Основной определитель системы. Главный определитель системы и определители неизвестных. Теорема Крамера. Метод Крамера решения систем линейных уравнений

В ходе решения задач по высшей математике очень часто возникает необходимость вычислить определитель матрицы . Определитель матрицы фигурирует в линейной алгебре, аналитической геометрии, математическом анализе и других разделах высшей математики. Таким образом, без навыка решения определителей просто не обойтись. Также для самопроверки Вы можете бесплатно скачать калькулятор определителей , он сам по себе не научит решать определители, но очень удобен, поскольку всегда выгодно заранее знать правильный ответ!

Я не буду давать строгое математическое определение определителя, и, вообще, буду стараться минимизировать математическую терминологию, большинству читателей легче от этого не станет. Задача данной статьи – научить Вас решать определители второго, третьего и четвертого порядка. Весь материал изложен в простой и доступной форме, и даже полный (пустой) чайник в высшей математике после внимательного изучения материала сможет правильно решать определители.

На практике чаще всего можно встретить определитель второго порядка, например: , и определитель третьего порядка, например: .

Определитель четвертого порядка тоже не антиквариат, и к нему мы подойдём в конце урока.

Надеюсь, всем понятно следующее: Числа внутри определителя живут сами по себе, и ни о каком вычитании речи не идет! Менять местами числа нельзя!

(Как частность, можно осуществлять парные перестановки строк или столбцов определителя со сменой его знака, но часто в этом нет никакой необходимости – см. следующий урок Свойства определителя и понижение его порядка)

Таким образом, если дан какой-либо определитель, то ничего внутри него не трогаем!

Обозначения : Если дана матрица , то ее определитель обозначают . Также очень часто определитель обозначают латинской буквой или греческой .

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО. Знаки вопроса в вышерассмотренных примерах – это совершенно обыкновенные числа.

2) Теперь осталось разобраться в том, КАК найти это число? Для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два» :

ЭТО НУЖНО ЗАПОМНИТЬ, по крайне мере на время изучения высшей математики в ВУЗе.

Сразу рассмотрим пример:

Готово. Самое главное, НЕ ЗАПУТАТЬСЯ В ЗНАКАХ.

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».
Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:


Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс».
Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Теперь рассмотрим шесть нормальных способов для вычисления определителя

Почему нормальных? Потому что в подавляющем большинстве случаев определители требуется раскрывать именно так.

Как Вы заметили, у определителя «три на три» три столбца и три строки.
Решить определитель можно, раскрыв его по любой строке или по любому столбцу .
Таким образом, получается 6 способов, при этом во всех случаях используется однотипный алгоритм.

Определитель матрицы равен сумме произведений элементов строки (столбца) на соответствующие алгебраические дополнения. Страшно? Все намного проще, будем использовать ненаучный, но понятный подход, доступный даже для человека, далекого от математики.

В следующем примере будем раскрывать определитель по первой строке .
Для этого нам понадобится матрица знаков: . Легко заметить, что знаки расположены в шахматном порядке.

Внимание! Матрица знаков – это мое собственное изобретение. Данное понятие не научное, его не нужно использовать в чистовом оформлении заданий, оно лишь помогает Вам понять алгоритм вычисления определителя.

Сначала я приведу полное решение. Снова берем наш подопытный определитель и проводим вычисления:

И главный вопрос: КАК из определителя «три на три» получить вот это вот:
?

Итак, определитель «три на три» сводится к решению трёх маленьких определителей, или как их еще называют, МИНОРОВ . Термин рекомендую запомнить, тем более, он запоминающийся: минор – маленький.

Коль скоро выбран способ разложения определителя по первой строке , очевидно, что всё вращается вокруг неё:

Элементы обычно рассматривают слева направо (или сверху вниз, если был бы выбран столбец)

Поехали, сначала разбираемся с первым элементом строки, то есть с единицей:

1) Из матрицы знаков выписываем соответствующий знак:

2) Затем записываем сам элемент:

3) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит первый элемент:

Оставшиеся четыре числа и образуют определитель «два на два», который называется МИНОРОМ данного элемента (единицы).

Переходим ко второму элементу строки.

4) Из матрицы знаков выписываем соответствующий знак:

5) Затем записываем второй элемент:

6) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит второй элемент:

Ну и третий элемент первой строки. Никакой оригинальности:

7) Из матрицы знаков выписываем соответствующий знак:

8) Записываем третий элемент:

9) МЫСЛЕННО вычеркиваем строку и столбец, в котором стоит третий элемент:

Оставшиеся четыре числа записываем в маленький определитель.

Остальные действия не представляют трудностей, поскольку определители «два на два» мы считать уже умеем. НЕ ПУТАЕМСЯ В ЗНАКАХ!

Аналогично определитель можно разложить по любой строке или по любому столбцу. Естественно, во всех шести случаях ответ получается одинаковым.

Определитель «четыре на четыре» можно вычислить, используя этот же алгоритм.
При этом матрица знаков у нас увеличится:

В следующем примере я раскрыл определитель по четвертому столбцу :

А как это получилось, попробуйте разобраться самостоятельно. Дополнительная информация будет позже. Если кто захочет прорешать определитель до конца, правильный ответ: 18. Для тренировки лучше раскрыть определитель по какому-нибудь другому столбцу или другой строке.

Потренироваться, раскрыть, провести расчёты – это очень хорошо и полезно. Но сколько времени вы потратите на большой определитель? Нельзя ли как-нибудь быстрее и надёжнее? Предлагаю ознакомиться с эффективными методами вычисления определителей на втором уроке – Свойства определителя. Понижение порядка определителя .

БУДЬТЕ ВНИМАТЕЛЬНЫ!

Ответ:.Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

Этот вывод следует из следующей теоремы.

Теорема Крамера. Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):
9.операции над множествами. диаграммы Вьена.

Диаграммы Эйлера-Венна – геометрические представления множеств. Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U, а внутри его – кругов (или каких-нибудь других замкнутых фигур), представляющих множества. Фигуры должны пересекаться в наиболее общем случае, требуемом в задаче, и должны быть соответствующим образом обозначены. Точки, лежащие внутри различных областей диаграммы, могут рассматриваться как элементы соответствующих множеств. Имея построенную диаграмму, можно заштриховать определенные области для обозначения вновь образованных множеств.

Операции над множествами рассматриваются для получения новых множеств из уже существующих.

Определение. Объединением множеств А и В называется множество, состоящее из всех тех элементов, которые принадлежат хотя бы одному из множеств А, В (рис. 1):

Определение. Пересечением множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат одновременно как множеству А, так и множеству В (рис. 2):

Определение. Разностью множеств А и В называется множество всех тех и только тех элементов А, которые не содержатся в В (рис. 3):

Определение. Симметрической разностью множеств А и В называется множество элементов этих множеств, которые принадлежат либо только множеству А, либо только множеству В (рис. 4):

11.отображения (функция), область определения, образы множеств при отображении, множество значений функции и её график.



Ответ: Отображением множества E в множество F, или функцией, определенной на E со значениями в F, называется правило, или закон f, который каждому элементу ставит в соответствие определенный элемент .

Элемент называют независимым элементом, или аргументом функции f, элемент называют значением функции f, илиобразом; при этом элемент называется прообразом элемента .

Отображение (функцию) обычно обозначают буквой f или символом , указывая тем самым, что f отображает множество E в F. Употребляется также обозначение , указывающее, что элементу x соответствует элемент f(x). Иногда функцию удобно задавать посредством равенства, в котором содержится закон соответствия. Например, можно говорить, что "функция f определена равенством ". Если "y" - общее наименование элементов множества F, т. е. F = {y}, то отображение записывают в виде равенстваy = f(x) и говорят, что это отображение задано явно.

2. Образ и прообраз множества при заданном отображении

Пусть задано отображение и множество .

Множество элементов из F, каждый из которых является образом хотя бы одного элемента из D при отображении f, называется образоммножества D и обозначается f(D).

Очевидно, .

Пусть теперь задано множество .

Множество элементов таких, что , называется прообразом множества Y при отображении f и обозначается f -1 (Y).

Если , то . Если при каждом множество f -1 (y) состоит не более чем из одного элемента , то f называетсявзаимно однозначным отображением E в F. Впрочем, можно определить взаимно однозначное отображение f множества E на F.

Отображение называется:

Инъективным (или инъекцией, или взаимно однозначным отображением множества E в F), если , или если уравнение f(x) = y имеет не более одного решения;

Сюръективным (или сюръекцией, или отображением множества E на F), если f(E) = F и если уравнение f(x) = y имеет по крайней мере одно решение;

Биективным (или биекцией, или взаимно однозначным отображением множества E на F), если оно инъективно и сюръективно, или если уравнение f(x) = y имеет одно и только одно решение.

3. Суперпозиция отображений. Обратное, параметрическое и неявное отображения

1) Пусть и . Поскольку , то отображение g каждому элементу относит определенный элемент .

Таким образом, каждому посредством правила поставлен в соответствие элемент

Тем самым определено новое отображение (или новая функция), которое назовем композицией отображений, или суперпозицией отображений, или сложным отображением.

2) Пусть - биективное отображение и F = {y}. В силу биективности f каждому соответствует единичный образ x, который обозначим через f -1 (y), и такой, что f(x) = y. Таким образом, определено отображение , которое называется обратным отображению f, или обратной функцией функции f.

Очевидно, отображение f обратно отображению f -1 . Поэтому отображения f и f -1 называют взаимно обратными. Для них справедливы соотношения

причем хотя бы одно из этих отображений, например , биективно. Тогда существует обратное отображение , а значит, .

Определенное таким образом отображение называется заданным параметрически с помощью отображений ; причем переменная из называется параметром.

4) Пусть на множестве определено отображение , где множество содержит нулевой элемент. Предположим, что существуют множества такие, что при каждом фиксированном уравнение имеет единственное решение . Тогда на множестве E можно определить отображение , ставящее каждому в соответствие то значение , которое при указанном x является решением уравнения .

Относительно так определенного отображения

говорят, что оно задано неявно посредством уравнения .

5) Отображение называется продолжением отображения , а g - сужением отображения f, если и .

Сужение отображения на множество иногда обозначают символом .

6) Графиком отображения называется множество

Ясно, что .

12. монотонные функции. Обратная функция, теорема существования. Функции y=arcsinx y=arcos x х свойства и графики.

Ответ: Моното́нная фу́нкция - это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю то функция называется стро́го моното́нной.

Пусть имеется функция f(x) определенная на отрезке , значения которой принадлежат некоторому отрезку . Если

то говорят, что на отрезке определена функция, обратная к функции f(x) и обозначают это так:x=f (-1) (y).

Обратите внимание на отличие этого определения от определения заполненности отрезка сплошь. В определении f (-1) (…) стоит квантор, т.е. значение х, обеспечивающее равенство y=f(x), должно быть единственным, в то время как в определении заполненности отрезка сплошь стоит квантор, что говорит о том, что может быть несколько значений х, удовлетворяющих равенству y=f(x).

Обычно, говоря об обратной функции, заменяют х на у а y на x(x «y) и пишут y=f (-1) (x). Очевидно, что исходная функция f(x) и обратная функция f (-1) (x) удовлетворяют соотношению

f (-1) (f(x))=f(f (-1) (x))=x.

Графики исходной и обратной функции получаются друг из друга зеркальным отображением относительно биссектрисы первого квадранта.

Теорема. Пусть функция f(x) определена, непрерывна и строго монотонно возрастает (убывает) на отрезке . Тогда на отрезке определена обратная функция f (-1) (x), которая также непрерывна и строго монотонно возрастает (убывает).

Доказательство.

Докажем теорему для случая, когда f(x) строго монотонно возрастает.

1. Существование обратной функции.

Так как по условию теоремы f(x) непрерывна, то, согласно предыдущей теореме, отрезок заполнен сплошь. Это означает, что.

Докажем, что х единственно. Действительно, если взять х’>x, то будет f(x’)>f(x)=y и поэтому f(x’)>y. Если взять х’’

2. Монотонность обратной функции.

Сделаем обычную замены x «y и будем писать y= f (-1) (x). Это значит, что x=f(y).

Пусть x 1 >x 2 . Тогда:

y 1 = f (-1) (x 1); x 1 =f(y 1)

y 2 = f (-1) (x 2); x 2 =f(y 2)

Какое же соотношение между y 1 и y 2 ? Проверим возможные варианты.

а) y 1 x 2 .

б) y 1 =y 2 ? Но тогда f(y 1)=f(y 2) и x 1 =x 2 , а у нас было x 1 >x 2 .

в) Остается единственный вариант y 1 >y 2 , т.е. Но тогда f (-1) (x 1)>f (-1) (x 2), а это и означает, что f (-1) (…) строго монотонно возрастает.

3. Непрерывность обратной функции.

Т.к. значения обратной функции заполняют сплошь отрезок , то по предыдущей теоремеf (-1) (…) непрерывна. <

<="" a="" style="color: rgb(255, 68, 0);">

y = arcsin x y = arccos x
функция обратная функции y = sin x, - / 2 x / 2 функция обратная функции y = cos x, 0 x

<="" a="" style="color: rgb(0, 0, 0); font-family: Arial; font-size: 11px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(0, 171, 160);">

<="" a="" style="color: rgb(255, 68, 0); font-family: Arial; font-size: 11px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(0, 171, 160);">

y = arctg x y = arcctg x
функция обратная функции y = tg x, - / 2 < x < / 2 функция обратная функции y = ctg x, 0 < x <

13.композиция функций. Элементарные функции. Функции y=arctg x , y = arcctg x, их свойства и графики.

Ответ: В математике компози́ция фу́нкций (суперпози́ция фу́нкций) - это применение одной функции к результату другой.

Композиция функций G и F обычно обозначается G∘F, что обозначает применение функции G к результату функции F.

Пусть F:X→Y и G:F(X)⊂Y→Z две функции. Тогда их композицией называется функция G∘F:X→Z, определённая равенством:

(G∘F)(x)=G(F(x)),x∈X.

Элементарные функции - функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций :

  • алгебраические:
    • степенная;
    • рациональная.
  • трансцендентные:
    • показательная и логарифмическая;
    • тригонометрические и обратные тригонометрические.

Каждую элементарную функцию можно задать формулой, то есть набором конечного числа символов, соответствующих используемым операциям. Все элементарные функции непрерывны на своей области определения.

Иногда к основным элементарным функциям относят также гиперболические и обратные гиперболические функции, хотя они могут быть выражены через перечисленные выше основные элементарные функции.

<="" a="" style="color: rgb(255, 68, 0); font-family: Arial; font-size: 11px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: rgb(0, 171, 160);">

y > 0 при x R ЭКСТРЕМУМЫ: нет нет ПРОМЕЖУТКИ МОНОТОННОСТИ: возрастает при x R убывает при x R

Определителем второго порядка

и вычисляется по правилу

Числа называютсяэлементами определителя (первый индекс указывает номер строки, а второй
номер столбца, на пересечении которых стоит этот элемент); диагональ, образованная элементами
,
, называетсяглавной , элементами
,

побочной .

Аналогично вводится понятие определителя третьего порядка.

Определителем третьего порядка называется число, которое обозначается символом

и вычисляется по правилу

Диагональ, образованная элементами
,
,
, называетсяглавной , элементами
,
,

побочной .

Чтобы запомнить какие произведения в правой части равенства (1) берутся со знаком «
», а какие со знаком «
», полезно использовать следующее «правило треугольников»:

Можно ввести понятие определителя 4-го, 5-го и т. д. порядков.

Минором
некоторого элемента определителя называется определитель, образованный из данного вычёркиванием строки и столбца, на пересечении которых находится этот элемент.

Алгебраическим дополнением некоторого элемента определителя называется минор этого элемента, умноженный на
, где
номер строки,
номер столбца, на пересечении которых находится этот элемент:

.

Свойства определителей.

    Величина определителя не изменится, если его строки поменять местами со столбцами.

Рассмотренная операция называется транспонированием. Свойство 1

устанавливает равноправность строк и столбцов определителя.


Задача 1. Вычислить определители:

1) 2)3)4).

Задача 2. Вычислить определители, разложив их по элементам первого столбца:

1)
2)

Задача 3. Найти из уравнений:

1)
2)

1.2. Решение систем линейных уравнений с помощью определителей. Формулы Крамера

I) Система двух линейных неоднородных уравнений с двумя неизвестными

Обозначим

основной определитель системы;

,
вспомогательные определители.

а) Если определитель системы

,
. (1)

б) Если определитель системы
, то возможны случаи:

1)
(уравнения пропорциональны), тогда система содержит только одно уравнение, например,
и имеет бесконечно много решений (неопределённая система). Для её решения необходимо выразить одну переменную через другую, значение которой выбирается произвольно;

2) если хотя бы один из определителей
отличен от нуля, то система не имеет решений (несовместная система).

II) Система двух линейных однородных уравнений с тремя переменными

(2)

Линейное уравнение называется однородным , если свободный член этого уравнения равен нулю.

а) Если
, то система (2) сводится к одному уравнению (например, первому), из которого одно неизвестное выражается через два других, значения которых выбираются произвольно.

б) Если условие
не выполнено, то для решения системы (2) перенесем одну переменную вправо и решим систему двух линейных неоднородных уравнений с использованием формул Крамера (1).

III) Система трёх линейных неоднородных уравнений с тремя неизвестными:

Составим и вычислим основной определитель и вспомогательные определители,.

а) Если
, то система имеет единственное решение, которое находится по формулам Крамера:

,
,
(3)

б) Если
, то возможны случаи:

1)
, тогда система будет иметь бесконечно много решений, она будет сводиться либо к системе состоящей из одного, либо из двух уравнений (одну неизвестную перенесём направо и решим систему двух уравнений с двумя неизвестными);

2) хотя бы один из определителей
отличен от нуля, система не имеет решения.

IV) Система трёх линейных однородных уравнений с тремя неизвестными:

Эта система всегда совместна, так как имеет нулевое решение.

а) Если определитель системы
, то она имеет единственное нулевое решение.

б) Если же
, то система сводится либо к двум уравнениям (третье является их следствием), либо к одному уравнению (остальные два являются его следствием) и имеет бесконечно много решений (см. п.II).

Задача 4. Решить систему уравнений

Решение. Вычислим определитель системы

Так как
, то система имеет единственное решение. Воспользуемся формулами Крамера (3). Для этого вычислим вспомогательные определители:

,
,

,
,

Задача 5. Решить систему уравнений

Решение. Вычислим определитель системы:

Следовательно, система однородных уравнений имеет бесконечно много решение, отличных от нулевого. Решаем систему первых двух уравнений (третье уравнение является их следствием):

Перенесём переменную в правую часть равенства:

Отсюда по формулам (1) получаем


,
.

Задачи для самостоятельного решения

Задача 6. Решить с помощью определителей системы уравнений:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

КОСТРОМСКОЙ ФИЛИАЛ ВОЕННОГО УНИВЕРСИТЕТА РХБ ЗАЩИТЫ


Кафедра «Автоматизации управления войсками»


Только для преподавателей


"Утверждаю"

Начальник кафедры № 9

полковник ЯКОВЛЕВ А.Б.

«____»______________ 2004 г.


доцент А.И.СМИРНОВА


"ОПРЕДЕЛИТЕЛИ.

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ"


ЛЕКЦИЯ № 2 / 1


Обсуждено на заседании кафедры № 9

«____»___________ 2004г.

Протокол № ___________


Кострома, 2004.


Введение

Определители второго и третьего порядка.

Свойства определителей. Теорема разложения.

Теорема Крамера.

Заключение

Литература


В.Е. Шнейдер и др., Краткий курс высшей математики, том I, гл. 2, п.1.

В.С. Щипачев, Высшая математика, гл.10, п.2.


ВВЕДЕНИЕ


На лекции рассматриваются определители второго и третьего порядков, их свойства. А также теорема Крамера, позволяющая решать системы линейных уравнений с помощью определителей. Определители используются также в дальнейшем в теме "Векторная алгебра" при вычислении векторного произведения векторов.


1-ый учебный вопрос ОПРЕДЕЛИТЕЛИ ВТОРОГО И ТРЕТЬЕГО

ПОРЯДКА


Рассмотрим таблицу из четырех чисел вида

Числа в таблице обозначены буквой с двумя индексами. Первый индекс указывает номер строки, второй – номер столбца.


ОПРЕДЕЛЕНИЕ 1. Определителем второго порядка называют выражениевида:


(1)


Числа а11, …, а22 называют э л е м е т а м и определителя.

Диагональ, образованная элементами а11; а22 называется г л а в н ой, а диагональ, образованная элементами а12; а21 - п о б о ч н ой.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.


ПРИМЕРЫ. Вычислить:



Рассмотрим теперь таблицу из девяти чисел, записанных в три строки и три столбца:


ОПРЕДЕЛЕНИЕ 2. Определителем третьего порядка называется выражение вида:


Элементы а11; а22; а33 – образуют главную диагональ.

Числа а13; а22; а31 – образуют побочную диагональ.

Изобразим, схематически, как образуются слагаемые с плюсом и с минусом:

" + " " – "


С плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали.

Слагаемые с минусом образуются по той же схеме относительно побочной диагонали.

Это правило вычисления определителя третьего порядка называют

п р а в и л о м т р е у г о л ь н и к о в.


ПРИМЕРЫ. Вычислить по правилу треугольников:

ЗАМЕЧАНИЕ. Определители называют также д е т е р м и н а н т а м и.


2-ой учебный вопрос СВОЙСТВА ОПРЕДЕЛИТЕЛЕЙ.

ТЕОРЕМА РАЗЛОЖЕНИЯ


Свойство 1. Величина определителя не изменится, если его строки поменять местами с соответствующими столбцами.

.


Раскрывая оба определителя, убеждаемся в справедливости равенства.

Свойство 1 устанавливает равноправность строк и столбцов определителя. Поэтому все дальнейшие свойства определителя будем формулировать и для строк и для столбцов.

Свойство 2. При перестановке двух строк (или столбцов) определитель изменяет знак на противоположный, сохраняя абсолютную величину.


.


Свойство 3. Общий множитель элементов строки (или столбца) можно выносить за знак определителя.


.


Свойство 4. Если определитель имеет две одинаковые строки (или столбца), то он равен нулю.



Это свойство можно доказать непосредственной проверкой, а можно использовать свойство 2.

Обозначим определитель за D. При перестановке двух одинаковых первой и второй строк он не изменится, а по второму свойству он должен поменять знак, т.е.

D = - D Ю 2 D = 0 Ю D = 0.


Свойство 5. Если все элементы какой–то строки (или столбца) равны нулю, то определитель равен нулю.

Это свойство можно рассматривать как частный случай свойства 3 при

Свойство 6. Если элементы двух строк (или столбцов) определителя пропорциональны, то определитель равен нулю.


.


Можно доказать непосредственной проверкой или с использованием свойств 3 и 4.

Свойство 7. Величина определителя не изменится, если к элементам какой-либо строки (или столбца) прибавить соответствующие элементы другой строки (или столбца), умноженные на одно и то же число.


.


Доказывается непосредственной проверкой.

Применение указанных свойств может в ряде случаев облегчить процесс вычисления определителей, особенно третьего порядка.

Для дальнейшего нам понадобится понятия минора и алгебраического дополнения. Рассмотрим эти понятия для определения третьего порядка.


ОПРЕДЕЛЕНИЕ 3. Минором данного элемента определителя третьего порядка называется определитель второго порядка, полученный из данного вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента аi j обозначается Мi j . Так для элемента а11 минор



Он получается, если в определителе третьего порядка вычеркнуть первую строку и первый столбец.

ОПРЕДЕЛЕНИЕ 4. Алгебраическим дополнением элемента определителя называют его минор, умноженный на (-1)k , где k - сумма номеров строки и столбца, на пересечении которых стоит данный элемент.


Алгебраическое дополнение элемента аi j обозначается Аi j.

Таким образом, Аi j = .

Выпишем алгебраические дополнения для элементов а11 и а12.


.


Полезно запомнить правило: алгебраическое дополнение элемента определителя равно его минору со знаком плюс, если сумма номеров строки и столбца, в которых стоит элемент, четная, и со знаком минус, если эта сумма нечетная.


ПРИМЕР. Найти миноры и алгебраические дополнения для элементов первой строки определителя:



Ясно, что миноры и алгебраические дополнения могут отличаться только знаком.

Рассмотрим без доказательства важную теорему – теорему разложения определителя.


ТЕОРЕМА РАЗЛОЖЕНИЯ


Определитель равен сумме произведений элементов какой-либо строки или столбца на их алгебраические дополнения.

Используя эту теорему, запишем разложение определителя третьего порядка по первой строке.

.


В развернутом виде:

.


Последнюю формулу можно использовать как основную при вычислении определителя третьего порядка.

Теорема разложения позволяет свести вычисление определителя третьего порядка к вычислению трех определителей второго порядка.

Теорема разложения дает второй способ вычисления определителей третьего порядка.


ПРИМЕРЫ. Вычислить определитель, используя теорему разложения.


использовали разложения по второй строке.

Теорема разложения позволяет также вычислять определители более высокого порядка, сводя их к вычислению нескольких определителей третьего или второго порядка.

Так, определитель четвертого порядка можно свести к вычислению четырех определителей третьего порядка.


3-ий учебный вопрос ТЕОРЕМА КРАМЕРА


Применим рассмотренную теорию определителей к решению систем линейных уравнений.

Система двух линейных уравнений с двумя неизвестными.


(3)


Здесь х1, х2 – неизвестные;

а11, …, а22 – коэффициенты при неизвестных, занумерованные двумя индексами, где первый индекс означает номер уравнения, а второй индекс – номер неизвестного.

b1, b2 – свободные члены.

Напомним, что под решением системы (3) понимается пара значений х1, х2, которые при подстановке в оба уравнения обращают их в верные равенства.

В случае, когда система имеет единственное решение, это решение можно найти с помощью определителей второго порядка.


ОПРЕДЕЛЕНИЕ 5 . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы.


Обозначим определитель системы D.


В столбцах определителя D стоят коэффициенты соответственно при х1 и при, х2.

Введем два д о п о л н и т е л ь н ы х о п р е д е л и т е л я, которые получаются из определителя системы заменой одного из столбцов столбцом свободных членов:

Рассмотрим без доказательства следующую теорему:


ТЕОРЕМА КРАМЕРА (для случая n = 2)


Если определитель D системы (3) отличен от нуля (D № 0), то система имеет единственное решение, которое находится по формулам:

(4)

Формулы (4) называются формулами Крамера.


ПРИМЕР. Решить систему по правилу Крамера.


Ответ: х1 = 3; х2 = -1


2. Система трех линейных уравнений с тремя неизвестными:

(5)

В случае единственного решения систему (5) можно решить с помощью определителей третьего порядка.

Определитель системы D имеет вид:

Введем три дополнительных определителя:

Аналогично формулируется теорема.


ТЕОРЕМА КРАМЕРА (для случая n = 3)

Если определитель D системы (5) отличен от нуля, то система имеет единственное решение, которое находится по формулам:


Формулы (6) – это формулы Крамера.

ЗАМЕЧАНИЕ. Г. Крамер (1704 – 1752) – швейцарский математик.

Заметим, что теорема Крамера применима, когда число уравнений равно числу неизвестных и когда определитель системы D отличен от нуля.


Если определитель системы равен нулю, то в этом случае система может либо не иметь решений, либо иметь бесчисленное множество решений. Эти случаи исследуются особо, с ними можно подробно познакомиться в рекомендуемой литературе.

Отметим только один случай:

Если определитель системы равен нулю (D = 0), а хотя бы один из дополнительных определителей отличен от нуля, то система решений не имеет (т.е. является несовместной).

Теорему Крамера можно обобщать для системы n линейных уравнений с n неизвестными.

Если , то единственное решение системы находится по


формулам Крамера:


Дополнительный определитель получается из определителя D, если в нем столбец коэффициентов при неизвестном

xi заменить столбцом свободных членов.

Заметим, что определители D, D1, … , Dn имеют порядок n.


ЗАКЛЮЧЕНИЕ


На лекции рассмотрена новое понятие – определитель, подробно рассмотрены определители второго и третьего порядков, часто встречающиеся на практике. Для определителя третьего порядка приводятся два способа вычисления. Рассмотрена теорема Крамера, которая дает практический способ решения систем линейных уравнений, для случая, когда решение единственное. Более подробно с этой темой можно познакомиться в рекомендуемой литературе.

Похожие рефераты:

Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.

В настоящем реферате рассмотрены определители второго и третьего порядка, приведены примеры решения систем уравнений методом определителей.

Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение . Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

Согласно теореме Крамера имеем:

Итак, решение системы (2):

онлайн-калькулятором , решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:



Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

К началу страницы

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором , решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных - буквы. За примерами далеко ходить не надо.

Следующий пример - на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных