Определение наклонной. Математика. полный курс повторювальний. Список использованных источников

Перпендикуляр и наклонная

Теорема . Если из одной точки вне плоскости проведены перпендикуляр и наклонные, то:

1) наклонные, имеющие равные проекции, равны;

2) из двух наклонных больше та, проекция которой больше;

3) равные наклонные имеют равные проекции;

4) из двух проекций больше та, которая соответствует большей наклонной.

Теорема о трех перпендикулярах . Для того чтобы прямая, лежащая в плоскости, была перпендикулярна наклонной, необходимо и достаточно, чтобы эта прямая была перпендикулярна проекции наклонной (рис.3).

Теорема о площади ортогональной проекции многоугольника на плоскость. Площадь ортогональной проекции многоугольника на плоскость равна произведению площади многоугольника на косинус угла между плоскостью многоугольника и плоскостью проекции.


Построение.

1. На плоскости a проводим прямую а .

3. В плоскости b через точку А проведем прямую b , параллельную прямой а .

4. Построена прямая b параллельная плоскости a .

Доказательство. По признаку параллельности прямой и плоскости прямая b параллельна плоскости a , так как она параллельна прямой а , принадлежащей плоскости a .

Исследование. Задача имеет бесконечное множество решений, так как прямая а в плоскости a выбирается произвольно.

Пример 2. Определите, на каком расстоянии от плоскости находится точка А , если прямая АВ пересекает плоскость под углом 45º, расстояние от точки А до точки В , принадлежащей плоскости, равно см?

Решение. Сделаем рисунок (рис. 5):


АС – перпендикуляр к плоскости a , АВ – наклонная, угол АВС – угол между прямой АВ и плоскостью a . Треугольник АВС – прямоугольный так как АС – перпендикуляр. Искомое расстояние от точки А до плоскости – это катет АС прямоугольного треугольника. Зная угол и гипотенузу см найдем катет АС :

Ответ: 3 см.

Пример 3. Определите, на каком расстоянии от плоскости равнобедренного треугольника находится точка, удаленная от каждой из вершин треугольника на 13 см, если основание и высота треугольника равны по 8 см?

Решение. Сделаем рисунок (рис. 6). Точка S удалена от точек А , В и С на одинаковое расстояние. Значит, наклонные SA , SB и SC равные, SO – общий перпендикуляр этих наклонных. По теореме о наклонных и проекциях АО = ВО = СО.

Точка О – центр окружности описанной около треугольника АВС . Найдем ее радиус:


где ВС – основание;

AD – высота данного равнобедренного треугольника.

Находим стороны треугольника АВС из прямоугольного треугольника ABD по теореме Пифагора:

Теперь находим ОВ :

Рассмотрим треугольник SOB : SB = 13 см, ОВ = = 5 см. Находим длину перпендикуляра SO по теореме Пифагора:

Ответ: 12 см.

Пример 4. Даны параллельные плоскости a и b . Через точку М , не принадлежащую ни одной из них, проведены прямые а и b , которые пересекают a в точках А 1 и В 1 , а плоскость b – в точках А 2 и В 2 . Найти А 1 В 1 , если известно, что МА 1 = 8 см, А 1 А 2 = 12 см, А 2 В 2 = 25 см.

Решение. Так как в условии не сказано, как расположена относительно обеих плоскостей точка М , то возможны два варианта: (рис. 7, а) и (рис. 7, б). Рассмотрим каждый из них. Две пересекающиеся прямые а и b задают плоскость. Эта плоскость пересекает две параллельные плоскости a и b по параллельным прямым А 1 В 1 и А 2 В 2 согласно теореме 5 о параллельных прямых и параллельных плоскостях.


Треугольники МА 1 В 1 и МА 2 В 2 подобны (углы А 2 МВ 2 и А 1 МВ 1 – вертикальные, углы МА 1 В 1 и МА 2 В 2 – внутренние накрест лежащие при параллельных прямых А 1 В 1 и А 2 В 2 и секущей А 1 А 2). Из подобия треугольников следует пропорциональность сторон:

Отсюда

Вариант а):

Вариант б):

Ответ: 10 см и 50 см.

Пример 5. Через точку А плоскости g проведена прямая АВ , образующая с плоскостью угол a . Через прямую АВ проведена плоскость r , образующая с плоскостью g угол b . Найти угол между проекцией прямой АВ на плоскость g и плоскостью r .

Решение. Сделаем рисунок (рис. 8). Из точки В опустим перпендикуляр на плоскость g . Линейный угол двугранного угла между плоскостями g и r – это угол Прямая AD DBC , по признаку перпендикулярности прямой и плоскости, так как и По признаку перпендикулярности плоскостей плоскость r перпендикулярна плоскости треугольника DBC , так как она проходит через прямую AD . Искомый угол построим, опустив перпендикуляр из точки С на плоскость r , обозначим его Найдем синус этого угла прямоугольного треугольника САМ . Введем вспомогательный отрезок а = ВС . Из треугольника АВС : Из треугольника ВМС найдем

Урок геометрии в 10 классе

На одном из предыдущих уроков вы познакомились с понятием проекции точки на данную плоскость параллельно данной прямой.

На этом уроке вы продолжите изучение прямых и плоскостей; узнаете, как находится угол между прямой и плоскостью. Вы познакомитесь с понятием ортогональной проекции на плоскость и рассмотрите ее свойства. На уроке будут даны определения расстояния от точки до плоскости и от точки до прямой, угла между прямой и плоскостью. Будет доказана знаменитая теорема о трех перпендикулярах.

Ортогональная проекция

Ортогональная проекция точки и фигуры.

Ортогональная проекция детали.

Ортогональной проекцией точки Ана данную плоскость называется проекция точки на эту плоскость параллельно

прямой, перпендикулярной этой плоскости. Ортогональная проекция

фигуры на данную плоскость p состоит из ортогональных проекций на плоскость p всех точек этой фигуры. Ортогональная проекция часто используется для изображения пространственных тел на плоскости, особенно в технических чертежах. Она дает более реалистическое изображение, чем произвольная параллельная проекция, особенно круглых тел.

Перпендикуляр и наклонная

Пусть через точку А, не принадлежащую плоскости p, проведена прямая, перпендикулярная этой плоскости и пересекающая ее в точке В. Тогда

отрезок АВ называется

перпендикуляром, опущенным из точки

А на эту плоскость, а сама точка В - основанием этого перпендикуляра. Любой отрезокАС, где С -

произвольная точка плоскости p, отличная от В, называется наклонной к

этой плоскости.

Заметим, что точка В в этом определении является ортогональной

проекцией точки А, а отрезокАС -Перпендикуляр и наклонная. ортогональной проекцией наклонной AВ.

Ортогональные проекции обладают всеми свойствами обычных параллельных проекций, но имеют и ряд новых свойств.

Пусть из одной точки к плоскости проведены перпендикуляр и несколько наклонных. Тогда справедливы следующие утверждения.

1. Любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость.

2. Равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны.

3. Одна наклонная длиннее другой тогда и только тогда, когда ортогональная проекция первой наклонной длиннее ортогональной проекции второй наклонной.

Свойства ортогональной проекции

Доказательство.

Пусть из точки А к плоскости p проведены перпендикулярАВ и две наклонныеАС и AD; тогда отрезки ВС иBD - ортогональные проекции этих отрезков на плоскость p.

Докажем первое утверждение: любая наклонная длиннее как перпендикуляра, так и ортогональной проекции наклонной на эту плоскость. Рассмотрим, например, наклонную AС и треугольник ABC, образованный перпендикуляром AВ, этой наклонной AС, и ее ортогональной проекцией ВС. Этот треугольник прямоугольный с прямым углом в вершине В и гипотенузой AС, которая, как мы знаем из планиметрии, длиннее каждого из катетов, т.е. и перпендикуляра AВ, и проекции ВС.

Из точки А к плоскости pi проведены перпендикуляр АВ и две наклонные AC и AD.

Свойства ортогональной проекции

Треугольники

ABC и ABD

равны по катету и гипотенузе.

Теперь докажем второе утверждение, а именно: равные наклонные имеют и равные ортогональные проекции, и наоборот, наклонные, имеющие равные проекции, также равны.

Рассмотрим прямоугольные треугольники AВС и ABD. Они

имеют общий катет AВ. Если наклонные AС и AD равны, то прямоугольные треугольники AВС и AВD равны по катету и гипотенузе, и тогда BC=BD. Обратно, если равны проекции ВС и BD, то эти же треугольники равны по двум катетам, и тогда у них равны и гипотенузы AС иAD. ВС < BD, как мы только что доказали,АС < AD, что опять противоречит условию.

Остается третья возможность: ВС > BD. Теорема доказана.

Если ВС больше BD,

то АС больше стороны

АЕ, равной AD.

Геометрия

Стереометрия

Перпендикуляр и наклонная

Перпендикуляром , опущенным из данной точки на данную плоскость, называется отрезок, соединяющий данную точку с точкой плоскости и лежащий на прямой, перпендикулярной к плоскости. Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра . Расстоянием от точки до плоскости называется длина перпендикуляра, опущенного из этой точки на плоскость.
На рисунке AB - перпендикуляр; AC - наклонная; BC - проекция.

Расстоянием от прямой до параллельной ей плоскости называется расстояние от любой точки этой прямой до плоскости.
Расстоянием между параллельными плоскостями называется расстояние от любой точки одной плоскости до другой плоскости.
Наклонной , проведенной из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий в плоскости, называется основанием наклонной .
Отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной .

Свойства наклонных, проведенных из одной точки к одной плоскости
1. Наклонные, проведенные к плоскости из одной точки (рисунок ниже слева), равны тогда и только тогда, когда они имеют равные проекции.
2. Если из точки к плоскости проведены две наклонные, то больше та из них, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Обратите внимание, что эти свойства сохраняются для наклонных, проведенных к плоскости из разных точек, но имеют одинаковую длину перпендикуляра (рисунок справа).

ГЕОМЕТРИЯ

Раздел ІІ. СТЕРЕОМЕТРИЯ

§8. ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ. ПРОЕКЦИЯ НАКЛОННОЙ НА ПЛОСКОСТЬ.

2. Свойства перпендикуляра и наклонной.

Рассмотрим свойства перпендикуляра и наклонной.

1) Перпендикуляр, опущенный из данной точки к плоскости, меньше любой наклонной, проведенной из этой же точки к плоскости.

На рисунке 411: АН АК.

2) Если две наклонные, проведенные из данной точки к плоскости, равны, то равны их проекции.

K 1 и перпендикуляр АН и АК = АК 1 . Тогда по свойству: НК = НК 1 .

3) Если две наклонные, проведенные из данной точки к данной плоскости, имеют равные проекции, то они равны между собой.

На рисунке 412 из точки А к плоскости а проведены две наклонные АК и А K 1 и перпендикуляр АН, причем КН = К 1 Н. Тогда по свойству: АК = АК 1 .

4) Если из данной точки проведены к плоскости две наклонные, то большая наклонная имеет большую проекцию.

L и перпендикуляр АН, A К > AL . Тогда по свойству: H К > HL .

5) Если из данной точки проведены к плоскости две наклонные, то большей из них является та, которая имеет большую проекцию на данную плоскость.

На рисунке 413 из точки А к плоскости а проведены две наклонные АК и А L и перпендикуляр АН, НК > Н L . Тогда по свойству: АК > А L .

Пример 1. Из точки к плоскости проведены две наклонные, длины которых 41 см и 50 см. Найти проекции наклонных, если они относятся, как 3: 10, и расстояние от точки до плоскости.

Решения. 1) А L = 41 см; АК = 50 см (рис. 413). По свойством имеем Н L НК. Обозначим Н L = 3 х см, НК = 10 х см, АН = h см. АН - расстояние от точки А до плоскости α .

4) Приравнивая, получаем 41 2 - 9х 2 = 50 2 - 100 х 2 ; х 2 = 9; х = 3 (учитывая х > 0). Итак, Н L = 3 ∙ 3 = 9 (см), НК = 10 ∙ 3 = 30 (см).

Пример 2. С данной точки к плоскости проведены две наклонные, каждая по см. Угол между наклонными равен 60°, а угол между их проекциями - прямой. Найти расстояние от точки до плоскости.