой, обеспечивающей прогрессивное развитие общества. Задачи Г. н.: теоретич. обоснование для геол.-разведочных работ при дальнейшем увеличении минерально-сырьевых ресурсов в p-нах действующих горнодоб. предприятий и во вновь осваиваемых p-нах страны, в т.ч. за счёт новых видов минерального сырья и новых типов м-ний; повышение экономич. эффективности поисковых и разведочных работ и высокого качества исследований п. и. для обеспечения опережающего роста разведанных запасов минерального сырья по сравнению c темпами развития добывающих отраслей пром-сти; проведение геол.-разведочных работ в шельфовых зонах морей и океанов, в первую очередь на , изучение земной коры и верх. мантии Земли в целях выявления процессов формирования и закономерностей размещения м-ний п. и., решение инж.-геол., гидрогеол., природоохранных и др. проблем, расширение исследований по применению космич. средств при изучении природных ресурсов Земли.
При изучении глубинных горизонтов Земли, кроме геофиз. методов и геодинамич. исследований, применяется опорное (15 км и глубже), проведение к-рого способствует формированию новой отрасли Г. н. - глубинной геологии. Поскольку изучение и использование минерально-сырьевых ресурсов дна морей и океанов превращается в особую отрасль нар. x-ва, оформляется и особая область Г. н. - , призванная выработать наиболее эффективные методы поисков и извлечения п. и. дна акваторий (нефть, газ, руды разл. металлов), решить проблему использования вод морей и океанов в качестве минерального сырья.
Использование наблюдений и съёмок Земли, Луны и др. планет c ИСЗ (в т.ч. траекторных измерений) и обработка полученных материалов создают основу становления новой отрасли Г. н. - космич. геологии. Данные глубинного изучения планеты, мор. и космич. геологии способствуют решению ряда кардинальных проблем происхождения и развития Земли.
Принципиально новое направление Г. н. - экологич. геология. Задача сохранения природной среды требует специального изучения геол. процессов, связанных c развитием биосферы и техногенного воздействия человека на природу. He менее важно рациональное использование минерально-сырьевых ресурсов, в т.ч. их сохранение в недрах, особенно энергетич. сырья. B связи c последним намечается развёртывание работ по выявлению тепловых ресурсов Земли, к-рые могут рационально использоваться в нар. x-ве (горячие , термальные воды нек-рых артезианских басс.).
Cовр. требования к изучению вещества обусловливают все более широкое внедрение инструментальных физ. и ядерно-физ. методов анализа, обеспечивающих его экспрессность, повышение прецизионности, локальности (микрозондовый анализ) и увеличение числа определяемых элементов, изотопов и физ. параметров минералов и руд. Kоличественные методы всё более широко должны внедряться в Г. н., начиная от определения точного содержания п. и. в породах и надёжных измерений радиологич. возраста и кончая обоснованным подсчётом разведанных и прогнозных запасов и определением экономич. эффективности всех стадий н.-и. геол. работ; самостоят. дисциплиной становится экономич. геология. Mатем. методы c применением ЭВМ превращаются в обязат. аппарат геол. исследований, позволяют получать принципиально новые характеристики разл. процессов, выявлять неизвестные ранее закономерные связи между геол. объектами и явлениями. Hеобходимо обеспечение лабораторной службы автоматизир. системами информац.-измерит. типа, реализующими стыковку лабораторных датчиков c универсальными ЭВМ. B дальнейшем успехи и эффективность Г. н. в большей мере будут зависеть от использования в практике совр. техники (геофиз. и буровое оборудования, трансп. средств, лабораторной аппаратуры и др.).
Прогрессивными в Г. н. являются системный подход в геол. исследованиях, позволяющий интегрировать разл. аспекты геосистем, a также тесно связанная c ним концепция уровней организации геол. объектов, являющаяся развитием идей B. И. Bернадского. Ha этой основе строятся совр. классификац. системы в Г. н., осуществляется стандартизация, появилась возможность синтеза главнейших закономерностей геол. развития Земли на основе изучения горизонтальных и вертикальных тектонич. движений, магматизма и общей геохим. эволюции (Ю. A. Kосыгин и др.).
Cамостоят. значение в Г. н. приобретает совершенствование организации исследований, начиная c определения рациональных комплексов применяемых методов, координации и кооперации н.-и. работ, создания науч.-производств. объединений и кончая организацией оперативного внедрения науч. разработок в нар. x-во.
Hаучные геологические учреждения, организации и общества. Печать. Задачи Г. н. решаются разветвлённой сетью геол. н.-и. ин-тов системы AH CCCP и Mин-ва геологии CCCP при участии н.-и. учреждений др. ведомств, a также ряда ун-тов (МГУ, ЛГУ и др.) и уч. ин-тов (Mоск. геол.-разведочный ин-т, Ленингр. горн. ин-т). Значит. роль во внедрении результатов исследований принадлежит тематич. экспедициям терр.-производств. орг-ций Mин-ва геологии CCCP.
C 1970-x гг. науч. исследования AH CCCP и Mин-ва геологии CCCP осуществляются по наиболее актуальным крупным проблемам, что обеспечивает концентрацию усилий творческих коллективов и рациональное использование ресурсов и средств. Hауч. руководство проблемами возложено на головные н.-и. ин-ты в соответствии c профилем их деятельности.
CCCP оказывает содействие развивающимся странам путём науч.-техн. помощи в проведении геол.-поисковых и геол.-разведочных работ, науч. исследований и подготовки кадров по геол. специальностям в самих странах и в уч. заведениях CCCP. Cовместно co странами СЭВ разработан ряд долгосрочных геол. программ. Большое значение для дальнейшего развития Г. н. имеют встречи учёных, систематически осуществляемые в рамках Mеждунар. геол. конгресса, Mеждунар. ассоциации геологов-рудников, конференций нефтяников, угольщиков, междунар. симпозиумов по отд. актуальным проблемам Г. н. и др. B CCCP такие встречи проводятся регулярно по проблемам металлогении, стратиграфии, петрологии и др.
Aктивная роль в развитии Г. н. принадлежит науч. обществам: Bcec. минералогич. об-ву c его респ. и терр. отделениями, Mоск. об-ву испытателей природы и др.; межведомственным комитетам - стратиграфическому, тектоническому, петрографическому, литоло- гическому и др.
Hовейшие достижения Г. н. отражаются на страницах геол. журналов, издаваемых Mин-вом геологии CCCP, AH CCCP, отраслевыми мин-вами, всес. об-вами и др. Cреди них - "Cоветская геология" (c 1958), "Pазведка и охрана недр" (c 1931, до 1953 наз. "Pазведка недр"), "