Системы показательные уравнения и неравенства примеры решения. Показательные уравнения. Более сложные случаи. Что такое показательная функция

На данном уроке мы рассмотрим решение более сложных показательных уравнений, вспомним основные теоретические положения касательно показательной функции.

1. Определение и свойства показательной функции, методика решения простейших показательных уравнений

Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.

Показательная функция - это функция вида , где основание степени и Здесь х - независимая переменная, аргумент; у - зависимая переменная, функция.


Рис. 1. График показательной функции

На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.

Обе кривые проходят через точку (0;1)

Свойства показательной функции :

Область определения: ;

Область значений: ;

Функция монотонна, при возрастает, при убывает.

Монотонная функция принимает каждое свое значение при единственном значении аргумента.

При когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности. При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно.

2. Решение типовых показательных уравнений

Напомним, как решать простейшие показательные уравнения. Их решение основано на монотонности показательной функции. К таким уравнениям сводятся практически все сложные показательные уравнения.

Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью.

Методика решения:

Уравнять основания степеней;

Приравнять показатели степеней.

Перейдем к рассмотрению более сложных показательных уравнений, наша цель - свести каждое из них к простейшему.

Освободимся от корня в левой части и приведем степени к одинаковому основанию:

Для того чтобы свести сложное показательное уравнение к простейшим, часто используется замена переменных.

Воспользуемся свойством степени:

Вводим замену. Пусть , тогда

Умножим полученное уравнение на два и перенесем все слагаемые в левую часть:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его. Получаем:

Приведем степени к одинаковому показателю:

Вводим замену:

Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:

Решать подобные квадратные уравнения мы умеем, выпишем ответ:

Чтобы удостовериться в правильности нахождения корней, можно выполнить проверку по теореме Виета, т. е. найти сумму корней и их произведение и сверить с соответствующими коэффициентами уравнения.

Получаем:

3. Методика решения однородных показательных уравнений второй степени

Изучим следующий важный тип показательных уравнений:

Уравнения такого типа называют однородными второй степени относительно функций f и g. В левой его части стоит квадратный трехчлен относительно f с параметром g или квадратный трехчлен относительно g с параметром f.

Методика решения:

Данное уравнение можно решать как квадратное, но легче поступить по-другому. Следует рассмотреть два случая:

В первом случае получаем

Во втором случае имеем право разделить на старшую степень и получаем:

Следует ввести замену переменных , получим квадратное уравнение относительно у:

Обратим внимание, что функции f и g могут быть любыми, но нас интересует тот случай, когда это показательные функции.

4. Примеры решения однородных уравнений

Перенесем все слагаемые в левую часть уравнения:

Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда :

Получаем:

Вводим замену: (согласно свойствам показательной функции)

Получили квадратное уравнение:

Определяем корни по теореме Виета:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его, получаем:

Воспользуемся свойствами степени и приведем все степени к простым основаниям:

Несложно заметить функции f и g:

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.

Урок и презентация на тему: "Показательные уравнения и показательные неравенства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Определение показательных уравнений

Ребята, мы изучили показательные функций, узнали их свойства и построили графики, разобрали примеры уравнений, в которых встречались показательные функции. Сегодня мы будем изучать показательные уравнения и неравенства.

Определение. Уравнения вида: $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ называются показательными уравнениями.

Вспомнив теоремы, которые мы изучали в теме "Показательная функция", можно ввести новую теорему:
Теорема. Показательное уравнение $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ равносильно уравнению $f(x)=g(x)$.

Примеры показательных уравнений

Пример.
Решить уравнения:
а) $3^{3x-3}=27$.
б) ${(\frac{2}{3})}^{2x+0,2}=\sqrt{\frac{2}{3}}$.
в) $5^{x^2-6x}=5^{-3x+18}$.
Решение.
а) Мы хорошо знаем, что $27=3^3$.
Перепишем наше уравнение: $3^{3x-3}=3^3$.
Воспользовавшись теоремой выше, получаем, что наше уравнение сводится к уравнению $3х-3=3$, решив это уравнение, получим $х=2$.
Ответ: $х=2$.

Б) $\sqrt{\frac{2}{3}}={(\frac{2}{3})}^{\frac{1}{5}}$.
Тогда наше уравнение можно переписать: ${(\frac{2}{3})}^{2x+0,2}={(\frac{2}{3})}^{\frac{1}{5}}={(\frac{2}{3})}^{0,2}$.
$2х+0,2=0,2$.
$х=0$.
Ответ: $х=0$.

В) Исходное уравнение равносильно уравнению: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ и $x_2=-3$.
Ответ: $x_1=6$ и $x_2=-3$.

Пример.
Решить уравнение: $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=16*{(0,0625)}^{x+1}$.
Решение:
Последовательно выполним ряд действий и приведем обе части нашего уравнения к одинаковым основаниям.
Выполним ряд операций в левой части:
1) ${(0,25)}^{x-0,5}={(\frac{1}{4})}^{x-0,5}$.
2) $\sqrt{4}=4^{\frac{1}{2}}$.
3) $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=\frac{{(\frac{1}{4})}^{x-0,5}}{4^{\frac{1}{2}}}= \frac{1}{4^{x-0,5+0,5}}=\frac{1}{4^x}={(\frac{1}{4})}^x$.
Перейдем к правой части:
4) $16=4^2$.
5) ${(0,0625)}^{x+1}=\frac{1}{{16}^{x+1}}=\frac{1}{4^{2x+2}}$.
6) $16*{(0,0625)}^{x+1}=\frac{4^2}{4^{2x+2}}=4^{2-2x-2}=4^{-2x}=\frac{1}{4^{2x}}={(\frac{1}{4})}^{2x}$.
Исходное уравнение равносильно уравнению:
${(\frac{1}{4})}^x={(\frac{1}{4})}^{2x}$.
$x=2x$.
$x=0$.
Ответ: $х=0$.

Пример.
Решить уравнение: $9^x+3^{x+2}-36=0$.
Решение:
Перепишем наше уравнение: ${(3^2)}^x+9*3^x-36=0$.
${(3^x)}^2+9*3^x-36=0$.
Давайте сделаем замену переменных, пусть $a=3^x$.
В новых переменных уравнение примет вид: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ и $a_2=3$.
Выполним обратную замену переменных: $3^x=-12$ и $3^x=3$.
На прошлом уроке мы узнали, что показательные выражения могут принимать только положительные значения, вспомните график. Значит, первое уравнение не имеет решений, второе уравнение имеет одно решение: $х=1$.
Ответ: $х=1$.

Давайте составим памятку способов решения показательных уравнений:
1. Графический метод. Представляем обе части уравнения в виде функций и строим их графики, находим точки пересечений графиков. (Этим методом мы пользовались на прошлом уроке).
2. Принцип равенства показателей. Принцип основан на том, что два выражения с одинаковыми основаниями равны, тогда и только тогда, когда равны степени (показатели) этих оснований. $a^{f(x)}=a^{g(x)}$ $f(x)=g(x)$.
3. Метод замены переменных. Данный метод стоит применять, если уравнение при замене переменных упрощает свой вид и его гораздо легче решить.

Пример.
Решить систему уравнений: $\begin {cases} {27}^y*3^x=1, \\ 4^{x+y}-2^{x+y}=12. \end {cases}$.
Решение.
Рассмотрим оба уравнения системы по отдельности:
$27^y*3^x=1$.
$3^{3y}*3^x=3^0$.
$3^{3y+x}=3^0$.
$x+3y=0$.
Рассмотрим второе уравнение:
$4^{x+y}-2^{x+y}=12$.
$2^{2(x+y)}-2^{x+y}=12$.
Воспользуемся методом замены переменных, пусть $y=2^{x+y}$.
Тогда уравнение примет вид:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ и $y_2=-3$.
Перейдем к начальным переменным, из первого уравнения получаем $x+y=2$. Второе уравнение не имеет решений. Тогда наша начальная система уравнений, равносильна системе: $\begin {cases} x+3y=0, \\ x+y=2. \end {cases}$.
Вычтем из первого уравнения второе, получим: $\begin {cases} 2y=-2, \\ x+y=2. \end {cases}$.
$\begin {cases} y=-1, \\ x=3. \end {cases}$.
Ответ: $(3;-1)$.

Показательные неравенства

Перейдем к неравенствам. При решении неравенств необходимо обращать внимание на основание степени. Возможны два варианта развития событий при решении неравенств.

Теорема. Если $а>1$, то показательное неравенство $a^{f(x)}>a^{g(x)}$ равносильно неравенству $f(x)>g(x)$.
Если $0a^{g(x)}$ равносильно неравенству $f(x)

Пример.
Решить неравенства:
а) $3^{2x+3}>81$.
б) ${(\frac{1}{4})}^{2x-4} в) ${0,3}^{x^2+6x}≤{0,3}^{4x+15}$.
Решение.
а) $3^{2x+3}>81$.
$3^{2x+3}>3^4$.
Наше неравенство равносильно неравенству:
$2x+3>4$.
$2x>1$.
$x>0,5$.

Б) ${(\frac{1}{4})}^{2x-4} ${(\frac{1}{4})}^{2x-4} В нашем уравнении основание при степени меньше 1, тогда при замене неравенства на эквивалентное необходимо поменять знак.
$2x-4>2$.
$x>3$.

В) Наше неравенство эквивалентно неравенству:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Воспользуемся интервальным методом решения:
Ответ: $(-∞;-5]U}