Классическое определение теории вероятности формула. Задачи на классическое определение вероятности.Примеры решений. Классическое определение вероятности

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

– общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Классическая вероятность и ее свойства

Вероятность - одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие.

Вероятность события А обозначают через Р(А) (здесь Р – первая буква французского слова probabilite – вероятность).

В соответствии с определением

где – число элементарных исходов испытания, благоприятствующих появлению события ;

Общее число возможных элементарных исходов испытания.

Это определение вероятности называют классическим . Оно возникло на начальном этапе развития теории вероятностей.

Часто число называют относительной частотой появления события А в опыте.

Чем больше вероятность события, тем чаще оно наступает, и наоборот, чем меньше вероятность события, тем реже оно наступает. Когда вероятность события близка к единице или равна единице, то оно наступает почти при всех испытаниях. О таком событии говорят, что оно практически достоверно , т. е. что можно наверняка рассчитывать на его наступление.

Наоборот, когда вероятность равна нулю или очень мала, то событие наступает крайне редко; о таком событии говорят, что оно практически невозможно .

Иногда вероятность выражают в процентах: Р(А) 100% есть средний процент числа появлений события A .

Пример 2.13. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.

Решение.

Обозначим через А событие - «набрана нужная цифра».

Абонент мог набрать любую из 10 цифр, поэтому общее число возможных элементарных исходов равно 10. Эти исходы несовместны, равновозможны и образуют полную группу. Благоприятствует событию А лишь один исход (нужная цифра лишь одна).

Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов:

Формула классической вероятности дает очень простой, не требующий проведения экспериментов, способ вычисления вероятностей. Однако простота этой формулы очень обманчива. Дело в том, что при ее использовании возникают, как правило, два очень непростых вопроса:

1. Как выбрать систему исходов опыта так, чтобы они были равновозможны, и можно ли это сделать вообще?

2. Как найти числа m и n ?

Если в опыте участвуют несколько предметов, равновозможные исходы увидеть не всегда просто.

Великий французский философ и математик Даламбер вошел в историю теории вероятностей со своей знаменитой ошибкой, суть которой в том, что он неверно определил равновозможность исходов в опыте всего с двумя монетами!

Пример 2.14. (ошибка Даламбера ). Подбрасываются две одинаковые монеты. Какова вероятность того, что они упадут на одну и ту же сторону?

Решение Даламбера.

Опыт имеет три равновозможных исхода:

1. Обе монеты упадут на «орла»;

2. Обе монеты упадут на «решку»;

3. Одна из монет упадет на «орла», другая на «решку».

Правильное решение.

Опыт имеет четыре равновозможных исхода:

1. Первая монета упадет на «орла», вторая тоже на «орла»;

2. Первая монета упадет на «решку», вторая тоже на «решку»;

3. Первая монета упадет на «орла», а вторая - на «решку»;

4. Первая монета упадет на «решку», а вторая - на «орла».

Из них благоприятными для нашего события будут два исхода, поэтому искомая вероятность равна .

Даламбер совершил одну из самых распространенных ошибок, допускаемую при вычислении вероятности: он объединил два элементарных исхода в один, тем самым сделав его не равным по вероятности оставшимся исходам опыта.

Краткая теория

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события. Вероятностью случайного события называется число, являющееся выражением меры объективной возможности появления события.

Величины, определяющие, насколько значительны объективные основания рассчитывать на появление события, характеризуются вероятностью события. Необходимо подчеркнуть, что вероятность есть объективная величина, существующая независимо от познающего и обусловленная всей совокупностью условий, которые способствуют появлению события.

Объяснения, которые мы дали понятию вероятности, не являются математическим определением, так как они не определяют это понятие количественно. Существует несколько определений вероятности случайного события, которые широко применяются при решении конкретных задач (классическое, аксиоматическое, статистическое и т. д.).

Классическое определение вероятности события сводит это понятие к более элементарному понятию равновозможных событий, которое уже не подлежит определению и предполагается интуитивно ясным. Например, если игральная кость - однородный куб, то выпадения любой из граней этого куба будут равновозможными событиями.

Пусть достоверное событие распадается на равновозможных случаев , сумма которых дает событие . То есть случаи из , на которые распадается , называются благоприятствующими для события , так как появление одного из них обеспечивает наступление .

Вероятность события будем обозначать символом .

Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.

Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число n, число случаев m, благоприятствующих данному событию, и затем выполнить расчет по вышеприведенной формуле.

Вероятность события, равная отношению числа благоприятных событию исходов опыта к общему числу исходов опыта называется классической вероятностью случайного события.

Из определения вытекают следующие свойства вероятности:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Свойство 4. Вероятность наступления событий, образующих полную группу, равна единице.

Свойство 5. Вероятность наступления противоположного события определяется так же, как и вероятность наступления события A.

Число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события A:

Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

При выполнении комплекса условий достоверное событие обязательно произойдет, а невозможное обязательно не произойдет. Среди событий, которые при создании комплекса условий могут произойти, а могут не произойти, на появление одних можно рассчитывать с большим основанием, на появление других с меньшим основанием. Если, например, в урне белых шаров больше, чем черных, то надеяться на появление белого шара при вынимании из урны наудачу больше оснований, чем на появление черного шара.

Пример решения задачи

Пример 1

В ящике находится 8 белых, 4 черных и 7 красных шаров. Наудачу извлечены 3 шара. Найти вероятности следующих событий: – извлечен по крайней мере 1 красный шар, – есть по крайней мере 2 шара одного цвета, – есть по крайней мере 1 красный и 1 белый шар.

Решение задачи

Общее число исходов испытания найдем как число сочетаний из 19 (8+4+7) элементов по 3:

Найдем вероятность события – извлечен по крайней мере 1 красный шар (1,2 или 3 красных шара)

Искомая вероятность:

Пусть событие – есть по крайней мере 2 шара одного цвета (2 или 3 белых шара, 2 или 3 черных шара и 2 или 3 красных шара)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Пусть событие – есть по крайней мере один красный и 1 белый шар

(1 красный, 1 белый, 1 черный или 1 красный, 2 белых или 2 красных, 1 белый)

Число исходов, благоприятствующих событию:

Искомая вероятность:

Ответ: P(A)=0.773;P(C)=0.7688; P(D)=0.6068

Пример 2

Брошены две игральные кости. Найти вероятность того, что сумма очков не меньше 5.

Решение

Пусть событие – сумма очков не меньше 5

Воспользуемся классическим определением вероятности:

Общее число возможных исходов испытания

Число испытаний, благоприятствующих интересующему нас событию

На выпавшей грани первого игрального кубика может появиться одно очко, два очка…, шесть очков. аналогично шесть исходов возможны при бросании второго кубика. Каждый из исходов бросания первой кости может сочетаться с каждым из исходов второй. Таким образом, общее число возможных элементарных исходов испытания равно числу размещений с повторениями (выбор с размещениями 2 элементов из совокупнности объема 6):

Найдем вероятность противоположного события – сумма очков меньше 5

Благоприятствовать событию будут следующие сочетания выпавших очков:

1-я кость 2-я кость 1 1 1 2 1 2 3 2 1 4 3 1 5 1 3


Изложено геометрическое определение вероятности и приведено решение широко известной задачи о встрече.

3) P (Æ )=0.

Будем говорить, что задано вероятностное пространство , если задано пространство элементарных исходов9 и определено соответствие

w i ® P(w i ) =Pi .

Возникает вопрос: как определить из конкретных условий решаемой задачи вероятность P (w i ) отдельных элементарных исходов?

Классическое определение вероятности.

Вычислять вероятности P (w i ) можно, используя априорный подход, который заключается в анализе специфических условий данного эксперимента (до проведения самого эксперимента).

Возможна ситуация, когда пространство элементарных исходов состоит из конечного числа N элементарных исходов, причем случайный эксперимент таков, что вероятности осуществления каждого из этихN элементарных исходов представляются равными.Примеры таких случайных экспериментов: подбрасывание симметричной монеты, бросание правильной игральной кости, случайное извлечение игральной карты из перетасованной колоды. В силу введенной аксиомы вероятности каждого элементарного

исхода в этом случае равны N . Из этого следует, что если событиеА содержитN A элементарных исходов, то в соответствии с определением (*)

P(A) = A

В данном классе ситуаций вероятность события определяется как отношение числа благоприятных исходов к общему числу всех возможных исходов.

Пример . Из набора, содержащего 10 одинаковых на вид электроламп, среди которых 4 бракованных, случайным образом выбирается 5 ламп. Какова вероятность, что среди выбранных ламп будут 2 бракованные?

Прежде всего отметим, что выбор любой пятерки ламп имеет одну и ту же вероятность. Всего существует C 10 5 способов составить такую пятерку, то есть случайный эксперимент в данном случае имеетC 10 5 равновероятных исходов.

Сколько из этих исходов удовлетворяют условию "в пятерке две бракованные лампы", то есть сколько исходов принадлежат интересующему нас событию?

Каждую интересующую нас пятерку можно составить так: выбрать две бракованные лампы, что можно сделать числом способов, равным C 4 2 . Каждая пара бракованных ламп может встретиться столько раз, сколькими способами ее можно дополнить тремя не бракованными лампами, то естьÑ 6 3 раз. Получается, что число пятерок, содержащих две

Статистическое определение вероятности.

Рассмотрим случайный эксперимент, заключающийся в том, что подбрасывается игральная кость, сделанная из неоднородного материала. Ее центр тяжести не находится в геометрическом центре. В этом случае мы не можем считать исходы (выпадение единицы, двойки и т.д.) равновероятными. Из физики известно, что кость более часто будет падать на ту грань, которая ближе к центру тяжести. Как определить вероятность выпадения, например, трех очков? Единственное, что можно сделать, это подбросить эту кость n раз (где n -достаточно большое число, скажемn =1000 илиn =5000), подсчитать число выпадений трех очковn 3 и считать вероятность исхода, заключающегося в выпадении трех очков, равнойn 3 /n - относительной частоте выпадения трех очков. Аналогичным образом можно определить вероятности остальных элементарных исходов - единицы, двойки, четверки и т.д. Теоретически такой образ действий можно оправдать, если ввестистатистическое определение вероятности .

Вероятность P(M i ) определяется как предел относительной частоты появления исходаM i в процессе неограниченного увеличения числа случайных экспериментовn , то есть

P i = P (M i ) = lim m n (M i ) , n ®¥n

где m n (M i ) – число случайных экспериментов (из общего числаn произведенных случайных экспериментов), в которых зарегистрировано появление элементарного исходаM i .

Так как здесь не приводится никаких доказательств, мы можем только надеяться, что предел в последней формуле существует, обосновывая надежду жизненным опытом и интуицией.

Геометрическая вероятность

В одном специальном случае дадим определение вероятности события для случайного эксперимента с несчетным множеством исходов.

Если между множеством W элементарных исходов случайного эксперимента и множеством точек некоторой плоской фигурыS (сигма большая) можно установить взаимно-однозначное соответствие, а также можо установить взаимно-однозначное соответствие между множеством элементарных исходов, благоприятствующих событиюА , и множеством точек плоской фигурыI (сигма малая), являющейся частью фигурыS , то

P(A) = S ,

где s - площадь фигурыs ,S - площадь фигурыS .

Пример. Два человека обедают в столовой, которая открыта с 12 до 13 часов. Каждый из них приходит в произвольный момент времени и обедает в течение 10 минут. Какова вероятность их встречи?

Пусть x - время прихода первого в столовую, аy - время прихода второго

12 £ x £ 13; 12 £y £ 13.

Можно установить взаимно-однозначное соответствие между всеми парами чисел (x ;y ) (или множеством исходов) и множеством точек квадрата со стороной, равной 1, на координатной плоскости, где начало координат соответствует числу 12 по осиX и по осиY , как изображено на рисунке 6. Здесь, например, точкаА соответствует исходу, заключающемуся в том, что первый пришел в 12.30, а второй - в 13.00. В этом случае, очевидно,

встреча не состоялась.

Если первый пришел не позже второго (y ³ x ), то

встреча произойдет при условии 0 £ y - x £ 1/6

(10 мин.- это 1/6 часа).

Если второй пришел не позже первого (x ³ y ), то

встреча произойдет при условии 0 £ x - y £ 1/6..

Между множеством исходов, благоприятствующих

встрече, и множеством точек области s , изображенной на

рисунке 7 в заштрихованном виде, можно установить

взаимно-однозначное cоответствие.

Искомая вероятность p равна отношению площади

области s к площади всего квадрата.. Площадь квадрата

равна единице, а площадь области s можно определить как

разность единицы и суммарной площади двух

треугольников, изображенных на рисунке 7. Отсюда следует:

p =1 -

Непрерывное вероятностное пространство.

Как уже говорилось ранее, множество элементарных исходов может быть более, чем счетным (то есть несчетным). В этом случае нельзя считать любое подмножество множества W событием.

Чтобы ввести определение случайного события, рассмотрим систему (конечную или счетную) подмножеств A 1 , A 2 ,... A n пространства элементарных исходовW .

В случае выполнения трех условий: 1) W принадлежит этой системе;

2) из принадлежности А этой системе следует принадлежностьA этой системе;

3) из принадлежностиA i иA j этой системе следует принадлежностьA i U A j этой

системе такая система подмножеств называется алгеброй.

Пусть W - некоторое пространство элементарных исходов. Убедитесь в том, что две системып одмножеств:

1) W ,Æ ; 2)W ,А ,A ,Æ (здесьА - подмножествоW ) являются алгебрами.

Пусть A 1 иA 2 принадлежат некоторой алгебре. Докажите, чтоA 1 \A 2 иA 1 ∩ A 2 принадлежат этой алгебре.

Подмножество А несчетного множества элементарных исходов 9 является событием, если оно принадлежит некоторой алгебре.

Сформулируем аксиому, называемую аксиомой А.Н. Колмогорова.

Каждому событию соответствует неотрицательное и не превосходящее единицы число P(А), называемое вероятностью событияА , причем функцияP(А) обладает следующими свойствами:

1) Р (9 )=1

2) если события A 1 ,A 2 ,...,A n несовместны, то

P (A 1 U A 2 U ... U A n ) =P (A 1 ) +P (A 2 ) +... +P (A n )

Если задано пространство элементарных исходов W , алгебра событий и определенная на ней функцияР , удовлетворяющая условиям приведенной аксиомы, то говорят, что задановероятностное пространство .

Это определение вероятностного пространства можно перенести на случай конечного пространства элементарных исходов W . Тогда в качестве алгебры можно взять систему всех подмножеств множестваW .

Формулы сложения вероятностей.

Из пункта 2 приведенной аксиомы следует, что если A 1 и A2 несовместные события, то

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 )

Если A 1 иA 2 - совместные события, тоA 1 U A 2 =(A 1 \A 2 )U A 2 , причем очевидно, чтоA 1 \A 2 иA 2 - несовместные события. Отсюда следует:

P (A 1 U A 2 ) =P (A1 \A 2 ) +P (A2 )

Далее очевидно: A 1 = (A1 \A 2 )U (A 1 ∩ A 2 ), причем A1 \A 2 иA 1 ∩ A 2 - несовместные события, откуда следует:P (A 1 ) =P (A1 \A 2 ) +P (A 1 ∩ A 2 ) Найдем из этой формулы выражение дляP (A1 \A 2 ) и подставим его в правую часть формулы (*). В результате получим формулу сложения вероятностей:

P (A 1 U A 2 ) =P (A 1 ) +P (A 2 ) –P (A 1 ∩ A 2 )

Из последней формулы легко получить формулу сложения вероятностей для несовместных событий, положив A 1 ∩ A 2 =Æ .

Пример. Найти вероятность вытащить туза или червовую масть при случайном отборе одной карты из колоды в 32 листа.

Р (ТУЗ) = 4/32 = 1/8;Р (ЧЕРВОВАЯ МАСТЬ) = 8/32 = 1/4;

Р (ТУЗ ЧЕРВЕЙ) = 1/32;

Р ((ТУЗ)U (ЧЕРВОВАЯ МАСТЬ)) = 1/8 + 1/4 - 1/32 =11/32

Того же результата можно было достичь с помощью классического определения вероятности, пересчитав число благоприятных исходов.

Условные вероятности.

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W =(1,2,3,...,28,29,30). Пусть событиеА заключается в том, что студент вытащил выученный билет:А = (1,...,5,25,...,30,), а событиеВ - в том, что студент вытащил билет из первых двадцати:В = (1,2,3,...,20)

Событие А ∩ В состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 - это вероятность событияB . Число 5/20 можно рассматривать как вероятность событияА при условии, что событиеВ произошло (обозначим еёР (А /В )). Таким образом решение задачи определяется формулой

P (А ∩ В ) =Р (А /В )Р (B )

Эта формула называется формулой умножения вероятностей, а вероятность Р (А /В ) - условной вероятностью событияA .

Пример..Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X - событие, состоящее в извлечении первым белого шара, аY - событие, состоящее в извлечении вторым черного шара. ТогдаX ∩ Y - событие, заключающееся в том, что первый шар будет белым, а второй - черным.P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, чтоP (X ) = 7/10, по формуле умножения вероятностей получаем:P (X ∩ Y ) = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А / В )= Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ∩ В ) =Р (А )Р (B )

Докажите самостоятельно, что если А иВ - независимые события, тоA иB тоже являются независимыми события.

Пример.Рассмотрим задачу, аналогичную предыдущей, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар - черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность событияВ - появления вторым черного шара - равна 3/10. Теперь формула умножения вероятностей дает:P (А ∩ В ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением иливозвратной выборкой .

Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.