Напряженность маг поля. Напряженность магнитного поля и его основные характеристики

Общие сведения

Напряжённость магнитного поля и магнитная индукция. Казалось бы, зачем было физикам усложнять и без того сложные физические понятия при описании явлений магнетизма? Два вектора, одинаково направленные, отличающиеся разве что коэффициентом пропорциональности - ну какой в этом смысл с точки зрения простого человека, не слишком обременённого знаниями из области современной физики?

Тем не менее, именно в этом различии скрываются нюансы, позволившие учёным открыть и удивительные свойства различных веществ, и законы их взаимодействия с магнитным полем, и даже изменить наши представления об окружающем мире.

В действительности за этой разницей скрывается различный методологический подход. Упрощенно говоря, в случае использования понятия напряжённости магнитного поля мы пренебрегаем влиянием магнитного поля на вещество в конкретном случае; в случае применения понятия магнитной индукции, мы учитываем этот фактор.

С технической точки зрения, напряжённость магнитного поля сколь угодно сложной конфигурации достаточно просто рассчитать, а результирующую магнитную индукцию - измерить.

За этой кажущейся простотой скрывается титанический труд целой плеяды учёных, разделённых во времени и пространстве. Их идеи и концепции определили и определяют развитие науки и техники в прошлом, настоящем и будущем.

И неважно, как скоро мы овладеем термоядерной энергией с помощью нового поколения термоядерных реакторов, основанных на удержании «горячей» плазмы магнитным полем. Когда отправим в космос новые поколения исследовательских роботов на ракетах, основанных на применении иных принципов, чем сжигание химического топлива. Или, в частности, решим задачу коррекции орбит микроспутников двигателями Холла. Или насколько полно сможем утилизировать энергию Солнца, как быстро и дёшево мы сможем передвигаться по нашей планете - имена первопроходцев науки навеки останутся в нашей памяти.

Уже современному поколению учёных и инженеров двадцать первого века, вооружённому накопленными знаниями своих предшественников, покорится задача магнитной левитации, пока апробированная в лабораториях и пилотных проектах; и проблема извлечения энергии из окружающей среды с помощью технической реализации «демона Максвелла» с использованием невиданных до сих пор материалов и взаимодействий нового типа. Первые прототипы таких устройств уже появились на Kiсkstarter.

При этом будет решена главная проблема человечества - превращения в тепло накопленных за сотни миллионов лет запасов углей и углеводородов, нещадно изменяющих продуктами сгорания климат нашей планеты. И грядущая термоядерная революция, гарантирующая, вслед за её бездумным освоением, тепловую смерть всякой органической жизни на Земле, не станет смертным приговором цивилизации. Ведь энергия любого вида, которую мы расходуем, в конце концов превращается в тепло и нагревает нашу планету.

Дело за малым - временем; доживём - увидим!

Историческая справка

Несмотря на то, что сами магниты и явление намагничивания были известны издавна, научное изучение магнетизма началось с работ французского средневекового учёного Пьера Пелерена де Марикура в далёком 1269 году. Де Марикур подписывал свои труды именем Петруса Перегрина (лат. Petrus Peregrinus).

Исследуя поведение железной иглы возле сферического магнита, учёный обнаружил, что игла по-особенному ведёт себя возле двух точек, названных им полюсами. Так и подмывает дать аналогию с магнитными полюсами Земли, но в то время за такой образ мыслей легко можно было отправиться на костёр! Кроме того, исследователь обнаружил, что любой магнит всегда имеет (в современном представлении) северный и южный полюса. И как не распиливай магнит в продольном или в поперечном сечении, всё равно каждый из полученных магнитов всегда будет иметь два полюса, как бы тонок он ни был.

«Крамольная» идея о том, что Земля сама по себе является магнитом, была опубликована английским врачом и натуралистом Уильямом Гилбертом в работе «De Magnete», увидевшей свет почти три века спустя в 1600 году.

В 1750 году английский учёный Джон Митчелл установил, что магниты притягиваются и отталкиваются (взаимодействуют) в соответствии с законом «обратных квадратов». В 1785 году французский учёный Шарль Огюстен де Кулон экспериментально проверил предположения Митчелла и установил, что северный и южный магнитные полюса не могут быть разъединены. Тем не менее, по аналогии с открытым им ранее законом взаимодействия электрических зарядов, Кулон всё же предположил существование и магнитных зарядов - гипотетических магнитных монополей .

Основываясь на известных ему на то время фактов о магнетизме и на преобладающем в то время в науке методологическом подходе к построению теорий взаимодействия как о некоторых жидкостях, в 1824 году соотечественник Кулона Симеон Дени Пуассон создал первую успешную модель магнетизма. В его теоретической модели магнитное поле описывалось диполями магнитных зарядов.

Но буквально сразу же три открытия подряд поставили под сомнение модель Пуассона. Рассмотрим их ниже.

Датский физик Ханс Кристиан Эрстед в 1819 году заметил отклонение стрелки магнитного компаса при включении и отключении электрического тока, протекающего через проводник в виде проволоки, обнаружив, таким образом, взаимосвязь между электричеством и магнетизмом.

В 1820 году французский учёный Андре-Мари Ампер установил, что проводники с токами, текущими в одном направлении притягиваются, а в противоположном - отталкиваются. В том же 1820 году французские физики Жан-Батист Био и Феликс Савар открыли закон названный впоследствии их именами. Этот закон позволял рассчитать напряжённость магнитного поля вокруг любого проводника с током вне зависимости от его геометрической конфигурации.

Обобщая полученные теоретические и экспериментальные данные, Ампер высказал идею об эквивалентности электрических токов и проявлений магнетизма. Он разработал свою модель магнетизма, в которой заменил магнитные диполи циркуляцией электрических токов в крошечных замкнутых петлях. Модель проявления магнетизма Ампера имела преимущество перед моделью Пуассона, поскольку объясняла невозможность разделения полюсов магнитов.

Ампер также предложил для описания таких явлений термин «электродинамика», который расширил применение науки об электричестве к динамическим электрическим объектам, дополняя тем самым электростатику. Пожалуй, наибольшее влияние на понимание сути проявлений магнетизма оказала концепция представления взаимодействия магнитов через силовое поле, описываемое силовыми линиями, предложенная английским учёным Майклом Фарадеем. Открытое в 1831 году Фарадеем явление электромагнитной индукции позднее было объяснено немецким математиком Францем Эрнстом Нейманом. Последний доказал, что возникновение электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него, является просто следствием закона Ампера. Нейман ввел в обиход науки понятие векторного магнитного потенциала, который во многом эквивалентен напряжённости силовых линий магнитного поля Фарадея.

Окончательную точку в споре двух моделей магнетизма поставил в 1850 году выдающийся английский физик Уильям Томпсон (лорд Кельвин). Введя понятие намагниченности среды M , в которой имеется магнитное поле, он не только установил зависимость между напряжённостью магнитного поля H и вектором магнитной индукции B , но и определил области применимости этих понятий.

Напряжённость магнитного поля. Определение

Напряжённость магнитного поля - это векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности М . В Международной системе единиц (СИ) значение напряжённости магнитного поля определяется формулой:

H = (1/μ 0) · B - M

где μ0 - магнитная постоянная, иногда её называют магнитной проницаемостью вакуума

В системе единиц СГС напряженность магнитного поля определяется по другой формуле:

Н = B - 4·π·М

В Международной системе единиц СИ напряжённость магнитного поля измеряется в амперах на метр (А/м), в системе СГС - в эрстедах (Э).

В электротехнике встречается также внесистемная единица измерения напряжённости - ампер-виток на метр. С другими величинами измерения напряжённости магнитного поля, применяемыми в различных приложениях, и их переводами из одной величины в другую, можно ознакомиться в конвертере физических величин.

Измерительные приборы для измерения величины напряжённости магнитного поля, как и приборы для измерения магнитной индукции, называют тесламетрами или магнитометрами.

Напряжённость магнитного поля. Физика явлений

Исследовательский токамак (то роидальная ка мера с ма гнитными катушками), работавший в научно-исследовательском институте государственной энергетической компании Hydro-Québec в пригороде Монреаля c 1987 по 1997 год, когда проект был закрыт для экономии бюджетных средств. Установка находится в экспозиции Канадского музея науки и техники

В вакууме (в классическом понимании этого термина) или в отсутствие среды, способной к магнитной поляризации или в случаях, когда магнитной поляризацией среды можно пренебречь, напряжённость магнитного поля Н совпадает (с точностью до коэффициента) с вектором магнитной индукции В . Для системы СГС этот коэффициент равен 1, для системы единиц СИ - μ0.

Напряжённость магнитного поля обусловлена свободными (внешними) токами, которые легко измерить или рассчитать. То есть напряжённость имеет смысл для внешнего магнитного поля, создаваемого катушкой с током, в которую вставлен материал, способный намагничиваться. Если нас не интересует поведение материала под действием магнитного поля, то достаточно оперировать только напряжённостью магнитного поля. Например, напряженности будет достаточно для технического расчёта взаимодействия магнитных полей двух или более катушек с током. Результирующая напряжённость будет векторной суммой полей, создаваемых отдельными катушками с током.

Поскольку большинство электромагнитных устройств работает в воздушной среде, важно знать её магнитную проницаемость. Абсолютная магнитная проницаемость воздуха приблизительно равна магнитной проницаемости вакуума и в технических расчётах принимается равной 4π 10⁻⁷ Гн/м.

Иное дело, когда нас интересует именно поведение среды, способной к намагничиванию, например, при использовании ядерных магниторезонансных явлений. При ЯМР ядра атомов, иначе называемые нуклонами и обладающие полуцелым спином (магнитным моментом), при воздействии магнитного поля поглощают или излучают электромагнитную энергию на определённых частотах. В этих случаях необходимо учитывать именно магнитную индукцию.

Применение напряжённости магнитного поля в технике

В большинстве случаев практического применения магнитного поля, например, для его создания или для измерения его величины, напряжённость магнитного поля играет ключевую роль. Существует множество примеров использования магнитного поля, в первую очередь в измерительной технике и в различных установках для проведения экспериментов.

Магнитное поле определённой силы и конфигурации удерживает плазменные шнуры или потоки заряженных частиц в исследовательских термоядерных реакторах и в ускорителях элементарных частиц, предотвращая тем самым охлаждение плазмы при контакте с ограждающими стенками. Оно же отклоняет потоки ионов или электронов в спектрометрах и кинескопах.

Измерение напряжённости магнитного поля Земли в различных точках очень важно для оценки состояния её магнитосферы. Существует даже целая сеть наземных станций и группировок научных спутников для мониторинга напряжённости магнитного поля Земли. Их работа позволяет предсказывать магнитные бури, возникающие на Солнце, сводя к минимуму, насколько это возможно, их последствия.

Измерение напряженности поля даёт возможность проводить различные изыскания, сортировать материалы и мусор, а также обеспечивать нашу безопасность, обнаруживая оружие террористов или заложённые мины.

Магнитометры

Магнитометрами называется целый класс измерительных приборов, предназначенных для измерения намагниченности материалов или для определения силы и направления магнитного поля.

Первый магнитометр был изобретён великим немецким математиком и физиком Карлом Фридрихом Гауссом в 1833 году. Этот прибор представлял собой оптический прибор с крутящимся намагниченным стержнем, подвешенным на золотой нити, и приклеенным к нему перпендикулярно оси магнита зеркалом. Измерялось различие колебаний намагниченного и размагниченного стержня.

Ныне используются более чувствительные магнитометры на иных принципах, в частности, на датчиках Холла, джозефсоновских туннельных контактах (СКВИД-магнитометры) индукционные и на ЯМР-резонансе. Они находят широкое применение в различных приложениях: измерении магнитного поля Земли, в геофизических исследованиях магнитных аномалий и в поиске полезных ископаемых; в военном деле для обнаружения объектов типа подводных лодок, затонувших кораблей или замаскированных танков, искажающих своим полем магнитное поле Земли; для поиска неразорвавшихся или заложенных боеприпасов на местах ведения боевых действий. В связи с миниатюризацией и снижением потребления тока, современными магнитометрами оснащаются смартфоны и планшеты. Ныне магнитометры входят как неотъемлемый компонент в оборудование разведывательных беспилотных летательных аппаратов и спутников-шпионов.

Любопытная деталь: в связи с повышением чувствительности магнитометров, одним из факторов перехода строительства подводных лодок на титановые корпуса вместо стальных корпусов было именно радикальное снижение их заметности в магнитном поле. Ранее подлодкам со стальным корпусом, как, впрочем, и надводным кораблям, приходилось время от времени проходить процедуру демагнетизации.

Магнитометры применяются при бурении скважин и проходке штолен, в археологии для оконтуривания раскопок и поиска артефактов, в биологии и медицине.

Металлодетекторы

Попытки использования напряжённости магнитного поля в военном деле предпринимались со времён Первой мировой войны, оставившей на полях сражений миллионы неразорвавшихся боеприпасов и установленных мин. Наиболее удачной оказалась разработка в начале 40-х годов прошлого столетия, поручика польской армии Юзефа Станислава Косацкого, принятая на вооружение британской армией и сослужившая немалую пользу при обезвреживании минных полей во время преследовании отступающих немцев войсками генерала Монтгомери при второй битве под Эль-Аламейном. Несмотря на то, что оборудование Коcацкого было выполнено на электронных лампах, оно весило всего 14 килограммов вместе с аккумуляторами питания и было настолько эффективным, что его модификации использовались британской армией в течение 50 лет.

Теперь нас не удивляет, в связи с распространением терроризма, прохождение перед посадкой на самолёт или на футбольные матчи сквозь индукционные рамки металлодетекторов, обследование охраной объектов нашего багажа или личный досмотр ручными металлоискателями на предмет обнаружения оружия.

Широкое распространение получили и бытовые металлоискатели, на пляжах модных курортов стала привычной картина искателей утерянных сокровищ, прочёсывающих местные пляжи в надежде найти что-либо ценное.

Эффект Холла и устройства на его основе

Опыт показывает, что магнитное поле, создаваемое проводником с током в вакууме и в какой-либо среде, будет различным. Это объясняется тем, что в среде протекают свои микротоки, которые обусловлены движением электронов в атомах и молекулах. Эти микротоки создают свое магнитное поле. Вектор магнитной индукции характеризует результирующее поле, создаваемое всеми микро- и макротоками. При одном и том же токе в проводнике и прочих равных условиях величина вектора В в различных средах будет разной.

Для характеристики магнитного поля, создаваемого самим макротоком, вводится вспомогательный вектор напряженности магнитного поля, не зависящий от свойств среды. Между векторами индукции В и напряженности Н существует зависимость: В =  0 Н = В 0 .

(В гауссовой системе В = μН, в вакууме μ = 1 и В = Н).

 - относительная магнитная проницаемость среды, показывает, во сколько раз индукция магнитного поля в среде отличается от индукции в вакууме (В 0)

 0 = 410 -7 Н/м 2 (Гн/м) – магнитная постоянная.

Закон Био-Савара-Лапласа

Магнитное поле проводника с током зависит не только от величины тока, но и от формы контура с током. Так же как и в электростатике для поля распределенных зарядов, можно полагать, что результирующее поле Н проводника с током – это векторная сумма полей dH, созданных отдельными элементами тока. Только, в отличие от электростатики, измерить и изучить поле отдельного элемента тока невозможно, так как любой постоянный ток течет по замкнутому контуру.

Для линейных проводников, толщина которых мала по сравнению с расстоянием, на котором определяется напряженность магнитного поля, по закону Био-Савара-Лапласа напряженность магнитного поля, создаваемого элементом тока на расстоянии r от него, обратно пропорциональна квадрату расстояния и прямо пропорциональна величине элемента тока и синусу угла между направлением тока и направлением на точку, в которой определяется напряженность

к – коэффициент пропорциональности, зависит от выбора системы единиц, в системе СГС к = 1, в СИ к = .

Вектор dH перпендикулярен плоскости, проходящей через элемент тока и точку, в которой определяется напряженность. Направление его определяется по правилу буравчика (или правого винта): если поступательное движение буравчика совпадает с направлением тока, то рукоятка описывает окружности, касательные к которым совпадают с направлением напряженности (направлены по направлению движения рукоятки).

На рисунке показано сечение проводника, крестиком отмечено, что ток направлен от нас. Линии напряженности представляют собой концентрические окружности.

Полная напряженность магнитного поля, создаваемого проводником с током, равна геометрической сумме напряженностей, создаваемых всеми элементами тока, и определяется с помощью интегрирования.

Закон Био-Савара-Лапласа был установлен для постоянного тока в проводниках – тока проводимости. Справедливость этого закона была подтверждена и для других форм движения электрических зарядов (конвекционные токи, токи в вакууме). В случае распределенных по объему токов выражение для элемента тока можно записать idl = jdsdl =jdV.

Применительно к нашему эксперименту сущность его такова: катушка 1 (рис. 24), подключенная к источнику постоянного напряжения, расположена вблизи катушки 2, подключенной к измерительному прибору. При замыкании или размыкании ключа К резко меняется создаваемое протекающим по катушке 1 током магнитное поле, вследствие чего в катушке 2 по закону электромагнитной индукции возникает индукционный ток, регистрируемый прибором; по показаниям последнего можно оценить параметры магнитного поля.

В качестве измерительного прибора используется баллистический гальванометр, у которого подвижная часть обладает значительным моментом инерции, вследствие чего угол отклонения (отброс) подвижной части прибора оказывается пропорциональным прошедшему через нее заряду q :

a = С× q . (18)

Коэффициент пропорциональности С называется баллистической постоянной гальванометра.

При замыкании ключа и прекращении тока через катушку 1 в катушке 2 возникает ЭДС индукции и ток с мгновенным значением , где R – сопротивление измерительной цепи. Через катушку 2 и соединенный с ней последовательно гальванометр пройдет заряд

, (19)

где Ф – начальное значение магнитного потока через катушку 2.

Из (18) и (19) следует, что

Таким образом, показания гальванометра определяются изменением магнитного потока через измерительную катушку.

Экспериментальная часть

Для определения баллистической постоянной гальванометра используется калибровочный соленоид. Соленоидом называют катушку, у которой длина намного больше диаметра (зачастую соленоидом называют всякую катушку). Внутри соленоида напряженность магнитного поля постоянна по всему сечению и равна

,

где l 1 – его длина, N 1 – число витков в обмотке соленоида, I – сила тока в обмотке. Датчик (измерительная катушка) с числом витков N 2 намотана на каркас, плотно одевающийся на соленоид (рис. 25), поэтому его сечение можно принять равным сечению соленоида S 1 . Поток через один виток датчика Ф 0 = В× S 1 , а В = m 0 ×m×Н сол. Поток через все витки датчика .

Подставляя в (20) и преобразуя, получим:

. (21)

Все величины в этом выражении определяются опытным путем.

Напряженность поля катушки измеряется с помощью датчика с N 3 витками, способного передвигаться по деревянному стержню вдоль оси исследуемой катушки. Датчик имеет достаточно малое сечение, так что напряженность поля во всех точках сечения можно считать одинаковой. Магнитный поток через датчик

Ф = В × S 3 × N 3 ,

где В = m 0 × m × Н кат – индукция поля исследуемой катушки на ее оси.

При включении этого потока отброс гальванометра a, согласно (20), будет

,

где R 2 – сопротивление измерительной цепи с датчиком катушки.

Тогда, измеряя a, получим:

. (22)

Пересчетный коэффициент k на основании (21) и (22) получится:

. (23)

Порядок выполнения работы

Задание 1 . Определение пересчетного коэффициента.

Оборудование: выпрямитель ВС-24; реостат до 100 Ом, 1 А; амперметр до 1 А; баллистический гальванометр; калибровочный соленоид с датчиком; 2 ключа.

1. Собрать цепь на рис. 26. Напряжение на соленоид С подается от выпрямителя через реостат R , которым осуществляется точная регулировка тока. Датчик Д следует установить на середине соленоида. С помощью регулятора на выпрямителе и реостата подобрать рабочий ток соленоида (0,2–0,5 А), чтобы при размыкании ключа К 1 отброс «зайчика» был значительным, но в пределах шкалы. Ключ К 2 служит для гашения колебаний подвижной части прибора. При его замыкании в измерительной цепи возникает индукционный ток, тормозящий подвижную часть.

Рис. 26

2. Подобрав рабочий ток I 1 , измерить отброс гальванометра a 1 при одном или нескольких значениях I 1 – всего не менее 5 измерений.

Примечание. Сечение датчиков (S 1 и S 3) определяют по измерениям их диаметров. Длина соленоида l 1 также измеряется непосредственно. R 1 и R 2 складываются из сопротивления гальванометра и соответствующего датчика.

3. Все величины подставляют в формулу (23), вычисляют значения k для отдельных измерений и затем усредняют.

Задание 2 . Измерение напряженности на оси катушки.

1. Использовать ту же схему на рис. 26, но вместо калибровочного соленоида включить исследуемую катушку с ее датчиком. Перед началом измерений датчик следует установить в середине катушки и подобрать рабочий ток, причем рабочий ток должен оставаться неизменным в ходе всего опыта.

2. Установить датчик возле одного из концов катушки и произвести измерения Н кат как функции расстояния х датчика от этого конца. Расстояние x менять с шагом 3 см, пока датчик не переместится к другому концу катушки.

3. Измерения отброса для каждого положения датчика производится по 3 раза во избежание промахов. Результаты измерений занести в табл. 8.

Таблица 8

x , см α, мм α ср, мм Н кат

4. Для каждого положения датчика значения отбросов усреднить и использовать для вычисления Н кат по формуле (22) с использованием пересчетного коэффициента, полученного в предыдущем задании. Результаты вычисления Н кат внести в таблицу.

5. По результатам расчетов построить кривую Н (х ).

Контрольные вопросы и задания

1. Какие величины используют для описания магнитного поля?

2. Дайте определение магнитного потока через произвольный контур. Как определяется магнитный поток через катушку?

3. Запишите формулы, определяющие магнитное поле катушки (соленоида).

4. В чем заключается суть явления электромагнитной индукции?

5. Запишите закон электромагнитной индукции.

6. Объясните полученную кривую Н (х ).

7. Определите число витков в исследуемой катушке, измерьте ее длину и диаметр. Используя эти данные, вычислите по теоретической формуле напряженность поля в центре катушки и сравните с экспериментальным значением.

8. Объясните, для чего необходимо использовать калибровочную катушку.

Лабораторная работа 7(9)

ИЗМЕРЕНИЕ ИНДУКТИВНОСТИ

Цель работы: ознакомиться с методом измерения индуктивности катушки по ее полному сопротивлению.

Теоретическая часть

Всякий проводник с током создает в окружающем пространстве магнитное поле. Одной из характеристик этого поля является магнитный поток Ф, величина которого Ф = L × I , где коэффициент L называется индуктивностью (коэффициентом самоиндукции) проводника и определяется его конфигурацией и магнитными свойствами окружающей среды. Индуктивность оказывается значительной только у катушек, почему они и используются для усиления магнитного потока.

где w и n – циклическая и линейная частота тока. Полное сопротивление катушки

. (26)

Из выражений (24)–(26) получаем

. (27)

Таким образом, для определения индуктивности катушки достаточно знать ее омическое сопротивление, а также измерить силу тока I в ней при подаче на нее переменного напряжения U и частоты n.

Экспериментальная часть

Для осуществления этой идеи предназначена схема на рис. 28. В ней имеется переключатель П, с помощью которого катушку L можно включать или в схему мостика Уитстона (правая часть схемы), или в цепь переменного тока (левая часть).


Рис. 28

При включении в мостовую схему (переключатель П в положении 2) определяется омическое сопротивление катушки. Подробная теория мостика Уитстона приведена в . Здесь же достаточно знать, что сопротивление катушки определяется по формуле

где R – сопротивление магазина; l АС и l СВ – длины плеч реохорда, если гальванометр установился на нуле при замкнутом ключе К.

В положении 1 переключателя П катушка включается в цепь источника переменного тока и по измерениям напряжения на ней и силы тока в ней определяется полное сопротивление катушки. После чего по формуле (27) определяется индуктивность катушки.

Порядок выполнения работы

Задание 1 . Измерение индуктивности одной катушки.

Оборудование: источник переменного тока до 100 В; двойной переключатель; амперметр до 1 А; вольтметр до 100 В; гальванометр; магазин сопротивлений; источник постоянного тока (батарейка, аккумулятор или выпрямитель); три однополюсных ключа; реохорд; катушка.

1. Собрать схему на рис. 28 и произвести вышеописанные измерения. Измерения полного сопротивления провести при трех различных значениях напряжения. Измерения омического сопротивления провести при трех различных соотношениях плеч реохорда. При этом установка гальванометра на нуль достигается подбором сопротивления магазина. Результаты измерений занести в табл. 9.

Таблица 9

Примечание. Вблизи катушки не должно находиться предметов из ферромагнитных материалов.

Используя формулы (24), (27) и (28), вычислить сопротивление катушки R L , ее полное сопротивление и индуктивность L . Следует помнить, что R в формуле (28) и табл. 9 – сопротивление магазина, а в формулу (27) надо подставлять омическое сопротивление катушки R L . Результаты расчетов внести в табл. 10.

Таблица 10

Катушка R , Ом Z , Ом L , Гн L средн, Гн

Задание 2. Измерение индуктивности второй катушки.

Выполняется так же, как с первой катушкой. Результаты измерений занести в табл. 9 и 10.

Задание 3. Измерение взаимной индуктивности катушек.

Индуктивность системы из двух катушек

L = L 1 + L 2 ± 2M , (29)

где L 1 и L 2 – индуктивность самих катушек, М – взаимная индуктивность. Знак М зависит от взаимного направления магнитных полей катушек.

1. Катушки поставить одна на другую, вставить деревянный сердечник, соединить их последовательно.

2. Включить катушки в цепь переменного тока и измерить силу тока в них при трех значениях подаваемого напряжения. Результаты измерения занести в табл. 11.

Таблица 11

3. Вычислить по формуле (27) индуктивность системы из двух катушек, учитывая, что омическое сопротивление системы является суммой омических сопротивлений катушек. Взаимную индуктивность определить, исходя из (29).

Одной из важнейших физических характеристик как естественной, так и искусственной среды обитания человека является магнитное поле. Оно представляет собой одну из форм существования электромагнитного поля. Главной отличительной чертой такой формы является то, что магнитное поле воздействует исключительно на те частицы и тела, которые, с одной стороны, находятся в непрерывном движении, а с другой - содержат определенный электрический заряд.

Еще из курса физики известно, что для создания магнитного поля необходимы проводник с током и переменные электрические поля. Важнейшими характеристиками этого поля служат вектор магнитной индукции и магнитная напряженность.

Напряженность магнитного поля представляет собой одну из векторных величин, изучаемых в физике, которая складывается из разности вектора электромагнитной индукции, а также вектора намагниченности. Так как магнитная напряженность есть то ее единицей измерений в общепринятой и самой распространенной принято считать ампер на метр. Чтобы получить напряженность электромагнитного поля величиной в 1 а/м, необходимо, чтобы в прямолинейном протяженном проводе с максимально малым диаметром сечения протекал электрический ток силой 2π ампера. В этом случае во всех пунктах образованного этим на расстоянии 1 метр напряженность электромагнитного поля и будет равна 1 а/м.

Напряженность магнитного поля, или, другими словами, количество силовых линий этого поля, можно оценить. В частности, чтобы определить направление этих линий, можно воспользоваться хорошо известным всем Это правило - один из краеугольных камней всей электротехники. Оно гласит, что в том случае если общая направленность движения буравчика полностью тождественна направлению электрического тока в конкретном проводнике, то направленность вращения буравчика тождественна направлению магнитных линий.

Ориентируясь на данное правило, легко доказать, что магнитные линии, которые возникают в витках катушки, направлены в одну и ту же сторону. Из этого можно сделать вывод, что напряженность магнитного поля внутри катушки будет намного более сильной, чем напряженность, создаваемая одним витком. Это связано в том числе и с тем, что силовые линии соседних витков направлены параллельно друг другу, но в разные стороны, следовательно, напряженность магнитного поля между ними будет неуклонно уменьшаться.

Вполне естественно, что магнитное поле любой катушки прямо пропорционально величине который проходит по ее виткам. Кроме того, напряженность магнитного поля напрямую зависит от того, насколько близко эти витки располагаются по отношению друг к другу. Опытным путем доказано, что в двух катушках, в которых течет электрический ток одинаковой силы, а число витков абсолютно совпадает, магнитное поле будет сильнее в той, где катушка обладает меньшей осевой длиной, то есть ее витки расположены значительно ближе друг к другу.

Очень значимой является числовая величина ампервитков, которую можно рассчитать, умножив количество витков в катушке на силу протекающего в них тока. От величины ампервитков будет зависеть и магнитодвижущая сила. Опираясь на это понятие, можно легко доказать, что магнитное поле исследуемой катушки находится в прямо пропорциональной зависимости от количества ампервитков на единицу осевой длины. Другими словами, напряженность электромагнитного поля тем выше, чем больше величина магнитодвижущей силы, создающейся в исследуемой катушке.

Помимо искусственно создаваемых магнитных полей, существует еще естественное которое формируется, в основном, во внешней оболочке ядра. Основные характеристики этого поля, в том числе и напряженность, изменяются как во времени, так и в пространстве, однако все основные законы, характерные для искусственно создаваемых полей, работают и в геомагнитном поле.

Для описания магнитного поля используются две его основные характеристики - индукция B → и напряженность H → . Эти величины связаны между собой. Рассмотрим, что такое напряженность магнитного поля, чему она равна, каков физический смысл этой величины.

Напряженность магнитного поля

Определение

Напряженность магнитного поля - векторная физическая величина, в общем случае равная разности векторов индукции магнитного поля B → и намагниченности P m → .

Напряженность обозначается буквой Н → . Единица измерения напряженности магнитного поля в системе СИ - ампер на метр (А м п е р м е т р).

Формула напряженности магнитного поля:

Н → = 1 μ 0 B → - P m → .

Здесь коэффициент μ 0 - магнитная постоянная. μ 0 = 1 , 25663706 Н А 2 .

Физический смысл напряженности магнитного поля

Индукция магнитного поля - силовая характеристика. Индукция определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью.

Напряженность поля характеризует густоту силовых линий (линий магнитной индукции).

Физический смысл напряженности магнитного поля

В вакууме или при отсутствии среды, способной к намагничиванию (например, в воздухе) напряженность магнитного поля совпадает с магнитной индукцией с точностью до коэффициента μ 0 .

В средах, способных к намагничиванию (магнетиках) напряженность несет смысл как бы "внешнего поля". Она совпадает с вектором магнитной индукции, который был бы, если бы магнетика не было.

Существует теорема о циркуляции магнитного поля. Это одна из основных теорем электродинамики, сформулированная Анри Ампером. Ее также иногда называют теоремой или законом Ампера. Теорема о циркуляции магнитного поля - своеобразный аналог теоремы Гаусса о циркуляции вектора напряженности электрического поля.

Теорема о циркуляции магнитного поля

Циркуляция вектора напряженности магнитного поля по замкнутому контуру равна алгебраической сумме токов проводимости, охваченных контуром, по которому рассматривается циркуляция.

∮ H → d r → = ∑ I m

Пример

Определить циркуляцию вектора напряженности для замкнутого контура L .

I 1 = 5 A , I 2 = 2 A , I 3 = 10 A , I 4 = 1 A .

По теореме о циркуляции:

∮ H → d r → = ∑ I m

Рассматриваемый контур охватывает токи I 1 , I 2 , I 3 .

Подставим значения c учетом указанных на рисунке направлений токов и вычислим циркуляцию:

​​​​​ ∮ H → d r → = ∑ I m = 5 A 12 A + 10 A = 13 A .

Магнитное поле - вихревое поле, которое не является потенциальным. Циркуляция вектора напряженности в общем случае отлична от нуля.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter