Как найти периодичность функции примеры. Как определить периодичность функции

Материал для подготовки к коллоквиуму по алгебре.

1. Определение функции.

Функция - зависимость переменной у от переменной x , при которой каждому значению х соответствует единственное значение переменной у .

2. Определение возрастающей функции.

Возрастающая функция (не убывающая) - если для любых значений х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство (если большему значению аргумента из этого промежутка соответствует большее значение функции).

Чтобы по графику функции определить промежутки возрастания функции , нужно, двигаясь слева направо по линии графика функции, выделить промежутки значений аргумента х , на которых график идет вверх .

Убывающая функция (не возрастающая) - если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство (большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Чтобы по графику функцииопределить промежутки убывания функции , нужно, двигаясь слева направо вдоль линии графика функции, выделить промежутки значений аргумента х , на которых график идет вниз .

Определение четной функции, нечетной функции, функции общего вида.

Функция называется четной, если выполнены следующие два условия:

1. если (если х – х

2. для любого х .

Функция называется нечетной , если выполнены следующие два условия:

1. Если область определения функции симметрична относительно оси ОУ (если х принадлежит области определения функции, то и – х также принадлежит области определения функции);

2. для любого х из области определения функции выполняется равенство .

Функция называется функцией общего вида если не выполняются данные условия.

4. Каким условием обладает график четной, нечетной функций?

Свойство. График чётной функциисимметричен относительно оси ОY .

Свойство. График нечётной функции симметричен относительно начала координат .

Определение периодической функции.

Функция называется периодической , если существует положительное число Т такое, что . Наименьшее число с таким свойством называется периодом функции.

6. Перечислите основные свойства функции y= sin x:

1) Область определения функции - все значения, которые принимает независимая переменная х .

Область определения этой функции - множество всех действительных чисел. Так как вместо х в уравнение y=sin(x) мы можем поставить любое число. D (sin х) = R.

2) Область значений функции - все значения, которые принимает зависимая переменная у .

Область значений этой функции - является отрезок [-1;1]. E (sin х) = [-1;1].

3) Функция называется периодической, если существует положительное число Т такое, что . Наименьшее число с таким свойством называется периодом функции.

Функция y=sin(x) периодическая, с периодом 2π.

4) Функция y=sin(x) нечетная. Вспомним, что график нечётной функциисимметричен относительно начала координат.

5) Функция y=sin(x) принимает:

Значение, равное 0, при х =

Наименьшее значение, равное -1, при х= - ;

Положительные значения на интервале (0,π) и на интервалах, получаемых сдвигом этого интервала на ;



Отрицательные значения на интервале ()и на интервалах, получаемых сдвигом этого интервала на ;

6) Функция y=sin(x):

- возрастает на отрезке [ - ; ], и на отрезках, получаемых сдвигом этого отрезка на ;

Убывает на отрезке [ ; ], и на отрезках, получаемых сдвигом этого отрезка на ;

7. Перечислите основные свойства функции y= cos x:

1) Область определения этой функции - множество всех действительных чисел. D(cos) = R.

2) Область значений этой функции - является отрезок [-1;1]. E (cos)=[-1;1].

3) Функция y = cos (x) периодическая, с периодом 2 .

4) Функция y=cos(x) четная. Напомню, что график нечётной функции симметричен относительно оси ОY.

5) Функция y=cos(x) принимает:

Значение, равное 0, при х = ;

Наибольшее значение, равное 1, при х = ;

Наименьшее значение, равное -1, при х = ;

Положительные значения на интервале () и на интервалах, получаемых сдвигом этого интервала на ;

Отрицательные значения на интервале ( ; ) и на интервалах, получаемых сдвигом этого интервала на ;

6) Функция y=cos(x):

- возрастает на отрезке [ ;2 ], и на отрезках, получаемых сдвигом этого отрезка на ;

Убывает на отрезке , и на отрезках, получаемых сдвигом этого отрезка на ;

Графики функций y=cos(x) и y= sin (x)


8. Перечислите основные свойства функции y= tg x:

1) Область определения этой функции - множество всех действительных чисел, кроме .

ФУНКЦИИ И ПРЕДЕЛЫ IX

§ 207. Периодические функции

Функция у = f (x ) называется периодической, если существует число Т =/= 0, такое, что при всех значениях х из области определения зтой функции.

f (x + T) = f (x ) .

Число Т в этом случае называется периодом функции.

Периодическими являются, например, тригонометрические функции у = sin х и у = cos х . Их период равен 2π . Примером периодической нетригонометрической функции может служить функция у = {х }, которая каждому числу х ставит в соответствие его дробную часть*.

* О дробной части числа см. в главе VIII, § 187.

Например, {3,56} = 0,56; {2,01} = 0,01 и т.д. Если к произвольному числу х прибавить 1, то изменится лишь целая часть этого числа; дробная же часть останется прежней. Следовательно, {х + 1} = {х } и потому функция у = {х } является периодической с периодом 1.

Из равенства f (x + T) = f (x ) следует, что все значения функции у = f (x ) повторяются с периодом T. Это находит свое отражение и в графическом изображении периодических функций. Так, например, в интервале синусоида имеет ту же самую форму, что и в интервалах , и т. д. (рис. 282).

На рисунке 283 представлен график функции у = {х }. Периодичность функции у = {х } обусловливает то, что график ее в интервале имеет ту же самую форму, что и в интервалах , и т. д.

Если Т - период функции f (x ), то 2Т, 3T, 4Т и т. д. также периоды этой функции.

Действительно,

f (x + 2T) = f [(x + T) + Т] = f (x + T) = f (x ),

f (x + 3T) = f [(x + 2T) + Т] = f (x + 2T) = f (x )

и т. д. Кроме того, периодом функции f (x ) можно считать и любое из чисел: - Т, - 2T, - 3Т и т. д. В самом деле,

f (x - Т) = f [(x - Т) + Т] = f (x ),

f (x - 2Т) = f [(x - 2Т) + 2Т] = f (x )

и т. д. Итак, если число Т есть период функции f (x ), то при любом целом п число п Т также период этой функции. Поэтому всякая периодическая функция имеет бесконечное множество периодов . Например, периодом функции у = sin x можно считать любое из чисел: 2π , 4π , 6π , - 2π , - 4π , а периодом функции у = {х } - любое из чисел: 1, 2, 3, - 1, - 2, - 3 и т. д.

Говоря о периоде функции у = f (x ), обычно имеют в виду наименьший положительный период. Так, мы говорим, что периодом функции у = sin х является число 2π , периодом функции у = tg х - число π , периодом функции {х } - число 1 и т. д.

Следует, однако, иметь в виду, что наименьшего положительного периода у периодической функции может и не быть.

Например, для функции f (x ) = 3 (рис. 284) любое действительное число является периодом. Но среди положительных действительных чисел не существует наименьшего. Поэтому и функция f (x ) = 3, имея бесконечное множество периодов, не имеет наименьшего положительного периода.

Упражнения

Для каждой из данных функций (№ 1613-1621) найти наименьший положительный период:

1613. у = sin 2х . 1619. у = sin (3х - π / 4).

1614. у = cos x / 2 . 1620. у = sin 2 х

1615. у = tg 3х . 1621. у = sin 4 х + cos 4 х .

1616. у = cos (1 - 2х ).

1617. у = sin х cos х .

1618. у = ctg x / 3 ;

1622. Доказать, что сумма и произведение двух функций, периодических с одним и тем же периодом Т, являются функциями, периодическими с периодом Т.

1623*. Докажите, что функция у = sin х + {х }, являющаяся суммой двух периодических функций у = sin х и у = {х }, сама не является периодической.

Не противоречит ли это результату предыдущей задачи?

1624. Как достроить график функции у = f (x ), периодической с периодом Т, если он задан лишь в интервале ?

Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.

Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла

“Математика – это то, посредством чего люди управляют природой и собой”
А.Н. Колмогоров

Ход урока

I. Организационный этап.

Проверка готовности учащихся к уроку. Сообщение темы и задач урока.

II. Проверка домашнего задания.

Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.

III. Обобщение и систематизация знаний.

1. Устная фронтальная работа.

Вопросы теории.

1) Сформируйте определение периода функции
2) Назовите наименьший положительный период функций y=sin(x), y=cos(x)
3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x)
4) Докажите с помощью круга верность соотношений:

y=sin(x) = sin(x+360º)
y=cos(x) = cos(x+360º)
y=tg(x) = tg(x+180º)
y=ctg(x) = ctg(x+180º)

tg(x+π n)=tgx, n € Z
ctg(x+π n)=ctgx, n € Z

sin(x+2π n)=sinx, n € Z
cos(x+2π n)=cosx, n € Z

5) Как построить график периодической функции?

Устные упражнения.

1) Доказать следующие соотношения

a) sin(740º ) = sin(20º )
b) cos(54º ) = cos(-1026º)
c) sin(-1000º) = sin(80º )

2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)

3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)

4. Данные выражения преобразовать так, чтобы входящие в них углы по абсолютной величине не превышали 90º .

a) tg375º
b) ctg530º
c) sin1268º
d) cos(-7363º)

5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?

Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.

Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.

6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.

Ответ : Т=2; Т=2; Т=4; Т=8.

7. Где в жизни вы встречались с построением повторяющихся элементов?

Ответ учащихся: Элементы орнаментов, народное творчество.

IV. Коллективное решение задач.

(Решение задач на слайдах.)

Рассмотрим один из способов исследования функции на периодичность.

При этом способе обходятся трудности, связанные с доказательством того, что тот или иной период является наименьшим, а также отпадает необходимость касаться вопросов об арифметических действиях над периодическими функциями и о периодичности сложной функции. Рассуждение опирается лишь на определение периодической функции и на такой факт: если Т – период функции, то и nT(n?0) – ее период.

Задача 1. Найдите наименьший положительный период функции f(x)=1+3{x+q>5}

Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.

1+3{x+T+0,25}=1+3{x+0,25}
{x+T+0,25}={x+0.25}

Положим x=-0,25 получим

{T}=0 <=> T=n, n € Z

Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1 . Проверим, не будет ли оно и на самом деле периодом 1 .

f(x+1) =3{x+1+0,25}+1

Так как {T+1}={T} при любом Т, то f(x+1)=3{(x+0.25)+1}+1=3{x+0,25}+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.

Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.

Задача 3. Найдите основной период функции

f(x)=sin(1,5x)+5cos(0,75x)

Допустим Т-период функции, тогда для любого х справедливо соотношение

sin1,5(x+T)+5cos0,75(x+T)=sin(1,5x)+5cos(0,75x)

Если х=0, то

sin(1,5T)+5cos(0,75T)=sin0+5cos0

sin(1,5T)+5cos(0,75T)=5

Если х=-Т, то

sin0+5cos0=sin(-1,5Т)+5cos0,75(-Т)

5= – sin(1,5Т)+5cos(0,75Т)

sin(1,5Т)+5cos(0,75Т)=5

– sin(1,5Т)+5cos(0,75Т)=5

Сложив, получим:

10cos(0,75Т)=10

2π n, n € Z

Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число

f(x+)=sin(1,5x+4π )+5cos(0,75x+2π )= sin(1,5x)+5cos(0,75x)=f(x)

Значит – основной период функции f.

Задача 4. Проверим является ли периодической функция f(x)=sin(x)

Пусть Т – период функции f. Тогда для любого х

sin|x+Т|=sin|x|

Если х=0, то sin|Т|=sin0, sin|Т|=0 Т=π n, n € Z.

Предположим. Что при некотором n число π n является периодом

рассматриваемой функции π n>0. Тогда sin|π n+x|=sin|x|

Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.

Задача 5. Проверить, является ли периодической функция

f(x)=

Пусть Т – период f, тогда

, отсюда sinT=0, Т=π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2π n будет периодом

Так как числители равны, то равны и их знаменатели, поэтому

Значит, функция f не периодическая.

Работа в группах.

Задания для группы 1.

Задания для группы 2.

Проверьте является ли функция f периодической и найдите ее основной период (если существует).

f(x)=cos(2x)+2sin(2x)

Задания для группы 3.

По окончании работы группы презентуют свои решения.

VI. Подведение итогов урока.

Рефлексия.

Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.

VII. Домашнее задание

1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)

b). f(x)=x 2 -2x+4

c). f(x)=2tg(3x+5)

2). Функция y=f(x) имеет период Т=2 и f(x)=x 2 +2x при х € [-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5)

Литература/

  1. Мордкович А.Г. Алгебра и начала анализа с углубленным изучением.
  2. Математика. Подготовка к ЕГЭ. Под ред. Лысенко Ф.Ф., Кулабухова С.Ю.
  3. Шереметьева Т.Г. , Тарасова Е.А. Алгебра и начала анализа для 10-11 классов.

Изучая явления природы, решая технические задачи, мы сталкиваемся с периодическими процессами, которые можно описать функциями особого вида.

Функция y = f(x) с областью определения D называется периодической, если существует хотя бы одно число T > 0, такое, при котором выполняются следующие два условия:

1) точки x + T, x − T принадлежат области определения D для любого x ∈ D;

2) для каждого x из D имеет место соотношение

f(x) = f(x + T) = f(x − T).

Число T называется периодом функции f(x). Иными словами, периодической функцией является такая функция, значения которой повторяются через некоторый промежуток. Например, функция y = sin x - периодическая (рис. 1) с периодом 2π.

Заметим, что если число T является периодом функции f(x), то и число 2T также будет ее периодом, как и 3T, и 4T и т. д., т. е. у периодической функции бесконечно много разных периодов. Если среди них имеется наименьший (не равный нулю), то все остальные периоды функции являются кратными этого числа. Заметим, что не каждая периодическая функция имеет такой наименьший положительный период; например, функция f(x)=1 такого периода не имеет. Важно также иметь в виду, что, например, сумма двух периодических функций, имеющих один и тот же наименьший положительный период T 0 , не обязательно имеет тот же самый положительный период. Так, сумма функций f(x) = sin x и g(x) = −sin x вообще не имеет наименьшего положительного периода, а сумма функций f(x) = sin x + sin 2x и g(x) = −sin x, наименьшие периоды которых равны 2π, имеет наименьший положительный период, равный π.

Если отношение периодов двух функций f(x) и g(x) является рациональным числом, то сумма и произведение этих функций также будут периодическими функциями. Если же отношение периодов всюду определенных и непрерывных функций f и g будет иррациональным числом, то функции f+g и fg уже будут непериодическими функциями. Так, например, функции cos x sin √2 x и cosj √2 x + sin x являются непериодическими, хотя функции sin x и cos x периодичны с периодом 2π, функции sin √2 x и cos √2 x периодичны с периодом √2 π.

Отметим, что если f(x) - периодическая функция с периодом T, то сложная функция (если, конечно, она имеет смысл) F(f(x)) является также периодической функцией, причем число T будет служить её периодом. Например, функции y = sin 2 x, y = √(cos x) (рис. 2,3) - периодические функции (здесь: F 1 (z) = z 2 и F 2 (z) = √z). Не следует, однако, думать, что если функция f(x) имеет наименьший положительный период T 0 , то и функция F(f(x)) будет иметь такой же наименьший положительный период; например, функция y = sin 2 x имеет наименьший положительный период, в 2 раза меньший, чем функция f(x) = sin x (рис. 2).

Нетрудно показать, что если функция f периодична с периодом T, определена и дифференцируема в каждой точке действительной прямой, то функция f"(x) (производная) есть также периодическая функция с периодом T, однако первообразная функция F(x) (см. Интегральное исчисление) для f(x) будет периодической функцией только в том случае, когда

F(T) − F(0) = T o ∫ f(x) dx = 0.