Давление пучка света. Давление света — Гипермаркет знаний. Анти давление света

Давлением света называется давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Существование давления было предсказано Дж. Максвеллом в его электромагнитной теории света.

Если, например, электромагнитная волна падает на металл (рис. 19.9), то под действием электрического поля волны с напряженностью \(\vec E\) электроны поверхностного слоя металла будут двигаться в направлении, противоположном вектору \(\vec E,\) со скоростью \(\vec \upsilon = const.\) Магнитное поле волны с индукцией \(~В\) действует на движущиеся электроны с силой Лоренца F Л в направлении, перпендикулярном поверхности металла (согласно правилу левой руки). Давление р, оказываемое волной на поверхность металла, можно рассчитать как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

\(p = \dfrac{ \sum_{n=1}^n \vec F_{iL} }{S}.\)

На основании электромагнитной теории Максвелл получил формулу для светового давления. С ее помощью он рассчитал давление солнечного света в яркий полдень на абсолютно черное тело, расположенное перпендикулярно солнечным лучам. Это давление оказалось равным 4,6 мкПа:

\(~p = (1 + \rho)\dfrac{J}{c}.\)

где J - интенсивность света, \(~\rho\) - коэффициент отражения света (см. § 16.3), с - скорость света в вакууме. Для зеркальных поверхностей \(~\rho = 1,\) при полном поглощении (для абсолютно черного тела) \(~\rho = 0\)

С точки зрения квантовой теории, давление является следствием того, что у фотона имеется импульс \(p_f = \dfrac{h \nu}{c}.\) Пусть свет падает перпендикулярно поверхности тела и за 1 с на 1 м 2 поверхности падает N фотонов. Часть из них поглотится поверхностью тела (неупругое соударение), и каждый из поглощенных фотонов передает этой поверхности свой импульс \(p_f = \dfrac{h \nu}{c}.\) Часть же фотонов отразится (упругое соударение). Отраженный фотон полетит от поверхности в противоположном направлении. Полный импульс, переданный поверхности отраженным фотоном, будет равен

\(\Delta p_f = p_f - (-p_f) = 2p_f = 2\dfrac{h \nu}{c}.\)

Давление света на поверхность будет равно импульсу, который передают за 1 с все N фотонов, падающих на 1 м 2 поверхности тела (\(F\Delta t=\Delta p \Rightarrow F=\frac{\Delta p}{\Delta t}; p = \frac{F}{S}=\frac{\Delta p}{S\Delta t}\)). Если \(~\rho\) - коэффициент отражения света от произвольной поверхности, \(k\) - коэффициент пропускания света, то \(~\rho \cdot N\) - это число отраженных фотонов, а \(~(1 - k - \rho)N\) - число поглощенных фотонов. Следовательно, давление света

\(p = 2 \rho N \dfrac{h \nu}{c}+(1-k-\rho)N\dfrac{h \nu}{c} = (1 - k + \rho) N \dfrac{h \nu}{c}.\)

Произведение представляет собой энергию всех фотонов, падающих на 1 м 2 поверхности за 1 с. Это есть интенсивность света (поверхностная плотность потока излучения падающего света):

\(Nh\nu = \dfrac{W}{S \cdot t} = I.\)

Таким образом, давление света \(p = (1 - k + \rho)\dfrac{I}{c}.\)

Предсказанное Максвеллом световое давление было экспериментально обнаружено и измерено русским физиком П. Н. Лебедевым. В 1900 г. он измерил давление света на твердые тела, а в 1907-1910 гг. - давление света на газы.

Прибор, созданный Лебедевым для измерения давления света, представлял собой очень чувствительный крутильный динамометр (крутильные весы). Его подвижной частью являлась подвешенная на тонкой кварневой нити легкая рамка с укрепленными на ней крылышками - светлыми и черными дисками толщиной до 0,01 мм. Крылышки делали из металлической фольги (рис. 19.10). Рамка была подвешена внутри сосуда, из которого откачали воздух.

Свет, падая на крылышки, оказывал на светлые и черные диски разное давление. В результате на рамку действовал вращающий момент, который закручивал нить подвеса. По углу закручивания нити определялось давление света.

Трудности измерения светового давления вызывались его исключительно малым значением и существованием явлений, сильно влияющих на точность измерений. К их числу относилась невозможность полностью откачать воздух из сосуда, что приводило к возникновению так называемого радиометрического эффекта.

Сущность этого явления в следующем. Сторона крылышек, обращенная к источнику света, нагревается сильнее противоположной стороны. Поэтому  молекулы воздуха, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны. Так появляется дополнительный вращающий момент.

Схема установки Лебедева для измерения давления света на газы изображена на рисунке 19.11. Свет, проходящий сквозь стеклянную стенку А, действует на газ, заключенный в цилиндрическом канале В. Под давлением света газ из канала В перетекает в сообщающийся с ним канал С. В канале С находится легкий подвижный поршень D, подвешенный на тонкой упругой нити Е, перпендикулярной плоскости чертежа. Световое давление рассчитывалось по углу закручивания нити.

Даже Вы достигшие высот,

Знайте и примите то в расчет,

Что и Солнце в небе не гордится

И Земле свои лучи несет!

(Мирза-Шафи Вазех)

Вот здесь мы подошли к тому моменту, когда настало время разобраться со второй трудностью – это давление света , указанной в статье: .

Две трудности, которые не позволяли признать фотон в качестве переносчика гравитации.

Напомню, первая трудность – это отдача, с которой мы разбирались на протяжении нескольких статей « », « », « », « ».

Вторая трудность связана с явлением, которое вошло в научную среду как «давление света».

Солнце, с одной стороны, притягивает Землю, а с другой, создает на нее давление! Согласитесь – парадоксальное явление.

Впервые мысль о существовании светового давления высказал И.Кеплер для объяснения отклонения кометных хвостов от Солнца. Позднее Д. Максвелл, после разработки теории электромагнетизма, вывел математические принципы существования светового давления.

По всем расчетам получается, что сила этого давления мала, солнечный свет должен давить на квадратный метр черной поверхности, расположенной перпендикулярно лучам, с силой F=4,5·10 -6 Н . Измерить такую силу на опыте очень трудно, но эти трудности в 1900 году попытался преодолеть русский физик П.Н. Лебедев. С помощью крутильных весов, зеркал и источника света ему, якобы, удалось подтвердить гипотезу Максвелла (рис. 1). В физике укоренилось мнение, что несмотря на то, что давление света на 11 порядков величины меньше атмосферного, тем не менее, именно оно удерживает Солнце от гравитационного коллапса, а также направляет хвосты комет от Солнца. По этой причине иногда кометы летят хвостом вперед.

Про кометы, которые своими хвостами прокладывают курс вокруг Солнца, а сейчас все внимание на высказанный парадокс и трудности, которые мы вроде бы преодолеваем, но тем самым создаем другие, т.к. они начинают множиться.

Во всех учебниках и не совсем учебниках, переписанных друг у друга, говорится, что если фотон имеет массу и импульс, то он должен оказывать данной массой и импульсом давление.

Характерная фраза из учебной литературы: «Результаты опытов Лебедева, Комптона, а также опытов по изучению фотоэффекта подтвердили, что фотоны обладают импульсом».

А уж коли фотоны наделены этим импульсом, то они должны этим импульсом на что-то воздействовать. Поэтому все объяснения светового давления сводятся к аналогам механических систем как в макромире: «Если рассматривать свет как поток фотонов, то, согласно принципам классической механики, частицы при ударе о тело должны передавать ему импульс, другими словами - оказывать давление».

У меня совершенно противоположное толкование принципа передачи энергии. Фотоны это не механические частицы, которые как метеориты могут ударить в землю и она получит импульсы отдачи. Здесь механика не проходит, т.к. фотоны внедряются не упруго, они внедряются в родственную им среду – в электромагнитный эфир вещества. Взаимодействие фотона с атомами данного вещества происходит на полевом уровне. Импульс движения в веществе действительно возникает, только не отдачи, а наоборот – придачи (навстречу движения фотона), (см. «).

Давление света сопоставляют с давлением электромагнитного излучения внутри звезд, где оно может достигать громадного значения и это ставят ему в заслугу. Поскольку якобы силы светового давления наряду с гравитационными силами играют существенную роль во внутризвёздных процессах. Безусловно, давление внутри звезд зашкаливает, но давление не создается само собой – его создает гравитация. Не давление создает гравитацию, а давление есть производная от гравитации. А это, уже – две большие разницы.

Все источники, излагающие тему о давлении света, о его экспериментальной проверке, отправляют к Лебедеву. Но со времени знаменитого эксперимента прошло 113 лет. И что, за эту сотню с лишним лет ни одна лаборатория не удосужилась перепроверить данный опыт? Я думаю, что сегодня, когда мы строим такие мастодонты науки, как БАК (большой адронный коллайдер), то изготовить копеечные крутильные весы, не составило бы особых затрат. поэтому повторение опыта по существованию давления света для науки было бы весьма полезно.

В то же время не исключаю, что такие опыты уже были проведены, а может и неоднократно, но результатов не было. Поэтому ни опровержения, ни подтверждения, мы сегодня не имеем.

Могу предположить, почему экспериментаторы не публиковали свои отчеты. Элементарно, побоялись – засмеют! Данный опыт довольно тонкий и степень ошибки велика. А потом, авторитет Лебедева продолжает давлеть, поэтому проще промолчать, чем, не дай Бог, не в том знаке поставить запятую.

Теперь по поводу парадокса одновременности притяжения и отталкивания. Природа в своей сущности не такая «умная», как человек. только ученый физик, глядя на Солнце, может сказать: Солнце ослепительный источник белого света и в то же время добавить, что Солнце абсолютно черное тело. В природе никогда не наблюдается антагонизмов и противоположностей одновременно. Звуковые, оптические волны всегда исходят из центра генерации и никогда не наоборот. Холодное тело никогда не может нагреть горячее. Даже ветер никогда не дует навстречу тому же ветру, несмотря на то, что постоянно меняет направление. Противопоставление «дуализма фотона», в данном случае это явление не является антагонизмом, а проявление одних и тех же свойств, но выявленные разными приборами.

Наука, после опытов Лебедева, уже более века пребывает в каком-то благодушии, несмотря парадоксальное противоречие. Две силы, создаваемые одним источником, не могут и не должны быть направлены противоположно или навстречу друг другу. Притом, одна сила, с помощью которой Солнце притягивает Землю, превосходит вторую (силу давления) в 10 13 (десять триллионов) раз.

Исходя из таких логических посылок можно сделать вывод: в природе должно быть только одно либо притяжение, либо отталкивание (давление). В природе не может быть парадоксов, там все логически сбалансировано, поэтому, чтобы не существовало данное противоречие, необходимо одну из сил исключить. Что будем исключать? Давление света или само притяжение Земли к Солнцу? Понятно, что силу притяжения не может отменить даже сам Бог, а силу давления света , можно исключить. Не волнуйтесь – это не волюнтаризм. Давление света необходимо исключить по причине – как не доказанное!

Пардон, а как же Петр Лебедев, с его изящным опытом?

Считаю, что, несмотря на все ухищрения и трудности по преодолению радиационного влияния на конечный результат, Лебедеву, в его опытах, так и не удалось от него отстроиться. Вакуум в экспериментах Лебедева составлял около 10 -4 мм рт. ст. – по нынешним меркам это уже не вакуум. Поэтому, считаю, что данный эксперимент не подтверждает присутствие такого явления, как давление света. И в этом понимании я не одинок. Я сейчас призову на помощь лорда Кельвина, который никогда не верил в существование давления света. Как пишут историки, он якобы неохотно сдался после того, как Лебедев выступил с докладом в Париже по оглашению своих результатов.

В интернете есть публикации, авторы которых также недоуменно вопрошают по данному вопросу, доколе? Например, Гришаев А.А. , с которым мы сходимся во мнениях пожалуй только по этой проблеме. Он в конце параграфа своей статьи «Опыты Лебедева по исследованию светового давления» делает следующий вывод: «Как можно видеть, для маятника N2 отношение средних величин эффектов для чернённых и зеркальных мишеней составило всего-то 1.2, а для маятника N3 – 1.3. Эти цифры говорят о том, что Лебедев имел дело не с «максвелловским давлением», а, по-видимому, с остаточными радиометрическими силами. Ещё более странное впечатление производит работа Лебедева, в которой он исследовал «давление света» на газы».

В этой же статье автором довольно подробно описаны эффекты Комптона и Мёссбауера. Автор приходит к выводу, что рентгеновские и γ-кванты не переносят импульс, тем самым и нет «отдачи». Не буду полемизировать с автором насчет первого постулата, с коим я не согласен, как говорят, время рассудит. Что касается второго посыла, то моя платформа строится именно на отсутствии отдачи, но с непременным присутствием - придачи.

Здесь уместно привести еще один источник, где прямо указывается на «придачу» (Сайт: энциклопедия физики и техники) . Вот выдержка из данной статьи: «Специфические особенности Д. с. (давление света) обнаруживаются в разреженных атомных системах при резонансном рассеянии интенсивного света, когда частота лазерного излучения равна частоте атомного перехода. Поглощая фотон, атом получает импульс в направлении лазерного пучка и переходит в возбуждённое состояние. Далее, спонтанно испуская фотон, атом приобретает импульс (световая отдача) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов произвольно направленные импульсы световой отдачи взаимно гасятся, и, в конечном итоге, резонансный атом получает импульс, направленный вдоль светового луча - резонансное Д. с. (Конец цитаты).

Небольшое замечание относительно давления света на кометные хвосты. Эта тема требует более детального разбирательства, как было отмечено выше, по данной проблеме будет написана отдельная статья. Сейчас просто для читателей хочу заострить следующий вопрос. Некоторые кометные хвосты могут вытягиваться более чем на сотни миллионов километров. Вопрос: почему кометные хвосты уходят в тень головы кометы? Их туда загоняет световое давление? Но в тени нет того самого света, а хвосты проходят по более удаленным траекториям, а значит и с гораздо большей скоростью, чем их головы, мало того, они их еще и обгоняют. Тогда куда смотрит световое давление, когда хвост несется впереди ядра кометы. Почему на отстающий хвост давление света жестко реагирует, а на обгоняющий хвост не обращает внимания? Что, очередной парадокс?

Все попытки объяснить давление света, в соответствии с классической механикой, я считаю не корректными. Поэтому нужно поставить тот же опыт, что и у Лебедева, только с другой целью.

Анти давление света

Притяжение света

Лебедев в своих экспериментах для отрезания тепловых волн ставил водяной фильтр (поз. 5, рис. 1), он предполагал, что можно отфильтровать тепловую составляющую.

В данном направлении хочу добавить свои соображения, возможно будущие или настоящие исследователи меня поправят. Никакие фильтры не помогут избавиться от теплового воздействия на ход данного эксперимента. Если вы отрежете красную область, то эксперимент будет не полным. С другой стороны, весь спектр света, попадая на вещество или те же «крылышки Лебедева» будет генерировать в них свою теплоту, такова природа.

А теперь тема и задача для будущих Нобелевских лауреатов, предлагаю несколько изменить конструкцию крылышек Лебедева. Нужно пойти в противоположном направлении – не уменьшать толщину мишени, а увеличить ее, притом сделать сэндвич. С освещенной стороны абсолютно черная мишень 1, а с обратной стороны – теплоотражатель 2 (рис. 2). В этом случае должен возникнуть обратный эффект – крылышко должно двинуться навстречу световому потоку, невзирая на «давление света». Тем самым Вы докажете обратный эффект анти давления света, или притяжения света. А если сказать обобщенно, то вращение черных крылышек по вектору приходящего света (источника), будет доказательством того, что гравитацию порождает теплота.

Безусловно вакуум должен быть 100-процентный. Возможно источник света следует разместить в той же колбе, что и приемник, только колба должна быть большого объема.

Желаю исследователям полного успеха.

На чем основаны мои предположения, что мишень будет двигаться на источник. В физике есть несколько аналогий такого рода. Например, фотоэффект, рентгеновское излучение, γ-излучение. При фотоэффекте, электроны, вылетающие из катода устремляются навстречу УФ излучению. При тормозном рентгеновском излучении генерируются фотоны (кванты), также вылетающие встречно излучателю. Все они частицы, волны несут импульсы энергии. Но в отличие от электрона, фотоны безмассовые частицы и при подводе внешней энергии вылетают без отдачи, но зато прихватывают с собой импульс вещества. Вещество получает импульс придачи - « ». Мишень должна двинуться на источник.

К вышесказанному хочу добавить, что, в свое время астрофизик Н.А. Козырев для экспериментов использовал разноплечие крутильные весы (об этом я коснусь в статье «квантовая гравитация»). Так вот, этот прибор чутко реагировал на тепло и холод. Часть этих опытов мне удалось повторить, действительно, эффект присутствует.

Хочу обратить внимание школьников – в видео вертушка крутится не из-за действия давления света на ее крылышки, а по воле программиста. В эксперименте П. Лебедева ничего не крутилось, а только немного поворачивалось. А вот какая сила поворачивала крылышки? Я уже об этом высказался.

Предлагаю отщипнуть 0,01% от бюджета БАК и это будет около 1 млн долларов. Думаю для повторения эксперимента Лебедева будет достаточно.

Ау! Научное сообщество! Необходимо, наконец-то, поставить точку в вопросе: давит или не давит на нас свет, а то каждый человек до конца своей жизни так и не может узнать возникал ли у него лишний вес, когда он выходил из тени на Солнце?

ДАВЛЕНИЕ CBETA, давление, оказываемое светом на отражающие и поглощающие тела, частицы, а также отдельные молекулы и атомы; одно из пондеромоторных действий света, связанное с передачей импульса электромагнитного поля веществу. Гипотеза о существовании давления света была впервые высказана И. Кеплером в 17 веке для объяснения отклонения хвостов комет от Солнца. Теория давления света в рамках классической электродинамики дана Дж. К. Максвеллом в 1873. В ней давления света объясняется рассеянием и поглощением электромагнитной волны частицами вещества. В рамках квантовой теории давления света - результат передачи импульса фотонами телу.

При нормальном падении света на поверхность твёрдого тела давления света р определяется формулой:

р = S(1 + R)/с, где

S - плотность потока энергии (интенсивность света), R - коэффициент отражения света от поверхности, с - скорость света. В обычных условиях давление света малозаметно. Даже в мощном лазерном луче (1 Вт/см 2) давления света порядка 10 -4 г/см 2 . Широкий по сечению лазерный луч можно сфокусировать, и тогда сила давления света в фокусе луча может удерживать на весу миллиграммовую частичку.

Экспериментально давление света на твёрдые тела было впервые исследовано П. Н. Лебедевым в 1899 году. Основные трудности в экспериментальном обнаружении давления света заключались в выделении его на фоне радиометрических и конвективных сил, величина которых зависит от давления окружающего тело газа и при недостаточном вакууме может превышать давление света на несколько порядков. В опытах Лебедева в вакуумированном (давление порядка 10 -4 мм ртутного столба) стеклянном сосуде на тонкой серебряной нити подвешивались коромысла крутильных весов с закреплёнными на них тонкими дисками-крылышками, которые облучались. Крылышки изготавливались из различных металлов и слюды с идентичными противоположными поверхностями. Последовательно облучая переднюю и заднюю поверхности крылышек различной толщины, Лебедев сумел нивелировать остаточное действие радиометрических сил и получить удовлетворительное (с ошибкой ± 20%) согласие с теорией Максвелла. В 1907-10 Лебедев исследовал давление света на газы.

Давление света играет большую роль в астрономических и атомных явлениях. Давление света в звёздах наряду с давлением газа обеспечивает их стабильность, противодействуя силам гравитации. Действием давления света объясняются некоторые формы кометных хвостов. При испускании фотона атомами происходит так называемая световая отдача, и атомы получают импульс фотона. В конденсированных средах давление света может вызывать ток носителей заряда (смотри Увлечение электронов фотонами). Давление солнечного излучения пытаются использовать для создания разновидности космического движителя - так называемого солнечного паруса.

Специфические особенности давления света обнаруживаются в разреженных атомных системах при резонансном рассеянии интенсивного света, когда частота лазерного излучения равна частоте атомного перехода. Поглотив фотон, атом получает импульс в направлении лазерного пучка и переходит в возбуждённое состояние. Далее, спонтанно испуская фотон, атом приобретает импульс (световая отдача) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов атом получает постоянно импульсы, направленные вдоль светового луча, что и создаёт давление света.

Сила F резонансного давления света на атом определяется как импульс, переданный потоком фотонов с плотностью N в единицу времени: F = Nћkσ, где ћk = 2πћ/λ - импульс одного фотона, σ ≈ λ 2 - сечение поглощения резонансного фотона, λ - длина волны света, k - волновое число, ћ - постоянная Планка. При относительно малых плотностях излучения резонансное давление света прямо пропорционально интенсивности света. При больших плотностях потока фотонов N происходит насыщение поглощения и насыщение резонансного давления света (смотри Насыщения эффект). В этом случае давление света создают фотоны, спонтанно испускаемые атомами со средней частотой γ (обратной времени жизни возбуждённого атома) в случайном направлении. Сила светового давления перестаёт зависеть от интенсивности, а определяется скоростью спонтанных актов испускания: F≈ћkγ. Для типичных значений γ ≈ 10 8 с -1 и λ ≈0,6 мкм сила давления света.F≈5·10 -3 эВ/см; при насыщении резонансное давление света может создавать ускорение атомов до 10 5 g (g - ускорение свободного падения). Столь большие силы позволяют селективно управлять атомными пучками, варьируя частоту света и по-разному воздействуя на атомы с малоразличающимися частотами резонансного поглощения. В частности, удаётся сжимать максвелловское распределение по скоростям, убирая из пучка высокоскоростные атомы. Свет лазера направляют навстречу атомному пучку, подбирая при этом частоту и форму спектра излучения так, чтобы давление света тормозило быстрые атомы с большим смещением резонансной частоты (смотри Доплера эффект). Резонансное давление света можно использовать для разделения газов: при облучении двухкамерного сосуда, наполненного смесью двух газов, атомы одного из которых находятся в резонансе с излучением, резонансные атомы под действием давления света перейдут в дальнюю камеру.

Некоторые особенности имеет резонансное давление света на атомы, помещённые в поле интенсивной стоячей волны. С квантовой точки зрения стоячая волна, образованная встречными потоками фотонов, вызывает толчки атома, обусловленные поглощением фотонов и их стимулированным испусканием. Средняя сила, действующая на атом, при этом не равна нулю вследствие неоднородности поля на длине волны. С классической точки зрения сила давления света обусловлена действием пространственно неоднородного поля на наведённый им атомный диполь. Эта сила минимальна в узлах, где дипольный момент не наводится, и в пучностях, где градиент поля обращается в нуль. Максимальная сила давления света по порядку величины равна F≈ ±Ekd (знаки относятся к синфазному и противофазному движению диполей с моментом d по отношению к полю с напряжённостью Е). Эта сила может достигать гигантских значений: d≈ 1 дебай, λ≈0,6 мкм и Е≈ 10 6 В/см сила F≈5∙10 2 эВ/см. Поле стоячей волны расслаивает пучок атомов, проходящий сквозь луч света, так как диполи, колеблющиеся в противофазе, двигаются по различным траекториям, подобно атомам в Штерна-Герлаха опыте. На атомы, двигающиеся вдоль лазерного луча, действует радиальная сила давления света, обусловленная радиальной неоднородностью плотности светового поля. Как в стоячей, так и в бегущей волне происходит не только детерминированное движение атомов, но и их диффузия в фазовом пространстве, так как поглощение и испускание фотонов - квантовые случайные процессы. Резонансное давления света могут испытывать и квазичастицы в твёрдых телах: электроны, экситоны и др.

Лит.: Лебедев П. Н. Собр. соч. М., 1963; Эшкин А. Давление лазерного излучения // Успехи физических наук. 1973. Т. 110. Вып. 1; Казанцев А. П. Резонансное световое давление // Там же. 1978. Т. 124. Вып. 1; Летохов В. С., Миногин В. Г. Давление лазерного излучения на атомы. М., 1986.

С. Г. Пржибельский.

— давление, оказываемое светом на отражающие и поглощающие тела, частицы, а также отдельные молекулы и атомы; одно из пондеромоторных действий света, связанное с передачей импульса электромагнитного поля веществу. Гипотеза о существовании давления света была впервые высказана И. Кеплером (J.Kepler) в 17 в. для объяснения отклонения хвостов комет от Солнца. Теория давление света в рамках классической электродинамики дана Дж. Максвеллом (J.Maxwell) в 1873. В ней давление света тесно связано с рассеянием и поглощением электромагнитной волны частицами вещества. В рамках квантовой теории давление света — результат передачи импульса фотонами телу.

В 1873 г. Максвелл, исходя из представлений об электромагнитной природе света, предсказал, что свет должен оказывать давление на препятствия. Это давление обусловлено силами, действующими со стороны электрической и магнитной составляющих электромагнитного поля волны на заряды в освещаемом теле.

Пусть свет падает на проводящую (металлическую) пластину. Электрическая составляющая поля волны воздействует на свободные электроны с силой

F эл =q·E ,

где q — заряд электрона. E — напряженность электрического поля волны.

Электроны начинают двигаться со скоростью V (рис.1) Так как направление Е в волне периодически меняется на противоположное, то и электроны периодически изменяют направление своего движения на противоположное, т.е. совершают вынужденные колебания вдоль направления электрического поля волны.


Рисунок 1 – Движение электронов

Магнитная составляющая В электромагнитного поля световой волны действует с силой Лоренца

F л = q·V·B,

Направление которой в соответствии с правилом левой руки совпадает с направлением распространения света. Когда направления E и B меняются на противоположные, то изменяется и направление скорости электрона, а направление силы Лоренца остается неизменным. Равнодействующая сил Лоренца, действующих на свободные электроны в поверхностном слое вещества, представляет собой силу, с которой свет давит на поверхность.


Рисунок 2

1- зеркальное крылышко; 2- зачерненное крылышко; 3-зеркало; 4-шкала для измерения угла поворота; 5-стеклянная нить

Давление света может быть объяснено и на основе квантовых представлений о свете. Как указано выше, фотоны обладают импульсом. При столкновении фотонов с веществом часть фотонов отражается, а часть поглощается. Оба процесса сопровождаются передачей импульса от фотонов к освещаемой поверхности. Согласно второму закону Ньютона, изменение импульса тела означает, что на тело действует сила светового давления F дав . Отношение модуля этой силы к площади поверхности тела равно давлению света на поверхность: P = F дав /S .

Существование давления света было экспериментально подтверждено Лебедевым. Прибор, созданный Лебедевым, представлял очень чувствительные крутильные весы. Подвижной частью весов являлась подвешенная на тонкой кварцевой нити легкая рамка со светлыми и темными крылышками толщиной 0.01 мм. Cвет оказывал разное давление на светлые (отражающие) и темные (поглощающие) крылышки. В результате на рамку действовал вращающий момент, который закручивал нить подвеса. По углу закручивания нити определялось давление света.

Величина давления зависит от интенсивности света. С ростом интенсивности растет число фотонов, взаимодействующих с поверхностью тела, и, следовательно, импульс, получаемый поверхностью.
Мощные лазерные пучки создают давление, превышающее атмосферное.

При нормальном падении света на поверхность твердого тела давление света определяется формулой p = S (1 — R )/c , где S — плотность потока энергии (интенсивность света), R — коэффициент отражения света от поверхности.

Экспериментально давление света на твердые тела было впервые исследовано П.Н.Лебедевым в 1899. Основные трудности в экспериментальном обнаружении давления света заключались в выделении его на фоне радиометрических и конвективных сил, величина которых зависит от давления окружающего тело газа и при недостаточном вакууме может превышать давление света на несколько порядков. В опытах Лебедева в вакуумированном ( мм рт. ст.) стеклянном сосуде на тонкой серебряной нити подвешивались коромысла крутильных весов с закрепленными на них тонкими дисками-крылышками, которые и облучались. Крылышки изготавливались из различных металлов и слюды с идентичными противоположными поверхностями. Последовательно облучая переднюю и заднюю поверхности крылышек различной толщины, Лебедеву удалось нивелировать остаточное действие радиометрических сил и получить удовлетворительное (с ошибкой %) согласие с теорией Максвелла. В 1907-10 Лебедев выполнил еще более тонкие эксперименты по исследованию давления света на газы и также получил хорошее согласие с теорией.

Давление света играет большую роль в астрономических и атомных явлениях. В астрофизике давление света наряду с давлением газа обеспечивает стабильность звёзд, противодействуя силам гравитации. Действием давления света объясняются некоторые формы кометных хвостов. К атомным эффектам относится т. н. световая отдача, которую испытывает возбужденный атом при испускании фотона.

В конденсированных средах давление света может вызывать ток носителей (смотри Светоэлектрический эффект).

Специфические особенности давления света обнаруживаются в разреженных атомных системах при резонансном рассеянии интенсивного света, когда частота лазерного излучения равна частоте атомного перехода. Поглощая фотон, атом получает импульс в направлении лазерного пучка и переходит в возбужденное состояние. Далее, спонтанно испуская фотон, атом приобретает импульс (световая отдача ) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов произвольно направленные импульсы световой отдачи взаимно гасятся, и, в конечном итоге, резонансный атом получает импульс, направленный вдоль светового луча резонансное давление света . Сила F резонансного давления света на атом определяется как импульс, переданный потоком фотонов с плотностью N в единицу времени: , где — импульс одного фотона, — сечение поглощения резонансного фотона, — длина волны света. При относительно малых плотностях излучения резонансное давление света прямо пропорционально интенсивности света. При больших плотностях N в связи с конечным () временем жизни возбужденного уровня происходит насыщение поглощения и насыщение резонансного давления света (см. Насыщения эффект). В этом случае давление света создают фотоны, снонтанно испускаемые атомами со средней частотой (обратной времени жизни возбужденного атома) в случайном направлении, определяемом диаграммой испускания атома. Сила светового давления перестаёт зависеть от интенсивности, а определяется скоростью спонтанных актов испускания: . Для типичных значений с -1 и мкм сила давления света эВ/см; при насыщении резонансное давление света может создавать ускорение атомов до 10 5
g (g
ускорение свободного падения). Столь большие силы позволяют селективно управлять атомными пучками, варьируя частоту света и по-разному воздействуя на группы атомов, мало отличающиеся частотами резонансного поглощения. В частности, удается сжимать максвелловское распределение по скоростям, убирая из пучка высокоскоростные атомы. Свет лазера направляют навстречу атомному пучку, подбирая при этом частоту и форму спектра излучения так, чтобы наиболее сильное тормозящее действие давления света испытывали наиболее быстрые атомы из-за их большего доплеровского смещения резонансной частоты. Другим возможным применением резонансного давления света является разделение газов: при облучении двухкамерного сосуда, наполненного смесью двух газов, один из которых находится в резонансе с излучением, резонансные атомы под действием давления света перейдут в дальнюю камеру.

Своеобразные черты имеет резонансное давление света на атомы, помещенные в поле интенсивной стоячей волны. С квантовой точки зрения стоячая волна, образованная встречными потоками фотонов, вызывает толчки атома, обусловленные поглощением фотонов и их стимулированным испусканием. Средняя сила, действующая на атом, при этом не равна нулю вследствие неоднородности поля на длине волны. С классической точки зрения сила давления света обусловлена действием пространственно неоднородного поля на наведенный им атомный диполь. Эта сила минимальна в узлах, где дипольный момент не наводится, и в пучностях, где градиент поля обращается в нуль. Максимальная сила давления света по порядку величины равна (знаки относятся к синфазному и противофазному движению диполей с моментом d по отношению к полю с напряжённостью E ). Эта сила может достигать гигантских значений: для дебай, мкм и В/см сила эВ/см.

Поле стоячей волны расслаивает пучок атомов, проходящий сквозь луч света, так как диполи, колеблющиеся в противофазе, двигаются по различным траекториям подобно атомам в опыте Штерна-Герлаха. В лазерных пучках на атомы, двигающиеся вдоль луча, действует радиальная сила давления света, обусловленная радиальной неоднородностью плотности светового поля.

Как в стоячей, так и в бегущей волне происходит не только детерминированное движение атомов, но и их диффузия в фазовом пространстве вследствие того, что акты поглощения и испускания фотонов — чисто квантовые случайные процессы. Коэффициент пространственной диффузии для атома с массой M в бегущей волне равен .

Подобное рассмотренному резонансное давление света могут испытывать и квазичастицы в твёрдых телах: электроны, экситоны и др.

Список литературы

    Мустафаев Р.А., Кривцов В.Г. Физика. М., 2006.

    Оказывается, давление могут создавать не только твёрдые тела, жидкости и газы. Пáдая на поверхность тела, световое электромагнитное излучение также оказывает на неё давление.

    Теория светового давления

    Иоганн Кеплер

    Впервые предположение о том, что давление света существует, было сделано немецким учёным Иоганном Кеплером в XVII веке. Изучая поведение комет, пролетающих вблизи Солнца, он обратил внимание на то, что хвост кометы всегда отклоняется в сторону, противоположную Солнцу. Кеплер предположил, что каким-то образом это отклонение вызывается воздействием солнечных лучей.

    Теоретически существование светового давления было предсказано в XIX веке британским физиком Джеймсом Клерком Максвеллом , создавшим электромагнитную теорию и утверждавшим, что свет - это также электромагнитные колебания, и он должен оказывать давление на препятствия.

    Джеймс Клерк Максвелл

    Свет - это электромагнитная волна. Она создаёт электрическое поле, под действием которого электроны в теле, встречающемся на её пути, совершают колебания. В теле возникает электрический ток, направленный вдоль напряжённости электрического поля. Со стороны магнитного поля на электроны действует сила Лоренца . Её направление совпадает с направлением распространения световой волны. Эта сила и есть сила светового давления .

    По расчётам Максвелла, солнечный свет производит на чёрную пластину, расположенную на Земле, давление определённой величины (р = 4 ·10 -6 Н/м 2). А если вместо чёрной пластины взять светоотражающую, то световое давление будет в 2 раза больше.

    Но это было всего лишь теоретическое предположение. Чтобы доказать его, нужно было подтвердить теорию практическим экспериментом, то есть измерить величину светового давления. Но так как его величина очень мала, то практически сделать это чрезвычайно сложно.

    Пётр Николаевич Лебедев

    На практике это осуществил русский физик-экспериментатор Пётр Николаевич Лебедев . Опыт, проведенный им в 1899 г., подтвердил предположение Максвелла о том, что световое давление на твёрдые тела существует.

    Опыт Лебедева

    Схематичное изображение эксперимента Лебедева

    Для проведения своего опыта Лебедев создал специальный прибор, который представлял собой стеклянный сосуд. Внутрь сосуда помещался лёгкий стерженёк на тонкой стеклянной нити. По краям этого стерженька были прикреплены тонкие лёгкие крылышки из различных металлов и слюды. Из сосуда выкачивался воздух. С помощью специальных оптических систем, состоящих из источника света и зеркал, пучок света направлялся на крылышки, расположенные с одной стороны стерженька. Под воздействием светового давления стерженёк поворачивался, и нить закручивалась на какой-то угол. По величине этого угла и определяли величину светового давления.

    Прибор Лебедева

    Но этот эксперимент не давал точных результатов. При его проведении существовали свои сложности. Так как вакуумных насосов в те времена не существовало, пользовались обычными механическими. А с их помощью в сосуде невозможно было создать абсолютный вакуум. Даже после откачивания в нём оставалось некоторое количество воздуха. Крылышки и стенки сосуда нагревались неодинаково. Сторона, обращённая к световому лучу, нагревалась быстрее. И это вызывало движение молекул воздуха. Наверх поднимались потоки более нагретого воздуха. Так как абсолютно вертикально крылышки установить невозможно, то эти потоки создавали дополнительные крутящие моменты. Кроме того, сами крылышки нагревались неодинаково. Сторона, обращённая к источнику света, нагревалась сильнее. В результате оказывалось дополнительное воздействие на угол поворота нити.

    Чтобы сделать эксперимент более точным, Лебедев взял сосуд очень большого объёма. Крылышко он сделал из двух пар очень тонких кружочков из платины. Причём толщина кружочков одной пары отличалась от толщины кружочков другой пары. По одну сторону стерженька кружочки были блестящими с обеих сторон, по другую - одну из сторон покрыли платиновой чернью. Пучки света направлялись на них то с одной, то с другой стороны, чтобы уравновесить силы, действующие на крылышки. В результате давление света на крылышки было измерено. Результаты опыта подтвердили теоретические предположения Максвелла о существовании светового давления. А его величина была почти такой же, как и предсказал Максвелл.

    В 1907 - 1910 г.г. с помощью более точных экспериментов Лебедев измерил давление света на газы.

    Свет, как любое электромагнитное излучение, обладает энергией Е .

    Его импульс р = E v / c 2 ,

    где v - скорость электромагнитного излучения,

    c - скорость света.

    Так как v = с , то р = E/с .

    С появлением квантовой теории свет стали рассматривать как поток фотонов - элементарных частиц, квантов света. Ударяясь о тело, фотоны передают ему свой импульс, то есть оказывают давление.

    Солнечный парус

    Фридрих Артурович Цандер

    Хоть величина светового давления очень мала, тем не менее, оно может принести пользу человеку.

    Ещё в 1920 г. советский учёный и изобретатель Фридрих Артурович Цандер , один из создателей первой ракеты на жидком топливе, выдвинул идею полетов в космос с помощью солнечного паруса . Она была очень проста. Солнечный свет состоит из фотонов. А они создают давление, передавая свой импульс любой освещённой поверхности. Следовательно, для того чтобы привести в движение космический аппарат, можно использовать давление, создаваемое солнечным светом или лазером на зеркальной поверхности. Такой парус не нуждается в ракетном топливе, и время его действия не ограничено. А это позволит взять больше груза по сравнению с обычным космическим кораблём с реактивным двигателем.

    Солнечный парус

    Но пока что это только проекты по созданию звездолётов с солнечным парусом в качестве основного двигателя.