Гибридизация атомных орбиталей углерода. Гибридизация - это что такое? Типы гибридизации

О гибридах нам говорят много. О них повествуют и фильмы, и книги, а также их рассматривает наука. В первых двух источниках гибриды являются очень опасными существами. Они могут принести уж очень много зла. Но далеко не всегда гибридизация - это плохое явление. Достаточно часто оно бывает хорошим.

Пример гибридизации - это каждый человек. Все мы являемся гибридами двух людей - отца и матери. Так, слияние яйцеклетки и сперматозоида также является своего рода гибридизацией. Именно данный механизм позволяет двигать эволюцию. При этом бывает и гибридизация с отрицательным знаком. Давайте рассмотрим данное явление в целом.

Общее представление о гибридизации

Впрочем, не только биология включает данное понятие. И пусть во вступлении был рассмотрен пример с гибридами как полноценными особями непонятного биологического вида. При этом данное понятие может использоваться и в других науках. И значение данного термина будет несколько отличаться. Но при этом кое-что общее все же есть. Это слово "объединение", которое объединяет все возможные значения данного термина.

Где существует данное понятие?

Термин "гибридизация" используется в ряде наук. А поскольку большая часть существующих ныне дисциплин пересекается, то можно смело говорить об использовании каждого значения данного термина в любой науке, так или иначе связанной с естественными исследовательскими отраслями. При этом наиболее активно данный термин используется в:

  1. Биологии. Отсюда пошло понятие гибрида. Хотя, как всегда, при перемещении из науки в повседневную жизнь произошло некоторое искажение фактов. Мы под гибридом понимаем особь, получившуюся в процессе скрещивания двух других видов. Хотя так бывает не всегда.
  2. Химии. Данное понятие означает смешивание нескольких орбиталей - своеобразных путей движения электронов.
  3. Биохимии. Здесь ключевым понятием является гибридизация ДНК.

Как видим, третий пункт находится на стыке двух наук. И это абсолютно нормальная практика. Один и тот же термин может образовывать на стыке двух наук абсолютно другое значение. Давайте более детально рассмотрим понятие гибридизации в этих науках.

Что такое гибрид?

Гибрид - это существо, которое получилось в процессе гибридизации. Данное понятие относится к биологии. Гибриды могут получаться как случайно, так и специально. В первом случае это могут получиться животные, которые создаются в процессе спаривания двух разновидовых существ.

Например, рассказывают о том, что появляются у кошек и собак дети, которые не являются ни одними из них. Иногда гибриды создаются специально. Например, когда к абрикосу прикрепляют вишню, мы имеем дело как раз с специальной гибридизацией.

Гибридизация в биологии

Биология - интересная наука. И понятие гибридизации в ней не менее увлекательное. Под данным термином подразумевается объединение генетического материала разных клеток в одной. Это могут быть как представители одного вида, так и нескольких. Соответственно, происходит деление на такие разновидности гибридизации.

  • Внутривидовая гибридизация. Это когда две особи одного вида создают потомка. Примером внутривидовой гибридизации можно считать человека. Он получился в процессе слияния половых клеток представителей одного биологического вида.
  • Межвидовая гибридизация. Это когда скрещиваются похожие, но принадлежащие к разным видам, животные. Например, гибрид коня и зебры.
  • Отдаленная гибридизация. Это когда скрещиваются представители хоть и одного вида, но при этом не объединенные семейными связями.

Каждая из этих разновидностей помогает не только эволюции. Ученые также активно стараются скрещивать разные виды живых существ. Лучше всего получается с растениями. Причин этому несколько:

  • Разное количество хромосом. У каждого вида есть не только специфическое количество хромосом, но и их набор. Все это мешает воспроизводить потомство.
  • Размножаться могут только растения-гибриды. И то не всегда.
  • Полиплоидными могут быть только растения. Чтобы растение размножалось, оно должно стать полиплоидным. В случае с животными это верная смерть.
  • Возможность вегетативной гибридизации. Это очень простой и удобный способ создания гибридов нескольких растений.

Это причины, по которым скрещивать два растения значительно проще и эффективнее. В случае с животными, возможно, в будущем получится добиться возможности размножения. Но на данный момент официальным в биологии считается мнение, что животные-гибриды утрачивают способность размножаться, так как данные особи являются генетически нестабильными. Следовательно, неизвестно, к чему может привести их размножение.

Виды гибридизации в биологии

Биология - наука достаточно широкая по своей специализации. Бывает два вида гибридизации, которые она предусматривает:

  1. Генетическая. Это когда из двух клеток делается одна с уникальным набором хромосом.
  2. Биохимическая. Примером данного вида является гибридизация ДНК. Это когда комплементарные нуклеиновые кислоты объединяются в одну ДНК.

Можно делить на большее количество разновидностей. Но это мы сделали в предыдущем подразделе. Так, отдаленная и внутривидовая гибридизация - это составные части первого типа. А там классификация еще больше расширяется.

Понятие вегетативной гибридизации

Вегетативная гибридизация - это понятие в биологии, которое означает такую разновидность скрещивания двух растений, при котором часть одного вида приживается на другом. То есть, гибридизация происходит за счет совмещения двух разных частей организма. Да, так можно растение охарактеризовать. Ведь у него также есть свои органы, объединенные в целую систему. Следовательно, если называть растение организмом, ничего зазорного в этом нет.

Вегетативная гибридизация имеет ряд преимуществ. Это:

  • Удобство.
  • Простота.
  • Эффективность.
  • Практичность.

Данные плюсы делают такую разновидность скрещивания очень популярной у садоводов. Также есть такое понятие, как соматическая гибридизация. Это когда скрещивают не половые клетки, а соматические, вернее, их протопласты. Данный способ скрещивания производится тогда, когда невозможно создать гибрид стандартным половым путем между несколькими растениями.

Гибридизация в химии

Но теперь мы немного отступим от биологии и поговорим о другой науке. В химии есть свое понятие, называется оно "гибридизация атомных орбиталей". Это очень сложный термин, но если разбираться немного в химии, то ничего сложного в нем нет. Сперва нужно объяснить, что же такое орбиталь.

Это своеобразный путь, по которому движется электрон. Нас этому учили еще в школе. И если происходит такое, что данные орбитали разного типа смешиваются, получается гибрид. Существует три вида явления, называемого "гибридизация орбиталей". Это такие разновидности:

  • sp-гибридизация - одна s и другая p орбиталь;
  • sp 2 -гибридизация - одна s и две p орбитали;
  • sp 3 -гибридизация - одна s и три p орбитали соединяются.

Данная тема достаточно сложная для изучения, и ее нужно рассматривать неразрывно от остальной части теории. Причем понятие гибридизации орбиталей касается больше конца данной темы, а не начала. Ведь нужно изучить само понятие орбиталей, какими они бывают и так далее.

Выводы

Итак, мы разобрались в значениях понятия "гибридизация". Это, оказывается, достаточно интересно. Для многих было открытием то, что в химии также есть данное понятие. Но если бы этого такие люди не знали, то чему бы они могли научиться? А так, есть развитие. Важно не прекращать тренировать эрудицию, так как это обязательно будет характеризовать вас с хорошей стороны.

Метод гибридизации атомных орбиталей исходит из предположения, что при образовании молекулы вместо исходных атомных и -электронных облаков образуются такие равноценные «смешанные» или гибридные электронные облака, которые вытянуты по направлению к соседним атомам, благодаря чему достигается их более полное перекрывание с электронными облаками этих атомов. Такая деформация электронных облаков требует затраты энергии. Но более полное перекрывание валентных электронных облаков приводит к образованию более прочной химической связи и, следовательно, к дополнительному выигрышу энергии. Если этот выигрыш энергии достаточен, чтобы с избытком скомпенсировать затраты энергии на деформацию исходных атомных электронных облаков, такая гибридизация приводит, в конечном счете, к уменьшению потенциальной энергии образующейся молекулы и, следовательно, к повышению ее устойчивости.

Рассмотрим в качестве примера гибридизации образование молекулы фторида бериллия . Каждый атом фтора, входящий в состав этой молекулы, обладает одним неспаренным электроном,

который и участвует в образовании ковалентной связи. Атом бериллия в невозбужденном состоянии неспаренных электронов не имеет:

Поэтому для участия в образовании химических связей атом бериллия должен перейти в возбужденное состояние :

Образовавшийся возбужденный атом обладает двумя не-спаренными электронами: электронное облако одного из них соответствует состоянию , другого - . При перекрывании этих электронных облаков с р-электронными облаками двух атомов фтора могут образоваться ковалентные связи (рис. 38).

Однако, как уже было сказано, при затрате некоторой энергии вместо исходных s- и р-орбиталей атома бериллия могут образоваться две равноценные гибридные орбитали (-орбитали). Форма и расположение этих орбиталей показаны на рис. 39, из которого видно, что гибридные -орбитали вытянуты в противоположных направлениях.

Перекрывание гибридных -электронных облаков атома бериллия с р-электронными облаками атомов фтора изображено на рис. 40.

Рис. 38. Схема перекрывания -электронных облаков атомов фтора с и -электронными облаками атома бериллия (для каждой связи отдельно).Области перекрывания электронных облаков заштрихованы.

Рис. 39. Форма (схематическое изображение) и взаимное расположение гибридных -электронных облаков атома бериллия (для каждой гибридной орбитали отдельно).

Рис. 40. Схема образования химических связей в молекуле . В целях упрощения рисунка гибридные -электронные облака атома бериллия изображены неполностью.

Благодаря вытянутой форме гибридных орбиталей достигается более полное перекрывание взаимодействующих электронных облаков, а значит, образуются более прочные химические связи. Энергия, выделяющаяся при образовании этих связей, больше, чем суммарные затраты энергии на возбуждение атома бериллия и гибридизацию его атомных орбиталей. Поэтому процесс образования молекулы энергетически выгоден.

Рассмотренный случай гибридизации одной s- и одной р-орбитали, приводящий к образованию двух -орбиталей, называется -гибридизацией. Как показывает рис. 39, -орбитали ориентированы в противоположных направлениях, что приводит к линейному строению молекулы. Действительно, молекула линейна, а обе связи в этой молекуле во всех отношениях равноценны.

Возможны и другие случаи гибридизации атомных орбиталей, однако число образующихся гибридных орбиталей всегда равно общему числу исходных атомных орбиталей, участвующих в гибридизации. Так, при гибридизации одной s- и двух р-орбиталей (-гибридизация - читается «эс-пэ-два») образуются три равноценные -орбитали. В этом случае гибридные электронные облака располагаются в направлениях, лежащих в одной плоскости и ориентированных под углами 120° друг к другу (рис. 41). Очевидно, что этому типу гибридизации соответствует образование плоской треугольной молекулы.

Примером молекулы, в которой осуществляется -гибридизация, может служить молекула фторида бора . Здесь вместо исходных одной s- и двух р-орбиталей возбужденного атома бора

образуются три равноценные -орбитали. Поэтому молекула построена в форме правильного треугольника, в центре которого расположен атом бора, а в вершинах-атомы фтора. Все три связи в молекуле равноценны.

Если в гибридизации участвуют одна s- и три р-орбитали ( - гибридизация), то в результате образуются четыре гибридные -орбитали, вытянутые в направлениях к вершинам тетраэдра, т. е. ориентированные под углами друг к другу (рис. 42). Такая гибридизация осуществляется, например, в возбужденном атоме углерода при образовании молекулы метана .

Рис. 41. Взаимное расположение гибридных -электронных облаков.

Рис. 42. Взаимное расположение гибридных -электронных облаков.

Поэтому молекула метана имеет форму тетраэдра, причем все четыре связи в этой молекуле равноценны.

Вернемся к рассмотрению структуры молекулы воды. При ее образовании происходит -гибридизация атомных орбиталей кислорода. Именно поэтому валентный угол НОН в молекуле близок не к , а к тетраэдрическому углу . Небольшое отличие этого угла от 109,5° можно понять, если принять во внимание неравноценность состояния электронных облаков, окружающих атом кислорода в молекуле воды. В самом деле, в молекуле метана (I)

все восемь электронов, занимающие в атоме углерода гибридные -орбитали, участвуют в образовании ковалентных связей . Это обусловливает симметричное распределение электронных облаков по отношению к ядру атома углерода. Между тем, в молекуле только четыре из восьми электронов, занимающих гибридные -орбитали атома кислорода, образуют связи , а две электронные пары остаются неподеленными, т. е. принадлежат только атому кислорода. Это приводит к некоторой асимметрии в распределении электронных облаков, окружающих атом кислорода, и, как следствие, к отклонению угла между связями от .

При образовании молекулы аммиака также происходит атомных орбиталей центрального атома (азота). Именно поэтому валентный угол близок к тетраэдрическому. Небольшое отличие этого угла от 109,5° объясняется, как и в молекуле воды, асимметрией в распределении электронных облаков вокруг ядра атома азота: из четырех электронных пар три участвуют в образовании связей N - Н, а одна остается неподеленной.

Как показывают рис. 39, 41 и 42, гибридные электронные облака смещены относительно ядра атома.

Поэтому центр электрического заряда неподеленной электронной пары, находящейся на гибридной орбитали, не совпадает с положением атомного ядра, т. е. с центром имеющегося в атоме положительного заряда. Такое смещение заряда неподеленной электронной пары приводит к появлению дппольного момента, вносящего существенный вклад в суммарный дипольный момент молекулы. Из этого следует, что полярность молекулы зависит не только от полярности отдельных связей и их взаимного расположения (см. § 40), но и от наличия неподеленпых электронных пар на гибридных орбиталях и от пространственного расположения этих орбиталей.

У элементов третьего и последующих периодов в образований гибридных электронных облаков могут участвовать и -орбитали. Особенно важен случай -гибридизации, когда в образовании гибридных орбиталей участвуют одна , три и две -орбитали. В этом случае образуются шесть равноценных гибридных орбиталей, вытянутых в направлениях к вершинам октаэдра. Октаэдрическая структура молекулы , ионов и многих других объясняется -гибридизацией атомных орбиталей центрального атома.

Метод валентных связей позволяет наглядно объяснить пространственные характеристики многих молекул. Однако, привычного представления о формах орбиталей не достаточно для ответа на вопрос, почему при наличии у центрального атома разных – s , p , d – валентных орбиталей, образованные им связи в молекулах с одинаковыми заместителями оказываются эквивалентными по своим энергетическим и пространственным характеристикам. В двадцатые годы XIX века Лайнусом Полингом была предложена концепция гибридизации электронных орбиталей. Под гибридизацией понимают абстрактную модель выравнивания атомных орбиталей по форме и энергии.

Примеры формы гибридных орбиталей представлены в таблице 5.

Таблица 5. Гибридные sp, sp 2 , sp 3 орбитали

Концепцию гибридизации удобно использовать при объяснении геометрической формы молекул и величины валентных углов (примеры заданий 2– 5).

Алгоритм определения геометрии молекул методом ВС:

а. Определить центральный атом и количество σ-связей с концевыми атомами.

б. Составить электронные конфигурации всех атомов, входящих в состав молекулы и графические изображения внешних электронных уровней.

в. Согласно принципам метода ВС на образование каждой связи нужна пара электронов, в общем случае, по одному от каждого атома. Если неспаренных электронов центральному атому недостаточно, следует предположить возбуждение атома с переходом одного из пары электронов на более высокий энергетический уровень.

г. Предположить необходимость и тип гибридизации с учетом всех связей и, для элементов первого периода, неспаренных электронов.

д. Опираясь на вышеизложенные умозаключения изобразить электронные орбитали (гибридные или нет) всех атомов в молекуле и их перекрывание. Сделать вывод о геометрии молекулы и приблизительной величине валентных углов.

е. Определить степень полярности связи исходя из значений электроотрицательностей атомов (табл.6) Определить наличие дипольного момента исходя из расположения центров тяжести положительного и отрицательного зарядов и/или симметрии молекулы.

Таблица 6. Значения электроотрицательности некоторых элементов по Полингу


Примеры заданий

Задание 1 . Опишите методом ВС химическую связь в молекуле СО.

Решение (рис.25)

а. Составить электронные конфигурации всех атомов, входящих в состав молекулы.

б. Для образования связи необходимо создать обобществленные электронные пары

Рисунок 25. Схема образования связи в молекуле СО (без гибридизации орбиталей)

Вывод: В молекуле СО – тройная связь С≡О

Для молекулы СО можно предположить наличие sp -гибридизации орбиталей обоих атомов (рис.26). Спаренные электроны, не участвующие в образовании связи находятся на sp -гибридной орбитали.

Рисунок 26. Схема образования связи в молекуле СО (с учетом гибридизации орбиталей)

Задание 2. На основе метода ВС предположить пространственное строение молекулы BeH 2 и определить является ли молекула диполем.

Решение задачи представлено в таблице 7.

Таблица 7. Определение геометрии молекулы BeH 2

Электронная конфигурация Примечания
а. Центральный атом – бериллий. Ему необходимо образовать две ϭ-связи с атомами водорода
б. H: 1s 1 Be: 2s 2 У атома водорода есть неспаренный электрон, у атома бериллия все электроны спарены, его необходимо перевести в возбужденное состояние
в. H: 1s 1 Be*: 2s 1 2p 1 Если бы один атом водорода связывался с бериллием за счет 2s -электрона бериллия, а другой – за счет 2p -электрона бериллия, то молекула не обладала бы симметрией, что энергетически не оправдано, а связи Be–Н не были бы равноценными.
г. H: 1s 1 Be*: 2(sp ) 2 Следует предположить наличие sp -гибридизации
д. Две sp -гибридные орбитали располагаются под углом 180°, молекула BeH 2 – линейная
е. Электроотицательности χ Н =2,1, χ Be =1,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому водорода, на нем появляется небольшой отрицательный заряд δ–. На атоме бериллия δ+. Так как центры тяжести положительного и отрицательного заряда совпадают (она симметрична), молекула не является диполем.

Аналогичные рассуждения помогут описать геометрию молекул с sp 2 - и sp 3 -гибридными орбиталями (табл.8).

Таблица 8. Геометрия молекул BF 3 и СН 4

Задание 3. На основе метода ВС предположить пространственное строение молекулы H 2 О и определить является ли молекула диполем. Возможно два решения, они представлены в таблицах 9 и 10.

Таблица 9. Определение геометрии молекулы H 2 O (без гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а.
б. H: 1s 1 O: 2s 2 2p 4
в. Неспаренных электронов достаточно для образования двух ϭ-связей с атомами водорода.
г. Гибридизацией можно пренебречь
д.
е.

Таким образом, молекула воду, должна иметь валентный угол около 90°. Однако угол между связями примерно 104°.

Это можно объяснить

1) отталкиванием, близко расположенных друг к другу водородных атомов.

2) Гибридизацией орбиталей (табл. 10).

Таблица 10. Определение геометрии молекулы H 2 O (с учетом гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а. Центральный атом – кислород. Ему необходимо образовать две ϭ-связи с атомами водорода.
б. H: 1s 1 O: 2s 2 2p 4 У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
в. У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
г. Угол в 104° позволяет предположить наличие sp 3 -гибридизации.
д. Две sp 3 -гибридные орбитали располагаются под углом примерно 109°, молекула H 2 O по форме близка к тетраэдру, уменьшение валентного угла объясняется влиянием электронной не связывающей пары.
е. Электроотицательности χ Н =2,1, χ О =3,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому кислорода, на нем появляется небольшой отрицательный заряд 2δ– На атоме водорода δ+. Так как центры тяжести положительного и отрицательного заряда не совпадают (она не симметрична), молекула является диполем.

Аналогичные рассуждения позволяют объяснить валентные углы в молекуле аммиака NH 3 . Гибридизацию с участием неподеленных электронных пар, обычно предполагают только для орбиталей атомов элементов II периода. Валентные углы в молекулах H 2 S = 92°, H 2 Se = 91°, H 2 Te = 89°. То же самое наблюдается в ряду NH 3 , РH 3 , AsH 3 . При описании геометрии этих молекул, традиционно, или не прибегают к представлениям о гибридизации, или объясняют уменьшение тетраэдрического угла возрастающим влиянием неподеленной пары.

Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон

Sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуются две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра центрального атома. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

Sp2-гибридизация

Sp2-гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуются три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары)

Тип гибридизации

Число гибридных орбиталей

Геометрия

Структура

Примеры

Линейная

BeF 2 , CO 2 , NO 2 +

sp 2

Треугольная

BF 3 , NO 3 - , CO 3 2-

sp 3

Тетраэдрическая

CH 4 , ClO 4 - , SO 4 2- , NH 4 +

dsp 2

Плоскоквадратная

Ni(CO) 4 , 2-

sp 3 d

Гексаэдрическая

sp 3 d 2 , d 2 sp 3

Октаэдрическая

SF 6 , Fe(CN) 6 3- , CoF 6 3-

4. Электровалентная, ковалентная, донорно-акцепторная, водородная связи. Электронное строение σ и π связи. Основные характеристики ковалентной связи: энергия связи, длина, валентный угол, полярность, поляризуемость.

Если между двумя атомами или двумя группами атомов имеет место электростатическое взаимодействие приводящее к сильному притяжению и образованию химической связи, то такая связь называется электровалентной или гетерополярной.

Ковалентная связь- химическая связь, образованная перекрытием пары валентных электронных облаков. Обепечивающие связь электронные облака называется общей электронной парой.

Донорно-акцепторная связь –это химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободного уровня другого атома (акцептора). Это связь отличается от ковалентной связи происхождением связи электронов.

Водородная связь -это вид химического взаимодейсвия атомов в молекуле отличающийся тем, что существенное участие в нем принимает атом водорода, уже связанный ковалентной связью с другими атомами

σ связь-это первая и более прочная связь, которая образуется при перекрывании электронных облаков в направлении прямой, соединяющий центры атомов.

σ связь-это обычные ковалентные связи атомов углерода с атомами водорода. Молекулы предельных углеродов содержат только σ связи.

π связь это менее прочная связь, которая образуется при перекрывании электронных плоскости атомов ядер

Электроны π и σ связи теряют свою принадлежность к определенному атому.

Особенности σ и π связи: 1)вращение атомов углерода в молекуле возможна в случае, если они соединены σ связью 2)появление π связи лишает атома углерода в молекуле в свободного вращения.

Длина связи- это расстояние между центрами связанных атомов.

Валентный угол- это угол между двумя связями, имеющий общий атом.

Энергия связи- энергия, выделяющаяся при образовании хим. связи и характеризующаяся ее прочность

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

5. Ионная связь (электровалентная)- очень прочная химическая связь, образующаяся между атомами с большой разностью электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью. Ковалентная связь – возникает за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону. Донорно акцепторная связь (координационная связь) химическая связь между двумя атомами или группой атомов, осуществляемая за счет неподеленной пары электронов одного атома (донора) и свободной орбитали другого атома (акцептора).пример NH4 Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F. Это создает заметный частичный положительный заряд на атомах водорода. С другой стороны, важно, чтобы у электроотрицательных атомов были неподеленные электронные пары. Когда обедненный электронами атом водорода одной молекулы (акцептор) взаимодействует с неподеленной электронной парой на атоме N, O или F другой молекулы (донор), то возникает связь, похожая на полярную ковалентную. При образовании ковалентной связи в молекулах органических соединений общая электронная пара заселяет связывающие молекулярные орбитали, имеющие более низкую энергию. В зависимости от формы МО – σ-МО или π-МО – образующиеся связи относят к σ- или p-типу. σ-Связь – ковалентная связь, образованная при перекрывании s-, p- и гибридных АО вдоль оси, соединяющей ядра связываемых атомов (т. е. при осевом перекрывании АО) . π-Связь – ковалентная связь, возникающая при боковом перекрывании негибридных р-АО. Такое перекрывание происходит вне прямой, соединяющей ядра атомов.
π-Связи возникают между атомами, уже соединенными σ-связью (при этом образуются двойные и тройные ковалентные связи) . π-Связь слабее σ-связи из-за менее полного перекрывания р-АО. Различное строение σ- и π-молекулярных орбиталей определяет характерные особенности σ- и π-связей. 1.σ-Связь прочнее π-связи. Это обусловлено более эффективным осевым перекрыванием АО при образовании σ-МО и нахождением σ-электронов между ядрами. 2.По σ-связям возможно внутримолекулярное вращение атомов, т. к. форма σ-МО допускает такое вращение без разрыва связи (cм аним. Картинку внизу)) . Вращение по двойной (σ + π) связи невозможно без разрыва π-связи! 3.Электроны на π-МО, находясь вне межъядерного пространства, обладают большей подвижностью по сравнению с σ-электронами. Поэтому поляризуемость π-связи значительно выше, чем σ-связи.

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождаядипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

6.Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств. В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

Рациональная номенклатура предельных углеводородов

В отличие от тривиальной названия основываются на строении молекул. Названия сложных структур состовляют из названия блоков те радикалов связанных с основным навиболее важным узлом молекулы по этой номенклатуре алканы рассматриваются как производные метана у которого атомы водорода замещены соответствующими радикалами. Выбор метанового углерода произвольный поэтому 1 соедин может иметь неск названий.по этой номенклатуре алкены рассматривают как производные этилена а алкины-ацетилена.

7. Гомология органических соединений или закон гомологов - состоит в том, что вещества однойхимической функции и одинакового строения, отличающиеся друг от друга по своему атомному составу лишьна nСН 2, оказываются сводными и во всем своем остальном хим. характере, а различие их физическихсвойств возрастает или вообще изменяется правильно по мере увеличения разницы в составе,определяемой числом n групп СН 2. Такие хим. сходственные соединения образуют так наз. гомологическийряд, атомный состав всех членов которого возможно выразить общею формулою в зависимости от составапервого члена ряда и числа атомов углерода; органические вещества одного названия типо алканы только.

Изомеры- соединения имеющие одинаковый состав но разное строение и свойства.

8. Нуклеоф и льные и электроф и льные реаг е нты . Участвующие в замещения реакциях реагенты подразделяются на нуклеофильные и электрофильные. Нуклеофильные реагенты, или нуклеофилы, предоставляют свою паруэлектронов на образование новой связи и вытесняют из молекулы RX уходящую группу (X) с парой электронов, образовывавшей старую связь, например:

(где R - органический радикал).

К нуклеофилам относятся отрицательно заряженные ионы (Hal - , ОН - , CN - , NO 2 - , OR - , RS - , NH 2 - , RCOO - и др.), нейтральные молекулы, обладающие свободной парой электронов (например, Н 2 О, NH3, R 3 N, R 2 S, R 3 P, ROH, RCOOH), и металлоорганич. соединения R - Me с достаточно поляризованной связью С - Me + , т. е. способные быть донорами карбанионов R - . Реакции с участием нуклеофилов (нуклеофильное замещение) характерны главным образом Для алифатических соединений, например гидролиз (ОН - , Н 2 О), алкоголиз (RO - , ROH), ацидолиз (RCOO - , RСООН), аминирование (NH - 2 , NH 3 , RNH 2 и др.), цианирование (CN -) и т. д.

Электрофильные реагенты, или электрофилы, при образовании новой связи служат акцепторами пары электронов и вытесняют уходящую группу в виде положительно заряженной частицы. К электрофилам относятся положительно заряженные ионы (например, Н + , NO 2 +), нейтральные молекулы с электронным дефицитом, например SO 3 , и сильно поляризованные молекулы (СН 3 СОО - Br + и др.), причём поляризация особенно эффективно достигаетсякомплексообразованием с коэффициентами Льюиса (Hal + - Hal - · А, R + - Cl - · A, RCO + - Cl - · А, где A= A1C1 3 , SbCl 5 , BF 3 и др.). К реакциям с участием электрофилов (электрофильное замещение) относятся важнейшие реакцииароматических углеводородов (например, нитрование, галогенирование, сульфирование, реакция Фриделя - Крафтса):

(E + = Hal + , NO + 2 , RCO + , R + и др.)

В определённых системах реакции с участием нуклеофилов осуществляются в ароматическом ряду, а реакции с участием электрофилов - в алифатическом (чаще всего в ряду металлоорганических соединений).

53. взаимодействие оксосоединений с металлорганическими (кетон или альдегид плюс металорганика)

Реакции широко используются для получения спиртов.при присоединении к формальдегиду реактива гриньяра(R-MgX) образуется первичный спирт, другим альдегидом вторичные, а кетонам тритичные спирты

Инструкция

Рассмотрите молекулу простейшего предельного углеводорода метана. Его выглядит следующим образом: CH4. Пространственная модель молекулы представляет собою тетраэдр. Атом углерода образует с четырьмя атомами водорода совершенно одинаковые по длине и энергии связи. В них, согласно вышеприведенному примеру, участвуют 3 – Р электрона и 1 S – электрон, орбиталь которого стала в точности соответствовать орбиталям трех других электронов в результате произошедшей . Такой тип гибридизации называется sp^3 гибридизацией. Она присуща всем предельным .

А вот простейший представитель непредельных – этилен. Его формула выглядит следующим образом: С2Н4. Какой тип гибридизации присущ углероду в молекуле этого вещества? В результате ее образуются три орбитали в виде несимметричных «восьмерок», лежащих в одной плоскости под углом 120^0 друг к другу. Их образовали 1 – S и 2 – Р электрона. Последний 3-й Р – электрон не видоизменил свою орбиталь, то есть она осталась в виде правильной «восьмерки». Такой тип гибридизации называют sp^2 гибридизацией.

Как же образуются связи в молекуле ? Две гибридизованные орбитали каждого атома вступили во с двумя атомами водорода. Третья гибридизованная орбиталь образовала связь с такой же орбиталью другого . А оставшиеся Р – орбитали? Они «притянулись» друг к другу по обе стороны от плоскости молекулы. Между атомами углерода образовалась связь. Именно атомам с «двойной» связью присуща sp^2 .

А что происходит в молекуле ацетилена или ? Его формула выглядит следующим образом: С2Н2. В каждом атоме углерода гибридизации подвергаются только два электрона: 1 --S и 1 – Р. Остальные два сохранили орбитали в виде «правильных восьмерок», перекрывающихся» в плоскости молекулы и по обе стороны от нее. Вот поэтому такой тип гибридизации носит название sp – гибридизации. Она присуща атомам с тройной связью.

Все слова , существующие в том или ином языке, можно разделить на несколько групп. Это важно при определении как значения, так и грамматических функций слова . Отнеся его к определенному типу , вы можете видоизменять его в соответствии с правилами, даже если оно вам раньше не встречалось. Типами элементов слова рного состава языка занимается лексикология.

Вам понадобится

  • - текст;
  • - словарь.

Инструкция

Выберите слово, тип которого вы хотите определить. Принадлежность его к той или иной части речи пока не играет роли, как и форма, и функция его в предложении. Это может быть абсолютно любое слово. Если оно не указано в задании, выпишите первое попавшееся. Определите, называет ли оно предмет, качество, действие или нет. По этому параметру все слова делятся на знаменательные, местоименные, числительные, служебные и междометные. К первому типу относятся существительные, прилагательные, глаголы и . Именно они обозначают названия предметов, качеств и действий. Второй тип слов, у которых есть функция называния - местоименный. Способность называть отсутствует у , междометного и служебного типов. Это сравнительно небольшие группы слов, но они есть в каждом .

Определите, способно ли заданное слово выражать понятие. Эта функция есть у слова рных единиц знаменательного типа, ведь именно они и формируют понятийный ряд любого языка. Однако любое число тоже относится к разряду понятий, а соответственно, тоже несет в себе эту функцию. Есть она и у служебных слов, а вот у местоимений и междометий - отсутствует.

Рассмотрите, как будет слово, если оно окажется в предложении. Может ли оно являться ? Им может быть любое слово знаменательного типа. Но эта возможность есть и у , а также у числительного. А вот служебные слова играют вспомогательную роль, ни подлежащим, ни , ни второстепенными членами предложения они быть не могут, как и междометия.

Для удобства можно составить табличку из четырех столбцов шести строк. В верхней строке назовите соответствующие столбцы «Типы слов», «Называние», «Понятие» и «Способно ли быть членом предложения». В первом левом столбце запишите названия типов слов, их всего пять. Определите, какими функциями обладает заданное слово, а каких у него нет. В соответствующих графа поставьте плюсы и . Если во всех трех графах стоят плюсы, то это знаменательный тип. У местоименного плюсы будут стоять в первом и третьем столбцах, - во второй и в третьей. Служебные слова могут только выражать понятие, то есть имеют один плюс во второй графе. Напротив междометий во всех трех столбцах будут стоять минусы.

Видео по теме

Гибридизацией называется процесс получения гибридов – растений или животных, произошедших от скрещения разных сортов и пород. Слово гибрид (hibrida) с латинского языка переводится как «помесь».

Гибридизация: естественная и искусственная

Процесс гибридизации основан на объединении в одной клетке генетического материала разных клеток от разных особей. Различается внутривидовая и отдаленная, при которой происходит соединение разных геномов. В природе естественная гибридизация происходила и происходит без участия человека постоянно. Именно скрещиваясь внутри вида, изменялись и улучшались растения и появлялись новые сорта и породы животных. С точки зрения происходит гибридизация ДНК, нуклеиновых кислот, изменения на атомном и внутриатомном уровнях.

В академической химии под гибридизацией понимается специфическое взаимодействие в молекулах вещества атомных орбиталей. Но это не реальный физический процесс, а лишь гипотетическая модель, концепция.

Гибриды в растениеводстве

В 1694 году немецкий ученый Р. Камерариус предложил искусственно получать . А в 1717 году английский Т. Фэрчайдл впервые скрестил разные виды гвоздик. Сегодня внутривидовая гибридизация растений производится с целью получения высокоурожайных или приспособленных, например, морозостойких сортов. Гибридизация форм и сортов является одним из методов селекции растений. Таким образом создано огромное количество современных сортов сельхозкультур.

При отдаленной гибридизации, когда скрещиваются представители разных видов и происходит объединение разных геномов, полученные гибриды в большинстве случаев не дают потомство или производят помеси низкого качества. Именно поэтому нет смысла оставлять семена созревших на грядке огурцов-гибридов, а всякий раз покупать их семена в специализированном магазине.

Селекция в животноводстве

В мире естественная гибридизация, как внутривидовая, так и отдаленная, также имеет место. Мулы были известны человеку еще за две тысячи лет до нашей эры. И в настоящее время мул и лошак используется в домашнем хозяйстве как относительно дешевое рабочее животное. Правда, такая гибридизация является межвидовой, поэтому самцы-гибриды рождаются обязательно стерильными. Самки же очень редко могут дать потомство.

Мул – это гибрид кобылицы и осла. Гибрид, полученный от скрещивания жеребца и ослицы, называется лошак. Специально разводятся мулы. Они выше и сильнее лошака.

А вот скрещивание домашней собаки с волком было очень распространенным занятием у охотников. Затем, полученное потомство подвергалось дальнейшей селекции, в результате создавались новые породы собак. Сегодня селекция животных – важная составляющая успешности отрасли животноводства. Гибридизация проводится целенаправленно, с ориентацией на заданные параметры.