Генная инженерия где применяется. Что такое генная инженерия и что она изучает? Рекомбинантные ДНК и биоэтика: наступить на горло собственной песне

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов прежде всего связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

1. Рестрикция - разрезание ДНК, например, человека на фрагменты.

2. Лигирование - фрагмент с нужным геном включают в плазмиды и сшивают их.

3. Трансформация -введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.

4. Скрининг - отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции.

Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию.

Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.

Министерство Сельского Хозяйства Российской Федерации

ФГОУ ВПО «Уральская Государственная сельскохозяйственная Академия»

по дисциплине «Ветеринарная генетика»

на тему: «Генная инженерия – настоящее и будущее»

Выполнила:

Студентка ФВМ

2 курс 2 группа 3 п/группа

Шмакова Т.С.

Проверила:

Ерофеева Л.Ф.

Екатеринбург 2008

Введение

1. Методы генной инженерии

2. Достижения генной инженерии

3. Генная инженерия: за и против

4. Перспективы генной инженерии

Список использованной литературы

Введение

Генная инженерия – совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы. Генная инженерия служит для получения желаемых качеств изменяемого организма.

Генная инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя исследования таких биологических наук, как молекулярная биология, цитология, генетика, микробиология. Самым ярким событием, привлёкшим наибольшее внимание и очень важным по своим последствиям, была серия открытий, результатом которых явилось создание методов управления наследственностью живых организмов, причём управления путём проникновения в «святая святых» живой клетки – в её генетический аппарат.

Современный уровень наших знаний биохимии, молекулярной биологии и генетики позволяет рассчитывать на успешное развитие новой биотехнологии – генной инженерии , т.е. совокупности методов, позволяющих путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим. Цель генной инженерии – не воплощение в реальность мифов, а получение клеток (в первую очередь бактериальных), способных в промышленных масштабах нарабатывать некоторые «человеческие» белки.

1. Методы генной инженерии

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужой ген, плазмид. Плазмиды представляют собой кольцевые двухцепочечные молекулы ДНК, состоящие из нескольких пар нуклеотидов. Плазмиды являются автономными генетическими элементами, реплицирующимися (т.е. размножающимися) в бактериальной клетке не в то же время, что основная молекула ДНК. Хотя на долю плазмид приходится лишь небольшая часть клеточной ДНК, именно они несут такие жизненно важные для бактерии гены, как гены лекарственной устойчивости. Разные плазмиды содержат разные гены устойчивости к антибактериальным препаратам.

Большая часть таких препаратов – антибиотиков используется в качестве лекарств при лечении ряда заболеваний человека и домашних животных. Бактерия, имеющая разные плазмиды, приобретает устойчивость к различным антибиотикам, к солям тяжелых металлов. При действии определенного антибиотика на бактериальные клетки плазмиды, придающие устойчивость к нему, быстро распространяются среди бактерий, сохраняя им жизнь. Простота устройства плазмид и легкость, с которой они проникают в бактерии, используются генными инженерами для введения в клетки бактерий генов высших организмов.

Мощным инструментом генной инженерии являются ферменты – рестрикционные эндонуклеазы, или рестриктазы. Рестрикция буквально означает «ограничение». Бактериальные клетки вырабатывают рестриктазы для разрушения инородной, в первую очередь фаговой ДНК, что необходимо для ограничения вирусной инфекции. Рестриктазы узнают определенные последовательности нуклеотидов и вносят симметричные, расположенные наискось друг от друга, разрывы в цепях ДНК на равных расстояниях от центра участка узнавания. В результате на концах каждого фрагмента рестриктированной ДНК образуются короткие одноцепочечные «хвосты» (их еще называют «липкими» концами).

Весь процесс получения бактерий, называемый клонированием, состоит из последовательных стадий:

1. Рестрикция – разрезание ДНК человека рестриктазой на множество различных фрагментов, но с одинаковыми «липкими» концами. Такие же концы получают при разрезании плазмидной ДНК той же рестриктазой.

2. Лигитирование – включение фрагментов ДНК человека в плазмиды благодаря «сшиванию липких концов» ферментом лигазой.

3. Трансформация – введение рекомбинантных плазмид в бактериальные клетки, обработанные специальным образом – так, чтобы они на короткое время стали проницаемыми для макромолекул. Однако плазмиды проникают лишь в часть обработанных бактерий. Трансформированные бактерии вместе с плазмидой приобретают устойчивость к определенному антибиотику. Это позволяет их отделить от нетрансформированных бактерий, погибающих на среде, содержащей этот антибиотик. Для этого бактерии высеивают на питательную среду, предварительно разведя так, чтобы при рассеве клетки находились на значительном расстоянии друг от друга. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков – клон.

4. Скрининг – отбор среди клонов тех бактерий, которые несут нужный ген человека. Для этого все бактериальные колонии накрывают специальным фильтром. Когда его снимают, на нем остается отпечаток колоний, так как часть клеток из каждого клона прилипает к фильтру. Затем проводят молекулярную гибридизацию. Фильтры погружают в раствор с радиоактивно меченым зондом. Зонд – это полинуклеотид комплементарной части искомого гена. Он гибридизуется лишь с теми рекомбинантными плазмидами, которые содержат нужный ген. После гибридизации на фильтр в темноте накладывают рентгеновскую фотопленку и через несколько часов ее проявляют. Положение засвеченных участков на пленке позволяет найти среди множества клонов трансформированных бактерий те, которые имеют плазмиды с нужным геном.

Не всегда удается вырезать нужный ген с помощью рестриктаз. Поэтому в ряде случаев процесс клонирования начинают с целенаправленного получения нужного гена. Для этого из клеток человека выделяют и-РНК, являющуюся транскрипционной копией этого гена, и с помощью фермента – обратной транскриптазы синтезируют комплементарную ей цепь ДНК. Затем и-РНК, служившая матрицей при синтезе ДНК, уничтожается специальным ферментом, способным гидролизовать цепь РНК, спаренную с цепью ДНК. Оставшаяся цепь ДНК служит матрицей для синтеза обратной транскриптазой, комплетентарной второй цепи ДНК.

Получившаяся двойная спираль ДНК носит название к-ДНК (комплементарная ДНК). Она соответствует гену, с которого была считана и-РНК, запущенная в систему с обратной транскриптазой. Такая к-ДНК встраивается в плазмиду, которой трансформируют бактерии и получают клоны, содержащие только выбранные гены человека.

Чтобы осуществить перенос генов, необходимо выполнить следующие операции:

·Выделение из клеток бактерий, животных или растений тех генов, которые намечены для переноса.

·Создание специальных генетических конструкций, в составе которых намеченные гены будут внедряться в геном другого вида.

·Внедрение генетических конструкций сначала в клетку, а затем в геном другого вида и выращивание измененных клеток в целые организмы.

2. Достижения генной инженерии

генная инженерия биотехнология наследственность

Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии.

Так, в 1980 году гормон роста – соматотропин – получили из бактерии кишечной палочки. До развития генной инженерии его выделяли из гипофизов от трупов. Соматотропин, синтезированный в специально сконструированных клетках бактерий, имеет очевидные преимущества: он доступен в больших количествах, его препараты являются биохимически чистыми и свободными от вирусных загрязнений.

В 1982 году гормон инсулин стали получать в промышленных масштабах из бактерий, содержащих ген человеческого инсулина. До этого времени инсулин выделяли из поджелудочных желез забиваемых коров и свиней, что сложно и дорого.

Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ).

Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе.

В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.

3. Генная инженерия: за и против

Несмотря на явную пользу от генетических исследований и экспериментов, само понятие «генная инженерия» породило различные подозрения и страхи, стало предметом озабоченности и даже политических споров. Многие опасаются, например, что какой-нибудь вирус, вызывающий рак у человека, будет введен в бактерию, обычно живущую в теле или на коже человека, и тогда эта бактерия будет вызывать рак. Возможно также, что плазмиду, несущую ген устойчивости к лекарственным препаратам, введут в пневмококк, в результате чего пневмококк станет устойчивым к антибиотикам и пневмония не будет поддаваться лечению. Такого рода опасности, несомненно, существуют.

Генная инженерия – это мощный способ изменить жизнь, но ее потенциал может представлять опасность, причем в первую очередь надо учитывать сложные и трудно предсказуемые эффекты, связанные с возможным воздействием на окружающую среду. Представьте себе некий яд, более дешевый в производстве, чем сложные гербициды с избирательным действием, но который не может быть использован в агротехнике из-за того, что он убивает полезные растения наравне с сорняками. Теперь представьте, что, допустим, в пшеницу, внедрили ген, делающий ее устойчивой к этому яду. Фермеры, засеявшие свои поля трансгенной пшеницей, могут безнаказанно опылять их смертоносным ядом, увеличивая свои доходы, но нанося непоправимый вред окружающей среде. С другой стороны, генетики могут достичь и противоположного эффекта, если выведут такую культуру, которая не нуждается в гербицидах.

Генная инженерия бросила человечеству уникальный вызов. Что несет нам генная инженерия, счастье или беду? О возможной опасности генетически измененных продуктов для здоровья человека трубит уже весь мир. Однозначного и единого мнения ученых по этому поводу нет. Одни считают, что генная инженерия спасет человечество от голодной смерти, другие – что генетически измененные продукты погубят все живое на земле вместе с человеком. Ученые, занимающиеся этим, утверждают, что генетически измененные растения более урожайны, более устойчивы к ядохимикатам, экономически выгоднее обычных. Поэтому за ними будущее. Однако специалисты, не связанные с производителями данного товара, далеки от оптимизма.

Предугадать отдаленные последствия, которые могут наступить в результате потребления генетически измененной продукции, на данный момент вообще невозможно. Относительно спокойно относятся к ГМ – продуктам (генетически модифицированным) – в США, где выращивается сегодня около 80 процентов всех генетических культур. Европа же относится к этому крайней негативно. Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург).

В других принято жесткое требование маркировать генетически измененное продовольствие, что, естественно, очень не понравилось поставщикам. 1 июля 2000 года в России была запрещена продажа генетически измененных продуктов без специальной предупредительной надписи на упаковке. Одним из первых ученых, забивших тревогу о потенциальной опасности ГМ – продуктов, был британский профессор Арпад Пуштай. Он назвал их “пищей для зомби”. Такие выводы позволили сделать результаты опытов на крысах, которых кормили генетически модифицированной пищей. У животных возник целый набор серьезных изменений желудочно-кишечного тракта, печени, зоба, селезенки. Наибольшее беспокойство вызвал тот факт, что у крыс уменьшился объем мозга.

Ученые полагают, что с помощью генетически измененных растений можно сократить потери урожая. Сегодня в России завершаются испытания американского картофеля, устойчивого к колорадскому жуку. Возможно, уже в этом году будет получено разрешение на его промышленное производство. Есть у подобных сортов одно существенное “но”. Когда получают растение с резко повышенной устойчивостью к какому-либо вредителю, через два-три поколения этот вредитель приспособится к растению, и будет пожирать его еще сильнее. Следовательно, устойчивый картофель может породить таких агрессивных вредителей, с которыми мир еще не сталкивался.

4. Перспективы генной инженерии

Настоящей находкой для генетиков стал янтарь, ископаемая древесная смола. В доисторические времена в ней часто застывали насекомые, цветочная пыльца, споры грибов, остатки растений. Текучая смола герметично обволакивала своих пленников, и биологический материал в целости и сохранности поджидал современных исследователей. И вот в 1990 году Джордж О. Пойнар из Калифорнийского университета сделал сенсационное открытие. Изучая термитов, попавших в янтарь 40 миллионов лет назад, он нашел хорошо сохранившуюся генетическую информацию. Позднее Пойнару удалось выделить из янтаря ДНК долгоносика, жившего 120 миллионов лет назад! Сейчас многие ученые работают над тем, чтобы воскресить динозавров, древних ящеров, мамонтов. И это уже не кажется фантастикой, как было всего лишь несколько лет назад. Однако ученые не намерены останавливаться на воскрешении животных. Если можно воскресить их, следовательно, то же самое можно проделать и с людьми.

Развитие науки дает нам потенциал как для плохого, так и для хорошего. Поэтому важно, что бы мы сделали правильный выбор. Основная трудность носит политический характер, – это решение вопроса кто есть «мы» в этом предложении. Если оставить этот вопрос на произвол рыночной стихии, скорее всего, пострадают долгосрочные интересы окружающей среды. Но это можно сказать и про многие другие аспекты жизни.

Список использованной литературы

1. Нейман Б.Я. Индустрия микробов. – Знание, 1983.

2. Рувинский А.О. Общая биология. – Просвещение, 1994.

3. Чебышев Н.В. Биология. − Новая волна, 2005.

Сложно найти в современном мире человека, который ничего не слышал бы об успехах генной инженерии.

Сегодня она является одним из наиболее перспективных путей развития биотехнологий, совершенствования сельскохозяйственного производства, медицины и ряда других отраслей.

Что такое генная инженерия?

Как известно, наследственные признаки любого живого существа записаны в каждой клетке организма в виде совокупности генов – элементов сложных белковых молекул . Вводя в геном живого существа чужеродный ген, можно изменить свойства получаемого организма, причём в нужную сторону: сделать сельскохозяйственную культуру более устойчивой к морозу и болезням, придать растению новые свойства и т.д.

Организмы, полученные в результате такой переделки, называются генно-модифицированными, или трансгенными, а научная дисциплина, занимающаяся исследованием модификаций и разработкой трансгенных технологий – генетической или генной инженерией.

Объекты генной инженерии

Наиболее часто объектами для исследования генной инженерии становятся микроорганизмы, клетки растений и низших животных, однако ведутся исследования и на клетках млекопитающих, и даже на клетках человеческого организма. Как правило, непосредственным объектом исследования является молекула ДНК, очищенная от прочих клеточных веществ. При помощи энзимов ДНК расщепляется на отдельные отрезки, причём важно уметь распознавать и выделять нужный отрезок, переносить его при помощи энзимов и встраивать в структуру другой ДНК.

Современные методики уже позволяют достаточно свободно манипулировать отрезками генома, размножать нужный участок наследственной цепи и вставлять его на место другого нуклеотида в ДНК реципиента. Накоплен достаточно большой опыт и собрана немалая информация по закономерностям строения наследственных механизмов. Как правило, преобразованиям подвергаются сельскохозяйственные растения, что уже позволило существенно повысить результативность основных продовольственных культур.

Для чего нужна генная инженерия?

К середине ХХ века традиционные методы перестали устраивать учёных, так как это направление обладает рядом серьёзных ограничений:

  • невозможно скрещивать неродственные виды живых существ;
  • процесс рекомбинации генетических признаков остаётся неуправляемым, и необходимые качества у потомства появляются в результате случайных комбинаций, при этом очень большой процент потомства признаётся неудачным и отбрасывается в ходе селекции;
  • точно задать нужные качества при скрещивании невозможно;
  • селекционный процесс занимает годы и даже десятилетия.


Естественный механизм сохранения наследственных признаков является чрезвычайно стойким, и даже появление потомства с нужными качествами не даёт гарантии сохранения этих признаков в последующих поколениях.

Генная инженерия позволяет преодолеть все вышеперечисленные затруднения. С помощью трансгенных технологий можно создавать организмы с заданными свойствами, заменяя отдельные участки генома другими, взятыми у живых существ, принадлежащих к другим видам. При этом сроки создания новых организмов существенно сокращаются. Необязательно закреплять нужные признаки, делая их наследуемыми, так как всегда есть возможность генетически модифицировать следующие партии, поставив процесс буквально на поток.

Этапы создания трансгенного организма

  1. Выделение изолированного гена с нужными свойствами. Сегодня для этого существуют достаточно надёжные технологии, есть даже специально подготовленные библиотеки генов.
  2. Ввод гена в вектор для переноса. Для этого создаётся специальная конструкция – трансген, с одним или несколькими отрезками ДНК и регуляторными элементами, который встраивается в геном вектора и подвергается клонированию при помощи лигаз и рестриктаз. В качестве вектора обычно используются кольцеобразные бактериальные ДНК – плазмиды.
  3. Встраивание вектора в организм реципиента. Этот процесс скопирован с аналогичного природного процесса встраивания ДНК вируса или бактерии в клетки носителя и действует таким же образом.
  4. Молекулярное клонирование. При этом клетка, подвергшаяся модификации, успешно делится, производя множество новых дочерних клеток, которые содержат изменённый геном и синтезируют белковые молекулы с заданными свойствами.
  5. Отбор ГМО. Последний этап ничем не отличается от обычной селекционной работы.

Безопасна ли генная инженерия?

Вопрос, насколько безопасны трансгенные технологии, периодически поднимается как в научной среде, так и в СМИ, далёких от науки. Однозначного ответа на него нет до сих пор.

Во-первых, генная инженерия остаётся ещё достаточно новым направлением биотехнологий, и статистика, позволяющая делать объективные выводы об этой проблеме, пока что не успела накопиться.

Во-вторых, огромные вложения в генную инженерию со стороны транснациональных корпораций, занимающихся производством продуктов питания, могут служить дополнительной причиной отсутствия серьёзных исследований.

Впрочем, в законодательствах многих стран появились нормы, обязывающие производителей указывать наличие продуктов из ГМО на упаковке товаров пищевой группы. В любом случае, генная инженерия уже продемонстрировала высокую результативность своих технологий, а её дальнейшее развитие обещает людям ещё больше успехов и достижений.

ГЕННАЯ ИНЖЕНЕРИЯ (син. генетическая инженерия ) - направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми, в т. ч. и не встречающимися в природе, комбинациями наследственных свойств. В основе Г. и. лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых к-т. К этим достижениям следует отнести установление универсальности генетического кода (см.), т. е. факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируется одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получать в изолированном виде отдельные гены или фрагменты нуклеиновой к-ты, осуществлять in vitro синтез фрагментов нуклеиновых к-т, объединить в единое целое полученные фрагменты. Т. о., изменение наследственных свойств организма с помощью Г. и. сводится к конструированию из различных фрагментов нового генетического материала, введению этого материала в реципиентный организм, созданию условий для его функционирования и стабильного наследования.

Один из способов получения генов - хим. синтез. После того как Холли (A. Holli) в США, А. А. Баеву в СССР и другим исследователям удалось расшифровать структуру различных транспортных РБГК (тРНК), X. Корана с соавт, осуществил хим. синтез ДНК, кодирующей аланиновую тРНК пекарских дрожжей.

Но наиболее эффективный метод искусственного синтеза генов связан с использованием фермента РНК-зависимой ДНК-полимеразы (обратная транскриптаза), обнаруженного Балтимором (D. Baltimore) и Темином (H. Temin) в онкогенных вирусах (см.). Этот фермент выделен и очищен из клеток, зараженных некоторыми РНК-содержащими онкогенными вирусами, в т. ч. вирусом птичьего миелобластоза, саркомы Рауса, мышиной лейкемии. Обратная транскриптаза обеспечивает синтез ДНК на матрице информационной РНК (иРНК). Использование молекул иРНК как матриц для синтеза ДНК в значительной степени облегчает искусственный синтез отдельных структурных генов высших организмов, поскольку последовательность азотистых оснований в молекуле иРНК является точной копией последовательности азотистых оснований соответствующих структурных генов, а методика выделения различных молекул иРНК достаточно хорошо разработана. Успехи в выделении иРНК белка глобина, входящего в состав гемоглобина человека, животных и птиц, иРНК белка хрусталика глаза, иРНК иммуноглобина, иРНК специфического белка злокачественной опухоли (миеломы) позволили с помощью обратной транскриптазы осуществить синтез структурной части генов, кодирующих некоторые из этих белков.

Однако в организме структурные гены функционируют совместно с регуляторными, нуклеотидная последовательность которых не воспроизводится молекулой иРНК. Поэтому ни один из указанных способов не позволяет осуществить синтез совокупности структурного и регуляторного гена. Решение этой проблемы стало возможным после разработки методов выделения отдельных генов. Для выделения бактериальных генов используют небольшие ДНК-содержащие цитоплазматические структуры, способные реплицироваться (см. Репликация) независимо от бактериальной хромосомы. Эти структуры образуют единую группу внехромосомных генетических элементов бактерий - плазмид (см. Плазмиды). Некоторые из них могут внедряться в бактериальную хромосому, а затем спонтанно либо под воздействием индуцирующих агентов, напр. УФ-облучения, переходить из хромосомы в цитоплазму, захватывая с собой и прилегающие хромосомные гены-клетки хозяина. Внехромосомные генетические элементы бактерий, обладающие такими свойствами, называют эписомами [Ф. Жакоб, Волльман (E. Wollman)]. К эписомам (см.) относят умеренные фаги (см. Бактериофаг), половой фактор бактерий, факторы лекарственной устойчивости микроорганизмов (см.), бактериоциногенные факторы (см.). В цитоплазме гены, захваченные эписомами, реплицируются в их составе и часто образуют множество копий. Разработка эффективного метода выделения плазмид, в частности умеренных фагов, несущих генетический материал бактериальной хромосомы, и выделения включенного в геном бактериофага фрагмента хромосомы бактериальной клетки позволила в 1969 г. Беквиту (J. Beckwith) с соавт, выделить лактозный оперон - группу генов, контролирующих синтез ферментов, необходимых для усвоения кишечной палочкой лактозы. Аналогичная техника была использована для выделения и очистки гена, контролирующего синтез тирозиновой транспортной РНК кишечной палочки (см. Рибонуклеиновые кислоты).

Использование плазмид дает возможность получить в изолированном виде практически любые бактериальные гены, а следовательно, и возможность конструировать молекулы ДНК из различных источников. Такие гибридные структуры можно накопить в клетках в значительных количествах, поскольку многие плазмиды в определенных условиях интенсивно реплицируются в цитоплазме бактерий, образуя десятки, сотни и даже тысячи копий.

Успехи Г. и. связаны с разработкой техники объединения генетических структур из различных источ-i ников в одной молекуле ДНК. Решающим в конструировании гибридных молекул in vitro явилось использование эндонуклеаз рестрикции - особых ферментов, способных разрезать молекулы ДНК в строго определенных участках. Такие ферменты обнаружены в клетках Escherichia coli, несущих плазмиды типа R, обусловливающие устойчивость бактерий к нек-рым лекарственным препаратам, в клетках Haemophilus influenzae, Serratia marcescens и других микроорганизмов. Один из наиболее часто используемых ферментов этого типа - эндонуклеаза рестрикции EcoRI, синтезируемая плазмидой RI в клетках E. coli. Фермент распознает участок ДНК с уникальной последовательностью из шести пар нуклеотидов и разрезает двунитчатую структуру ДНК на этом участке т. о., что с обеих сторон образуются однонитевые концы из четырех нуклеотидов (так наз. липкие концы). Поскольку фермент разрезает молекулы ДНК независимо от их происхождения строго определенным образом, все образовавшиеся в результате действия фермента фрагменты ДНК будут иметь одни и те же липкие концы. Комплементарные липкие концы любых фрагментов ДНК объединяются водородными связями, образуя гибридную кольцевую ДНК (рис.). Для стабилизации гибридной молекулы ДНК используют другой фермент - полинуклеотидлигазу, восстанавливающую ковалентные связи, разорванные ферментом рестрикции. Последовательность, специфично распознаваемая EcoRI, встречается в ДНК не чаще, чем через 4000-16 000 пар нуклеотидов. Следовательно, фрагмент ДНК, образовавшийся под действием EcoRI, может включать по крайней мере один неповрежденный ферментом ген (один ген в среднем содержит 1000-1500 пар нуклеотидов).

Применение эндонуклеаз рестрикции и ряда других ферментов дает возможность получать сложные рекомбинантные ДНК. Группа исследователей в США под руководством Берга (P. Berg) сумела объединить в составе одной молекулы ДНК генетическую информацию из трех источников: полный геном (см.) онкогенного вируса обезьян SV40, часть генома умеренного бактериофага λ и группу генов кишечной палочки, ответственных за усвоение галактозы. Сконструированная рекомбинантная молекула не была исследована на функциональную активность, поскольку авторы этой работы остановились перед потенциальной опасностью распространения онкогенных вирусов животных в популяции бактерий, обитающих в кишечнике человека. Известно, что очищенная ДНК вирусов может проникать в различные клетки млекопитающих и стабильно наследоваться ими.

Впервые функционально активные молекулы гибридной ДНК удалось сконструировать в США Коэну (S. Cohen) с соавт. Группа Коэна последовательно решала проблему объединения и клонирования (избирательного накопления) молекул ДНК, выделенных из видов, все более удаленных друг от друга в филогенетическом отношении. Процедура клонирования обычно заключается в том, что ДНК из различных источников фрагментируют с помощью эндонуклеаз рестрикции, затем эти фрагменты объединяют in vitro в общую структуру и вводят в реципиентный организм, к-рым в опытах Коэна служит кишечная палочка. Установлено, что клетки нескольких видов бактерий (в т. ч. Escherichia coli, Salmonella typhimurium, Staphylococcus aureus) могут быть трансформированы (см. Трансформация) с помощью рекомбинантных молекул ДНК. При этом плазмидная часть гибридной молекулы (либо одна из плазмид, если в составе гибридной молекулы объединены две плазмиды из различных источников) служит вектором, т. е. обеспечивает перенос в реципиентные клетки филогенетически чужеродного генетического материала и его размножение в них. Первой плазмидой, использованной Коэном с соавт, в качестве вектора, была полученная им in vitro плазмида pSC101, контролирующая устойчивость бактерий к тетрациклину. Эта небольшая плазмида состоит всего из 8000 пар нуклеотидов. Она атакуется ферментом EcoRI лишь в одном участке, причем фермент не повреждает способность плазмиды к последующей репликации в клетках E. coli и контролировать устойчивость к тетрациклину. Эти особенности позволили использовать ее для конструирования in vitro гибридных молекул ДНК. На первых этапах к pSC101 присоединили плазмидную ДНК, выделенную из различных видов бактерий, а затем и из высших организмов. Так были созданы «химерные» плазмиды (т. е. не способные возникать в природных условиях), объединившие в своем составе генетический материал кишечной палочки, участок ДНК из ооцитов шпорцевой лягушки Xenopus laevis, контролирующий синтез рибосомных РНК, и участок ДНК морского ежа, контролирующий синтез белков- гистонов, либо ДНК митохондрий мыши. В клетках кишечной палочки, в которые вводили такие гибридные, «химерные», плазмиды, была зарегистрирована работа генов высших организмов.

В отличие от pSC101, присутствующей в клетке лишь в 4-6-й копиях, некоторые другие плазмиды, используемые в качестве векторов, в определенных условиях могут многократно реплицироваться, образовывая несколько тысяч копий в одной клетке. Такими свойствами обладает, напр., плазмида ColEI, контролирующая синтез колицина (см. Бактериоциногения). Подобно pSC101, ColEI разрезается ферментом EcoRl лишь в одном участке, а к образовавшейся линейной молекуле с липкими концами легко присоединяется чужеродная ДНК, также обработанная EcoRI. Т. о., к ColEI удалось «подшить» гены триптофанового оперона кишечной палочки. В клетках, несущих множество копий сконструированной гибридной плазмиды, резко увеличилась продукция белков-ферментов, контролируемых генами биосинтеза триптофана. В системе in vitro удалось присоединить плазмиду ColEI к нек-рым R-факто-рам и умеренному фагу. Подобные работы впервые выполнены в СССР под руководством академика А. А. Баева и профессора С. И. Алиханяна. Комбинированные векторные плазмиды, образованные ColEI и R-факторами, способны интенсивно размножаться в бактериальных клетках, подобно ColEI, и в то же время обусловливают устойчивость клеток к антибиотикам, что значительно упрощает отбор бактерий - носителей гибридных плазмид.

В качестве векторов используют и умеренные фаги. В системе in vitro сконструированы гибридные частицы бактериофага, включившие в свою структуру бактериальные гены, ДНК других фагов либо высших организмов (напр., ДНК плодовой мушки-дрозофилы).

Функциональную активность гибридных ДНК определяют возможностью их переноса в клетки реципиентных организмов и последующего умножения (амплификации) в этих клетках. В качестве реципиентов уже сейчас эффективно используют не только бактерии, о чем упоминалось выше, но и клетки высших организмов, пока, однако, лишь в виде культуры ткани, культивируемой вне организма. Имеются указания на возможность проникновения ДНК фагов, несущих бактериальные гены, в клетки соединительной ткани (фибробласты) человека, в протопласты либо в недифференцированную культуру (каллус) клеток растений. В 1971 г. амер. исследователь Меррил (С. R. Merril) с соавт, сообщил об опытах по исправлению наследственного дефекта - галактоземии (см.) путем введения в «больные» клетки галактозных генов бактерий, включенных в состав ДНК трансдуцирующего фага. В результате клетки больного галактоземией, дефектные по ферменту бета-D-галактозо-1-фосфатуридилтрансферазе, не способные усваивать галактозу, восстанавливали нормальную способность к росту в присутствии галактозы, а в их экстрактах была зарегистрирована ранее отсутствовавшая ферментативная активность. Сходный результат был получен Хорстом (J. Horst) с соавт, при введении бактериального гена, контролирующего синтез бета-галактозидазы в фибробласты больного с генерализованным ганглиозидозом, характеризующимся резкой недостаточностью этого фермента. Маньон (W. Munyon) и его сотр. с помощью вируса герпеса перенесли ген, контролирующий синтез тимидинкиназы, из клеток человека в клетки мыши, восстановив способность дефектных мышиных фибробластов синтезировать этот фермент.

Одним из путей передачи генетической информации в культуре клеток человека, животных и растений является гибридизация соматических клеток, разработанная Эфрусси (В. Ephrussi) и Барски (G. Barski). Эффективность этого метода значительно повысилась после того, как было обнаружено, что частицы инактивированного вируса парагриппа типа Сендай увеличивают частоту слияния клеток из самых различных источников. Продемонстрирована возможность передачи отдельных генов из изолированных хромосом китайского хомячка в клетки соединительной ткани мыши. Описаны гибриды клеток человека и мыши, в которых часть хромосом человека удаляется, а часть остается функционально активной. Развитие методов микрохирургии клеток позволило пересаживать клеточные ядра из соматических клеток в оплодотворенные яйцеклетки и получать в результате абсолютно идентичные организмы. Гибридизация клеток дала возможность индуцировать синтез глобина человека в зародышевых клетках лягушки. Все эти примеры демонстрируют потенциальные возможности Г. и.

Практическое значение Г. и. для медицины связано с перспективами исправления наследственных дефектов обмена у человека (см. Генотерапия), создания микроорганизмов, потерявших свою патогенность, но сохранивших способность к формированию иммунитета, синтеза антибиотиков, аминокислот, гормонов, витаминов, ферментов, иммуноглобулинов и т. д., основанного на использовании микроорганизмов, включивших соответствующие гены. Исключительные результаты могут быть получены в ближайшее время Г. и. растений. С помощью методов Г. и. пытаются создать растения, способные усваивать атмосферный азот, и улучшить белковый состав растительной пищи. Успешное решение этих задач позволит резко повысить продуктивность растений, сократить производство и потребление минерального азота, а тем самым значительно оздоровить окружающую среду (см.). Изучается возможность создания совершенно новых форм животных и растений за счет преодоления межвидовых барьеров скрещиваемости. Однако при оценке Г. и. как новой формы освоения живой природы следует учитывать не только ее возможную революционизирующую роль в биологии, медицине и сельском хозяйстве, но и возникающие в связи с ее развитием возможности появления новых форм патогенных микроорганизмов, опасность распространения в популяциях бактерий, обитающих у человека, гибридных ДНК, несущих Онкогенные вирусы, и т. д. Конечно, преднамеренное использование достижений науки, и в т. ч. Г. и., в антигуманных, человеконенавистнических целях возможно лишь в обществе, в к-ром благо человека приносится в жертву наживе и агрессии.

Из дополнительных материалов

Генетическая инженерия продолжает оставаться быстро прогрессирующим методом исследования в молекулярной биологии и генетике. Необходимо отметить, что понятия «генетическая инженерия» и «генная инженерия» не являются полными синонимами, т. к. исследования, относящиеся к генетической инженерии, не ограничиваются только манипуляциями с генами как таковыми. В настоящее время методы генетической инженерии позволяют проводить наиболее глубокий и детальный анализ природных нуклеиновых к-т - веществ, ответственных за хранение, передачу и реализацию генетической информации (см. Нуклеиновые кислоты.), а также создавать модифицированные или абсолютно новые, не встречающиеся в природе гены (см. Ген), комбинации генов и с высокой эффективностью экспрессировать их в живой клетке (см. Экспрессивность гена). Из конкретных практических достижений генетической инженерии в последнее десятилетие наиболее важным следует признать создание продуцентов биологически активных белков - инсулина (см.), интерферона (см.), гормона роста (см. Соматотропный гормон) и др., а также разработку генно-инженерных способов активизации тех звеньев обмена веществ, к-рые связаны с образованием низкомолекулярных биологически активных веществ. Таким путем получены продуценты нек-рых антибиотиков, аминокислот и витаминов, во много раз более эффективные, чем продуценты этих веществ, выведенные традиционными методами генетики и селекции. Разрабатываются способы получения чисто белковых вакцин против вирусов гепатита, гриппа, герпеса, ящура, реализована идея использования вакцинации вирусом осповак-цины, в геном к-рого встроены гены, кодирующие синтез белков других вирусов (напр., вирусов гепатита или гриппа): в результате прививки сконструированным таким образом вирусом организм вырабатывает иммунитет не только против оспы, но и против гепатита, гриппа или другого заболевания, вызываемого тем вирусом, белок к-рого кодируется встроенным геном.

Существенно выросла мировая коллекция рестрикционных эндонуклеаз - рестриктаз, основных «инструментов» генно-инженерных манипуляций. Выделено более 400 рестриктаз, «узнающих» ок. 100 различных по структуре специфических участков (сайтов) в молекулах ДНК (см. Дезоксирибонуклеиновые кислоты) и расщепляющих полинуклео-тидную цепь ДНК по этим участкам. С помощью одного такого фермента или комбинации нескольких рестриктаз можно выделить практически любой ген в составе одного или нескольких фрагментов ДНК (так наз. рестрикционных фрагментов). Это расширило возможности генетической инженерии не только в отношении выделения генов, но и в отношении активизации их работы, анализа структуры генов и их молекулярного окружения. Разработаны методы синтеза целых генов с заданной последовательностью нуклеотидов, появилась возможность снабжать синтезированные и природные гены различными регуляторными нуклеотидными последовательностями, заменять, вставлять, удалять единичные нуклеотиды в строго заданных участках гена, укорачивать или достраивать его нуклеотидную цепь с точностью до одного нуклеотида.

Достижением генетической инженерии явилось ее проникновение в организацию и функционирование механизмов наследственности клеток высших организмов, в т. ч. и человека. Именно на высших эукариотах с помощью методов генетической инженерии получены наиболее интересные данные. Успехи генетической инженерии во многом связаны с получением новых специализированных векторов, позволяющих эффективно клонировать (размножать) индивидуальные фрагменты ДНК (гены) и синтезировать белки, кодируемые этими генами.

Рестрикционные фрагменты, соединенные с ДНК-векторами, клонируют в живой клетке, используя способность таких векторов воспроизводиться (реплицироваться) в клетке во множестве копий. В зависимости от размеров фрагментов, подлежащих клонированию, и цели исследования используют векторы одного из четырех типов - плазмиды (см.), фаги (см. Бактериофаг), космиды или производные фагов с однонитевой ДНК.

Для клонирования сравнительно небольших фрагментов ДНК (до 10 тыс. пар нуклеотидов) применяют плазмидные векторы (pBR322, рАТ 153, pUR250, pUC19 и др.). Достижением генетической инженерии последних лет было получение векторов на основе фага X (Харон 4А, gtwes-B), в к-ром часть генома замещена фрагментом чужеродной ДНК. Гибридный геном искусственным путем «упаковывают» в белковую оболочку и этим реконструированным фагом заражают бактерии. Образуя при размножении в клетке несколько тысяч копий, реконструированный фаг лизирует ее и выделяется в культуральную среду. С помощью таких векторов клонируют фрагменты ДНК длиной 10-25 тыс. пар нуклеотидов.

Космидные векторы (pIB8, MUA-3) представляют собой гибрид фага X и плазмиды. Они содержат так наз. COS-последовательности ДНК фага, необходимые для упаковки геномов фага в белковую оболочку, и участок ДНК плазмиды, позволяющий кос-мидным векторам реплицироваться в бактериях так же, как это делают плазмиды. Таким образом, полученный рекомбинантный геном с высокой эффективностью заражает бактерии подобно бактериофагу, но размножается в них как плазмида, не вызывая гибели бактериальной клетки. Космиды применяют для клонирования фрагментов ДНК длиной до 35-45 тыс. пар нуклеотидов.

Векторы, представляющие собой производные фагов с однонитевой ДНК (М13 mp8, М13, тр73 и др.), сконструированы на основе кольцевой молекулы ДНК бактериофага М13. Для встраивания чужеродной ДНК используют репликативную двуспиральную молекулу ДНК фага. Вектор, несущий чужеродную ДИК, вводят в бактериальные клетки, где рекомбинантные молекулы размножаются, не лизируя эту клетку, и «отпочковываются» в культуральную среду как вирусная частица с однонитевой молекулой ДНК. Эти векторы используют для клонирования фрагментов ДНК (до 300-400 пар нуклеотидов).

Ген, необходимый для генно-инженерных манипуляций, получают путем клонирования соответствующих рекомбинантных молекул ДНК и отбора таких клонов. В тех случаях, когда клонируют гены высших организмов и человека/ экспрессия к-рых в E. coli (чаще всего используемой для таких целей) невозможна, процедуру клонирования и отбора проводят в несколько этапов. На первом этапе создают так наз. библиотеку генов из фрагментов ДНК (клонированных непосредственно из генома клетки) или из клонированных ДНК-копий (кДНК) соответствующей матричной РНК. Сравнивая структуру фрагментов геномной ДНК и соответствующих кДНК, получают важную информацию об организации генетического материала, а в случае наследственных болезней - о характере аномалий в генетическом материале, следствием к-рых и является это заболевание. Из библиотеки генов, пользуясь современными приемами, можно извлечь необходимый ген с окружающими его участками генома. В настоящее время созданы полные библиотеки генов многих микроорганизмов, растений и животных (вплоть до млекопитающих и человека). Уже клонировано и в той или иной мере изучено несколько сот генов и других последовательностей нуклеотидов в ДНК человека.

Возможности генно-инженерных исследований не ограничиваются клонированием гена и получением большого числа его копий. Часто необходимо не только клонировать ген, но и обеспечить его экспрессию в клетке, т. е. реализовать заключенную в нем информацию в аминокислотную последовательность полипеп-тидной цепи белка, кодируемого этим геном. Если вводимый в бактериальную клетку ген получен из бактерий той же (или близкой) видовой принадлежности, то бывает достаточно выделить ген с регуляторными элементами, контролирующими его экспрессию. Однако, если не считать нескольких исключений, регуляторные нуклеотидные последовательности эволюционно далеких друг от друга организмов не являются взаимозаменяемыми. Поэтому, чтобы добиться, напр., экспрессии эукариотического гена в клетках Е. coli, у него удаляют регуляторную область, а структурную часть такого гена присоединяют (на определенном расстоянии) к регуляторной области бактериального гена. Существенный прогресс в разработке этой методики был достигнут после открытия фермента нуклеазы Ва131, к-рая обладает уникальным свойством гидролизовать обе цепи двуспиральной линейной молекулы ДНК начиная с конца молекулы, т. е. этот фермент удаляет с конца фрагмента ДНК «лишние» последовательности нуклеотидов любой протяженности. В настоящее время структурную и регуляторную области выделяют порознь с помощью тех рестриктаз, участки «узнавания» к-рых расположены наиболее удачно на полинуклеотидной цепи, затем убирают «лишние» нуклеотидные последовательности и соединяют структурную область эукариотического гена с регуляторной областью бактериального гена. Таким путем удается добиться не только экспрессии генов эукариотов в бактериальных клетках, но и, наоборот, бактериальных генов в клетках высших и низших эукариотов.

Успехи генетической инженерии тесно связаны с развитием и совершенствованием методов определения последовательности нуклеотидов (секвенирования) в молекулах ДНК. Значительное число рестриктаз, имеющихся в распоряжении исследователей, позволяет с абсолютной специфичностью выделять определенные фрагменты ДНК, а разработка и совершенствование методов клонирования дает возможность получать фрагменты даже уникальных генов в количествах, необходимых для анализа. Методы секвенирова-ния ДНК оказались настолько эффективными, что часто через определение последовательности нуклеотидов ДНК получают данные о последовательности нуклеотидов в молекулах соответствующих РНК и о последовательности аминокислотных остатков в синтезирующейся молекуле белка. При обработке результатов секвенирования ДНК широко используют ЭВМ. Для более полной и быстрой интерпретации полученных экспериментальных данных создаются национальные и международные компьютерные «банки» нуклеотидных последовательностей. В настоящее время определены полные последовательности нуклеотидов геномов ряда бактериальных плазмид и вирусов, уже решается проблема определения полных нуклеотидных последовательностей сначала отдельных хромосом, а затем и всего генома высших организмов, в т. ч. и человека.

С помощью методов генетической инженерии были обнаружены отклонения в строении определенных участков генов человека, что являлось причиной наследственных болезней. Чаще всего таким методом служит так наз. б лот-анализ. Выделенную клеточную ДНК подвергают гидролизу рестриктазой, полученные фрагменты разделяют по величине с помощью электрофореза в агарозе или полиакриламидном геле. Разделенные фрагменты переносят («перепечатывают») на специально обработанную хроматографическую бумагу, нитроцеллюлозу или нейлоновый фильтр и снова подвергают электрофоретическому разделению. Вырезают места электрофореграмм, соответствующие отдельным фракциям и содержащие однотипные фрагменты ДНК; вырезанные участки электрофореграмм инкубируют с ранее клонированным геном или его частью либо с полученной путем хим. синтеза последовательностью нуклеотидов, содержащими радиоактивную метку. Меченая ДНК связывается только с теми фрагментами анализируемой клеточной ДНК, к-рые имеют комплементарные ей последовательности нуклеотидов. Изменение распределения и количества фиксированной метки по сравнению с нормой позволяет судить о перестройках в анализируемом гене или близлежащих к нему последовательностях нуклеотидов.

Участки «узнавания» определенных рестриктаз в молекуле ДНК располагаются неравномерно, поэтому при гидролизе этими ферментами молекула ДНК расщепляется на ряд фрагментов различной длины. Перестройка структуры ДНК, в результате к-рой исчезают имевшиеся или появляются новые участки «узнавания», приводит к изменению набора этих фрагментов (так наз. рестрикционных фрагментов), т. е. к появлению полиморфизма длин рестрикционных фрагментов(ГВДРФ). Перестройки в молекуле ДНК могут вызывать или не вызывать изменения в процессе синтеза или в структуре кодируемого белка; перестроек, не вызывающих изменений, большинство, и они служат причиной нормального ПДРФ. Выяснилось, что ПДРФ является четким генетическим признаком. В настоящее время анализ ПДРФ стал одним из наиболее точных методов, используемых в генетике человека и медицинской генетике. Для ряда наследственных болезней описаны формы ПДРФ, прямо свидетельствующие о наличии заболевания или о носительстве патологически измененного гена.

Генетическая инженерия положила начало новому направлению исследований, получившему название «генетика наоборот». Традиционный генетический анализ (см.) проводится в следующей последовательности: выбирается признак, устанавливается связь признака с генетической детерминантой и локализация этой детерминанты по отношению к уже известным. В «генетике наоборот» все происходит в обратном порядке: выбирают фрагмент ДНК с неизвестной функцией, устанавливают сцепление этого фрагмента ДНК с другими областями генома и его связь с определенными признаками. Этот подход позволил разработать методы ранней диагностики и выявления носителей таких заболеваний, как хорея Гентингтона, болезнь Дюшен-на, муковисцидоз, биохимическая природа наследственных дефектов при к-рых пока не известна. При генеалогическом методе установления закономерностей наследственной передачи хореи Гентингтона было показано, что выделенный из генома человека фрагмент ДНК G8 тесно сцеплен с геном, определяющим заболевание, и по форме ПДРФ фрагмента G8 в данной популяции можно диагностировать это заболевание и выявлять носителей дефектных генов.

На пути внедрения в медицинскую практику методов, используемых в генетической инженерии, еще много трудностей технического порядка. Во многих лабораториях мира активно ведется разработка практически пригодных генно-инженерных диагностических методов, и можно надеяться, что такого рода методы уже в ближайшем будущем найдут применение, если и не для массового генетического просеивания (скрининга) при диспансеризации населения, то, но крайней мере, для выборочного обследования групп повышенного риска в отношении наследственных болезней.

Генетическая инженерия позволяет не только копировать природные соединения и процессы, но и модифицировать их, делать их более эффективными. Примером этого может служить новое направление исследований, названное белковой инженерией. Расчеты, производимые на основании данных об аминокислотной последовательности и пространственной организации молекул белков, показывают, что при определенных заменах нек-рых аминокислотных остатков в молекулах ряда ферментов возможно значительное усиление их ферментативной активности. В изолированном гене, кодирующем синтез конкретного фермента, методами генетической инженерии проводят строго контролируемую замену определенных нуклеотидов. При синтезе ферментного белка под контролем такого модифицированного гена происходит заранее спланированная замена строго определенных аминокислотных остатков в полипептидной цепи, что вызывает повышение ферментативной активности во много раз по сравнению с активностью природного прототипа.

В области сельского хозяйства от генетической инженерии ожидают большого вклада в селекцию новых высокоурожайных сортов растений, устойчивых к засухе, болезням и вредителям, а также в выведение новых высокопродуктивных пород с.-х. животных.

Как и любое достижение науки, успехи генетической инженерии могут быть использованы не только на благо, но и во вред человечеству. Специально проведенные исследования показали, что опасность неконтролируемого распространения рекомбинантных ДНК не так велика, как представлялось ранее. Рекомбинантные ДНК и несущие их бактерии оказались очень неустойчивыми к влияниям окружающей среды, нежизнеспособными в организме человека и животных. Известно, что в природе и без вмешательства человека имеются условия, к-рые обеспечивают активный обмен генетической информацией, это так наз. поток генов. Однако на пути проникновения в организм чужеродной генетической информации природа создала много эффективных барьеров. В настоящее время очевидно, что при работе с большинством рекомбинантных молекул ДНК вполне достаточно обычных мер предосторожности, к-рые применяют, напр., микробиологи при работе с инфекционным материалом. Для особых случаев разработаны эффективные способы как биологической защиты, так и физической изоляции экспериментальных объектов от человека и окружающей среды. Поэтому весьма жесткие первые варианты правил работы с рекомбинантными ДНК были переработаны и значительно смягчены. Что касается преднамеренного использования достижений генетической инженерии во вред человеку, то и ученые, и общественность должны активно бороться за то, чтобы эта опасность так и осталась возможной лишь теоретически.

См. также Биотехнология.

Библиография: Алиханян С. И. Успехи и перспективы генной инженерии, Генетика, т. 12, Jvft 7, с. 150, 1976, библиогр.; АлиханянС. И. и др. Получение функционирующих рекомбинантов (гибридных) молекул ДНК, in vitro, там же, т. И, № 11, с. 34, 1975, библиогр.; Баев А. А. Генетическая инженерия, Природа, М1,с. 8, 1976; Тихомирова Л. П. и д р. Гибридные молекулы ДНК фага X и плазмиды ColEl, Докл. АН СССР, т. 223, №4, с. 995, 1975, библиогр.; Brown D. D. a. S t e r n R. Methods of gene isolation, Ann. Rev. Biochem., v. 43, p. 667, 1974, bibliogr.; C h a n g A. C. Y. a. o. Studies of mouse mitochondrial DNA in Escherichia coli, Cell, v. 6, p. 231,1975, bibliogr.; Hedgpeth J., Goodman H. M. a. B o y e r H. W. DNA nucleotide sequence restricted by the R1 endonuclease, Proc. nat. Acad. Sci. (Wash.), v. 69, p. 3448, 1972, bibliogr.; Hershfield V. a. o. Plasmid ColEl as a molecular vehicle for cloning and amplification of DNA, ibid., v. 71, p. 3455, 1974; Morrow J. F. a. o. Replication and transcription of eukaryotic DNA in Escherichia coli, ibid., p. 1743; T e m i n H. M. a. Mizu-t ani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus, Nature (Lond.), v. 226, p. 1211, 1970.

Биотехнология, под ред. А. А. Баева, М., 1984; Б о ч к о в Н. П., Захаров А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; М а н и а-тис Г., ФричЭ. и Сэмбрук Д ж. Методы генетической инженерии. Молекулярное клонирование, пер. с англ., М., 1984; A n t о n a r a k i s S. E. a. o. DNA polymorphism and molecular pathology of human globin gene clusters, Hum. Genet., v. 69, p. 1, 1985; Beaudet A. L. Bibliography of cloned human and other selected DNAs, Amer. J. hum. Genet., v. 37, p. 386, 1985; В o t s t e i n D. a. o. Construction of a genetic linkage map in man using restriction fragment length polymorphisms, ibid., v. 32, p. 314, 1980; G u s e 1 1 a J. E. a. o. DNA markers for nervous system diseases, Science, v. 225, p. 1320, 1984; Motulsky A. G. Impact of genetic manipulation on society and medicine, ibid., v. 219, p. 135, 1983; White R. a. o. A closely linked genetic marker for cystic fibrosis, Nature (Lond.), v. 318, p. 382, 1985; Wo о S. L. C., L i d s к у A. S. a. Guttler F. Prenatal diagnosis of classical phenylketonuria by gene mapping, J. Amer. med. Ass., v. 251, p. 1998, 1984.

Л. С. Чернин, В. H. Калинин.

Генная инженерия

Материал из Википедии - свободной энциклопедии

Ге́нная инжене́рия - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генная инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя исследования таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

1 Экономическое значение

2 История развития и достигнутый уровень технологии

3 Применение в научных исследованиях

4 Генная инженерия человека

5 Примечания

7 Литература

Экономическое значение

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путем использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Основой микробиологической, биосинтетической промышленности является бактериальная клетка. Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых - способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение - аминокислоту или антибиотик, стероидный гормон или органическую кислоту. Иногда надо иметь микроорганизм, способный, например, использовать в качестве «пищи» нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильно действующими ядами до радиоактивного облучения. Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии.

Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных. Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека. Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля. Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы, способные жить в отсутствие кислорода, фототрофы, использующие энергию света подобно растениям, хемоавтотрофы, термофильные бактерии, способные жить при температуре, как оказалось недавно, около 110 °C, и др.

И всё же ограниченность «природного материала» очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии. За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий. Это было важное достижение - полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.

[править]

История развития и достигнутый уровень технологии

Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Основные этапы решения генноинженерной задачи следующие:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице веделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит также были удостоены Нобелевской премии (1978 г.).

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, т.е. отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с измененным генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идет о животных. В результате рождаются детеныши с измененным или неизмененным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение в научных исследованиях

Генетический нокаут. Для изучения функции того или иного гена может быть применен генетический нокаут. Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации. Для нокаута синтезируют такой же ген или его фрагмент, измененный так, чтобы продукт гена потерял свою функцию. Для получения нокаутных мышей полученную генноинженерную конструкцию вводят в эмбриональные стволовые клетки и замещают ею нормальный ген, а измененные клетки имплантируют в бластоцисты суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Искуственная экспрессия. Логичным дополнением нокаута является искусственная экспресия, т.е. добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Мечение генных продуктов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортерным элементом, например, с геном зеленого флуоресцентного белка (GRF). Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, ее побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощренным, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для сязывания факторов транскрипции. Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, того же GFP или фермента, катализирующего хорошо детектируемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.

[править]

Генная инженерия человека

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако есть существенная разница между лечением самого пациента и изменением генома его потомков.

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия . Для этого используют яйцеклетки здоровой женщины. Ребенок в результате наследует генотип от одного отца и двух матерей. При помощи генной инженерии можно получать потомков с измененной внешностью, умственными и физическими способностьями, характером и поведением. В принципе можно создавать и более серьезные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.

Примечания

BBC News. news.bbc.co.uk. Проверено 2008-04-26 г.

Литература

Сингер М., Берг П. Гены и геномы. - Москва, 1998.

Стент Г., Кэлиндар Р. Молекулярная генетика. - Москва, 1981.

Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. - 1989.