Монография бернштейна о построении движений. Основные положения теории Н.А. Бернштейна. Координация - краеугольный камень теории движений

Никола́й Алекса́ндрович Бернште́йн (24 октября (5 ноября) 1896, Москва - 16 января 1966, там же) - советский психофизиолог и физиолог, создатель нового направления исследований - физиологии активности. Сын психиатра Александра Николаевича Бернштейна, внук физиолога Натана Осиповича Бернштейна. Лауреат Сталинской премии (за 1947 год, присуждена в 1948)

Места работы

1920-?? - Донская психоневрологическая лечебница‎, психиатр

1924 - Центральный институт труда

1925-1927 - Московский государственный институт экспериментальной психологии

1930-е годы - Всесоюзный институт экспериментальной медицины им. А.М. Горького

Научный вклад

Концепция физиологии активности, созданная Бернштейном на основе глубокого теоретического и эмпирического анализа естественных движений человека в норме и патологии (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Бернштейном новых методов их регистрации, послужила основой для глубокого понимания целевой детерминации человеческого поведения, механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии. В работах Бернштейна получило свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики.

Профессиональная научная деятельность началась в 1922 г. в Центральном институте труда (ЦИТ), где ему предложили работу в отделе научных изысканий.. Там же в биомеханической лаборатории ЦИТа Н.А. Бернштейн занялся разработкой общих основ биомеханики и уже к 1924 году подготовил к изданию обширный труд "Общая биомеханика". Николай Александрович разработал метод циклографии с использованием кинокамеры, который позволял подробно зафиксировать все фазы движения. В том же году Н. А. Бернштейн возглавил биомеханическую лабораторию ЦИТ и принял участие в работе первой международной конференции по научной организации труда в Праге (First International Management Congress in Prague, PIMCO; 20-24 июля, 1924), где сделал доклад об изысканиях в области физиологии труда.

С именем Н. Бернштейна связан современный этап развития биомеханики, его «физиология движений» составляет теоретическую основу этой науки.

Идеи Бернштейна нашли широкое практическое применение при восстановлении движений у раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др.

Звания и награды

Член-корреспондент Академии медицинских наук СССР.

За монографию «О построении движений» удостоен Сталинской премии (за 1947 год, присуждена в 1948).

Работы

Общая биомеханика (1926)

Проблема взаимоотношений координации и локализации (1935)

О построении движений (1947)

Очерки по физиологии движений и физиологии активности (1966)

Физиология движений и активность (1990)

О ловкости и её развитии (1991)

Процесс формирования двигательного навыка. Принцип активности и его развитие Н.А. Бернштейном (вклад в психологию)

Перейдём к важной теме, совершенно по-новому раскрытой Н. А. Бернштейном, - механизмам формирования навыка. Эта проблема очень важна для психологии, так как формирование навыков составляет, как вы уже знаете, основу всякого обучения.

Процесс формирования навыка описан у Бернштейна очень подробно. Он выделил много частных фаз - порядка семи, которые объединяются в более общие периоды. Для первого знакомства достаточно будет разобрать эти периоды.

В первый период происходит первоначальное знакомство с движением и первоначальное овладение им. С чего начинается обучение движению, т. е. каковы "горячие точки" формирования навыка на первых порах?

Все начинается, конечно, с выявления его двигательного состава, т. е. того, что и как надо делать: какие элементы движения, в какой последовательности, в каких сочетаниях надо производить. Например, когда рука толкает ядро, то что в это время делает корпус?

Как происходит знакомство с двигательным составом действия? Конечно, путем рассказа, показа, разъяснения, наблюдения. В этот период идет ознакомление с тем, как движение выглядит снаружи. Часто, если его показывает опытный мастер, создается иллюзия необыкновенной простоты и легкости выполнения. Однако, как правило, новичка ждет разочарование: движение совершенно не получается.

Часто в такую "ловушку" видимой легкости движения попадают дети. Вам, наверное, приходилось наблюдать их наивные, неловкие попытки воспроизвести только что увиденный танец, спортивное движение или какое-нибудь орудийное действие.

В чем же причина подобных неудач? Причина в том, что, как только движение начинается, на субъекта обрушивается поток совершенно непривычных сенсорных сигналов о нем. Этот поток идет от всех частей тела, со всех рецепторных поверхностей, и человек не может в них разобраться. Таким образом, следующая фаза первого периода (она наиболее трудоемкая) уходит на бесконечные повторения с целью прояснения внутренней картины движения. Одновременно человек учится пере-шифровывать афферентные сигналы в эффекторные команды. Накопление "словаря перешифровок" - одно из самых важных событий этого периода. Большое количество повторений здесь необходимо потому, что перешиф-ровки должны быть найдены в ответ на любые отклонения, на любые варианты движений. Как пишет Бернш-тейн, организм на этой фазе должен "наощущаться досыта", и каждая шишка или синяк - это болевой след от процесса накопления перешифровок.

Итак, если воспользоваться схемой рефлекторного кольца, то можно указать наиболее "горячие точки" первого периода. Ими будут события, происходящие в блоках: "программа", "задающий прибор" и "перешиф-фровки", т. е. соответственно, прояснение внешнего двигательного состава, внутренней картины движения и отработка правильных коррекций.

Последнее чрезвычайно важное событие, которым кончается этот период, состоит из первоначальной росписи коррекций по нижележащим уровням. В этом процессе надо специально разобраться.

Напомню, что, обсуждая в лекции "Неосознаваемые процессы" формирование навыка, я подчеркивала, что первоначальная отработка всех элементов, составляющих навык, происходит на уровне сознания. Очень часто она строится на уровне D, поскольку этот уровень наиболее доступен осознанию.

Интересно, что к помощи уровня D интуитивно прибегают педагоги и тренеры при первоначальной отработке движений, которые относятся к нижележащим уровням. Приведу два примера.

При обучении прыжкам на батуте очень важно с самого начала выработать правильную вертикальную стойку. Важная особенность этой стойки - максимальная вертикальная "растяжка" тела при взлете вверх с одновременным его раскрепощением. Последнее дается новичкам с трудом: они, как правило, "зажимают" корпус, напрягают плечи, наклоняют голову и т. п. Мне приходилось наблюдать, как опытный тренер подключал к отработке этого движения, по своему смыслу принадлежащего уровню В или даже А, уровень D через инструкцию: "Представьте себе, что из вашего затылка торчит шест и вы каждый раз, когда подлетаете вверх, стремитесь коснуться его концом потолка". Очевидно, что тем самым внимание ученика отвлекалось от позы тела на "предметную логику" положения и движения "шеста". Оказывалось, что, действуя в этой логике, обучающийся значительно легче достигал требуемой позы.

Другой пример относится к технике поворота на горных лыжах.

Одним из моментов, способствующих сохранению и даже увеличению скорости во время поворота, является довольно тонкое движение дополнительного "выталкивания" ступней ног вперед по ходу "выписывания" лыжами дуги. Уловить это движение помогает совет представить себя на качелях: раскачивание качелей достигается очень сходными движениями ног.

Подобные предметные образы помогают найти правильный внешний рисунок движения и отработать необходимые коррекции на уровне D. Однако по мере повторения начинают проясняться и осваиваться сигналы обратной связи на нижележащих уровнях. Как правило, они дают более тонкие и точные сведения о различных сторонах движения, недоступные ведению уровня D. Вас уже известно, что уровень А хорошо "осведомлен" о тонусе и равновесии тела, уровень B - о положении частей тела и т. д.

Попробуем на схеме кольца изобразить этот процесс подключения нижележащих уровней.

К сожалению, Н. А. Бернштейн только вербально соединил основные части своей концепции - схему кольца управления и теорию уровней, указав, что совместно работающие уровни можно представить себе как иерархическую систему колец. Он, однако, не оставил соответствующей схемы.

Попробуем гипотетически восполнить этот пробел на свой страх и риск. На рис. 8 изображены два кольца: верхнее принадлежит ведущему уровню, а нижнее - одному из фоновых уровней. На самом деле система колец должна быть более сложной: содержать не два, а несколько этажей и в каждом уровне - не одно, а много колец.

Однако рассмотрим только два соподчиненных кольца, как представляющих отношения ведущего и любого из нижележащих уровней.

Кольцу ведущего уровня принадлежит общая программа движения, все остальные блоки дублируются в кольце фонового уровня. В частности, у него свой "рецептор", через который поступают сигналы об аспектах движения, адекватных данному уровню, и часто сигналы другой модальности, чем сигналы ведущего уровня. Эффектор же у обоих колец общий - это, условно говоря, мышца, на которую сходятся сигналы управления с разных уровней.

Теперь рассмотрим какой-нибудь простой пример процесса формирования навыка, в котором явно видно подключение нижележащего уровня.

Обычно вы входите в свою комнату и включаете свет, не глядя на руку. Это движение для вас слишком привычно, и вы о нем специально не заботитесь.

Однако раньше, только осваивая это движение, вы, конечно, зрительно контролировали его. Оно строилось у вас на уровне C как движение, учитывающее метрику внешнего пространства и нуждающееся в зрительном контроле. Если ваша рука двигалась не совсем точно по направлению к выключателю, зрительные сигналы о ее отклонении перешифровывались в сигналы коррекции.

Однако одновременно вы получали сигналы обратной связи от мышечных рецепторов проприоцептивной модальности. Вначале они не несли функциональной нагрузки. Однако постепенно, по мере повторения движения, происходило формирование мышечного чувства правильного движения. Это было прояснение "внутренней картины" движения, которое уже обсуждалось выше. На схеме оно означает формирование SW нижнего кольца, которое должно отвечать SW кольца ведущего уровня. Теперь в нижнем кольце может начать функционировать прибор сличения и отрабатываться соответствующие пере-шифровки. Однако для этого в течение некоторого времени необходима полная задействованность ведущего уровня: он продолжает выполнять роль лесов для строящегося здания. В нашем примере это соответствует фазе, когда вы более уверенно и более точно протягиваете к выключателю руку, но все-таки вынуждены еще на нее посматривать.

Итак, события, которые завершают первый период, а именно прощупывание и роспись коррекций по фоновым уровням, на схеме изображаются подключением контуров управления нижележащих уровней.

Этот процесс непосредственно подходит ко второму периоду - автоматизации движения.

В течение этого периода происходит полная передача отдельных компонентов движения или всего движения целиком в ведение фоновых уровней. В результате ведущий уровень частично или полностью освобождается от заботы об этом движении.

Как образно пишет Н. А. Бернштейн, на этом этапе окрепшие фоновые уровни "отталкивают от себя руку ведущего уровня", как ребенок, научившийся плавать, отталкивает руку взрослого, до тех пор поддерживавшую его.

В этот же второй период происходят еще два важных процесса: во-первых, увязка деятельности всех низовых уровней, ведь, как уже говорилось, должна отдалиться сложная иерархическая система многих колец; во-вторых, "рекрутирование" готовых двигательных блоков.

Дело в том, что низовые уровни всякого организма, имеющего за плечами большую двигательную историю, не немы и не пусты. В них уже существуют функциональные системы (блоки), которые выработались по другим поводам. Если при освоении нового движения организм обнаруживает необходимость в определенного типа перешифровках, то он иногда ищет их в буквальном смысле, ищет и находит их в своем готовом словаре. Этот словарь Н. А. Бернштейн называет "фонотекой", причем первую половину слова он предлагает понимать не как латинский корень, означающий "звук", а буквально как "фон". Каждый организм имеет свою "фонотеку", т. е. набор фонов, и от его объема зависят его двигательные возможности и даже способности.

Показательно, что рекрутируемый блок может быть извлечен из движения, которое совершенно не похоже на то движение, которое осваивается. Например, при обучении езде на двухколесном велосипеде, как показывает анализ, очень полезен оказывается навык бега на коньках, потому что в обоих типах движений имеются внутренние одинаковые элементы. Это перешифровки, обеспечивающие поддержание равновесия в условиях очень узкой опоры.

Именно рекрутированием готовых блоков объясняются те качественные скачки и "ага-реакции", которые иногда наблюдаются при овладении новым движением.

Наконец, последнее замечание, очень важное для характеристики этого периода. Вы уже знаете, что по мере автоматизации движения, последнее уходит из-под контроля сознания. Так вот субъект может и должен помочь этому процессу "ухода" из сознания. Если в течение первого периода субъекту нужно максимально включаться в движение - вдумываться и вчувствоваться в него, пристально следить за каждым его элементом и т. п., то теперь следует делать прямо противоположное: перестать обращать внимание на движение. Используя метафору Н. А. Бернштейна, скажем так: необходимо помочь ребенку, который уже почти научился плавать, оттолкнуть руку взрослого.

С этой целью тренеры и педагоги используют целый ряд приемов. Например, предлагают ускорить темп движения или непрерывно повторять его много раз подряд. Но самый эффективный прием состоит в том, чтобы включить данное движение в более сложную двигательную задачу, т. е. сделать так, чтобы оно выступило уже не как самоцель, а как средство решения более общей задачи.

Наконец, в последний, третий, период происходит окончательная шлифовка навыка за счет стабилизации и стандартизации.

Что такое стабилизация? Это более или менее понятно: навык обретает такую прочность, что не разрушается ни при каких обстоятельствах. Если в период первоначальной автоматизации движение могло выполняться чисто только находясь "под стеклянным колпаком", т. е. в стандартных условиях, то в этот период оно приобретает высокую помехоустойчивость. Например, футболист может играть при дожде на скользкой траве, теннисист - при ветре, слаломист может проходить трассу по ледяному склону или по буграм и т. п.

За счет чего приобретается такая помехоустойчивость? За счет того, что к этому моменту организм уже опробовал массу отклонений, которые вызывались внешними и внутренними помехами. Все они были отработаны, и теперь на каждый возможный случай у него имеется запас соответствующих коррекций.

Что касается стандартизации, то под ней имеется Б виду приобретение навыков стереотипности. В этот период при многократном повторении движения получается серия абсолютно одинаковых копий, напоминающих, по образному выражению Н. А. Бернштейна, "гвардейцев в строю". Обеспечивает эту стереотипность помимо автоматизации еще один механизм, который тоже очень талантливо описал Бернштейн.

Он относится, в основном, к движениям темповым, высоко амплитудным, во время которых развиваются выраженные реактивные и инерционные силы.

Когда движение осуществляется с большой скоростью и большой амплитудой, то названные силы начинают существенно на него влиять. Влияние это может быть двояким: силы могут либо мешать движению, разрушать его, либо рационально использоваться и помогать ему. Так вот стереотипность навыков появляется благодаря тому, что организм научается эффективно использовать реактивные и инерционные силы. Достигается это за счет нахождения динамически устойчивой траектории. Динамически устойчивая траектория - это особая, уникальная линия, при движении по которой развиваются механические силы, способствующие продолжению движения в выбранном направлении. Благодаря им движение и приобретает легкость, непринужденность и стереотипность.

На этом мы заканчиваем обсуждение процесса формирования навыка.

В заключение я хочу остановиться на разработке Н. А. Бернштейном принципа активности. Все основные положения его концепции, как вы уже могли понять, взаимосвязаны. То же относится и к принципу активности: он является, по существу, обобщением и развитием основных представлений о механизмах организации движений. Соответственно к обобщенной формулировке этого принципа Н. А. Бернштейн пришел в последний период своей жизни.

Вы уже знаете, что суть принципа активности состоит в постулировании определяющей роли внутренней программы в актах жизнедеятельности организма. Принцип активности противопоставляется принципу реактивности, согласно которому тот или иной акт - движение действие - определяется внешним стимулом.

Надо сказать, что принцип реактивности владел умами естествоиспытателей и философов материалистического направления в течение не одного века. Он был прочно связан с идеей детерминизма и имел прогрессивное значение. Он интенсивно разрабатывался в физиологии XIX и начала XX в., а также в психологии в эпоху бихевиоризма; следы его сохраняются и до сих пор.

Что касается принципа активности, то для материалистического естествознания он явился достаточно новым.

Рассмотрим, следуя за развитием идей Н. А. Бернштейна, несколько аспектов принципа активности: конкретно-физиологический, общебиологический и философский.

В конкретно-физиологическом плане принцип активности неразрывно связан с открытием принципа кольцевого управления движениями. Как только была осознана необходимость участия сигналов обратной связи в организации движений, прояснилась и решающая роль центральной программы: ведь сигналы обратной связи сличаются с сигналами, которые поступают из программы. Наличие программы - необходимое условие функционирования кольца; без программы и задающего устройства нет смысла в кольце управления, достаточно дуги. Но по механизму дуги, как мы теперь уже знаем, не может совершаться целесообразный акт.

Таким образом, принцип активности в конкретно-физиологическом выражении и механизм кольцевого управления движениями - это прочно связанные между собой теоретические постулаты.

Теперь на том же конкретно-физиологическом уровне обсудим некоторые трудные вопросы, которые ставят перед защитниками принципа активности его критики.

Один из них следующий: "А разве нет реактивных процессов - движений, построенных по типу реакции?" Например, прозвенел звонок - я вошла в аудиторию; я вошла - вы встали; вы встали - я сказала: "Здравствуйте". Здесь наблюдается уже целая цепь реакций. А поскольку реакции как явления есть, надо корректно описать и их механизмы.

У Н. А. Бернштейна есть ответ на этот вопрос. Он предлагает расположить все движения, которые имеются у животного или человека, в ряд на некоторой воображаемой оси по степени определяемости его внешним стимулом. Тогда на одном конце этого ряда окажутся безусловные рефлексы типа чихательного, мигательного, коленного (они запрограммированы морфологически), а также сформированные при жизни условные рефлексы типа выделения слюны у собаки на звонок. Эти движения, или акты, действительно, запускаются стимулом и определяются его содержанием.

Следующими в этом ряду окажутся движения, которые тоже включаются внешним стимулом, но уже не так жестко связаны с ним по содержанию. Например, когда я вошла, то вы встали не все - здесь уже нет ни безусловно- ни условно-рефлекторного акта. Или, например, получив удар, человек может отреагировать различным образом: тоже ударить в ответ или "подставить другую щеку".

Итак, возможны вариации ответных движений; нет их жесткой запрограммированности, жесткой связанности со стимулом. Это акты, в которых стимул приводит не к движению, не к действию, а скорее к принятию решения о действии. В этих случаях он выполняет роль спускового крючка. Он "включает" одну из возможных альтернативных программ. Такого типа акты занимают промежуточное положение в нашем воображаемом ряду.

И наконец, на другом крайнем полюсе оказываются акты, для которых, как пишет Бернштейн, и инициатива начала и содержание, т. е. программа, задаются изнутри организма. Это так называемые произвольные акты.

Таким образом, на вопрос: "Как же быть с реакциями, существуют ли они?" - ответ однозначен: "Да, конечно существуют, но они представляют собой частный, "вырожденный" случай активности". Подобно тому как покой есть вырожденный случай движения - движения с нулевой скоростью, безусловно-рефлекторные реакции - это акты с нулевой степенью активности, и они составляют очень небольшую часть всех актов жизнедеятельности. Многие жизненно важные действия относятся к промежуточному и крайне правому положению на толь ко что описанной оси.

Теперь второй, более тонкий вопрос. Когда функционирует "кольцо", то блок сличения принимает два потока сигналов: от внешней среды и от программы. И эти два потока занимают как бы симметричное положение. Почему нужно отдавать предпочтение программным сигналам и считать, что определяют движение именно они, а не сигналы от внешней среды, которые действуют по реактивному принципу?

Вопрос этот звучит справедливо, если на процесс смотреть с точки зрения статической картины. А вот если

обратиться к временной развертке процесса, то положение окажется не таким уж симметричным. Командные сигналы из блока программы опережают сигналы обратной связи. Они идут, так сказать, на полкорпуса впереди.

Как это можно показать? Воспользуюсь примером из Бернштейна. Я начну диктовать вам хорошо известное стихотворение: "Как ныне сбирается вещий..." - и специально задерживаюсь, чтобы вы почувствовали внутреннее звучание следующего слова - "Олег". Когда же вы декламируете текст стихотворения непрерывно, то можете заметить, что его текущая программа идет обычно на 2-3 слова впереди. Вы как бы слышите опережающий (планирующий) текст.

Вы можете заметить мне, что наличие опережающей программы - факт достаточно эфемерный: он основан на самонаблюдении, и никаких более осязаемых материальных доказательств его нет. Однако это не совсем так.

Например, когда человек читает вслух текст, можно одновременно записать его голос и положение его глаз. И вот оказывается, что существует достаточно заметное рассогласование между тем словом, на которое он сейчас смотрит, и тем словом, которое он произносит. Например,. он произносит "вещий Олег", а глаза у него - на словах "неразумным хазарам", а может быть и еще дальше. Это рассогласование называется глазо-голосовым объемом, оно отражает объем материала, который находится между программируемым и отрабатываемым текстом.

Или возьмем другой пример: описки или оговорки. С именем З. Фрейда связан только один их вид - тот, который определяется скрытыми мотивами и намерениями. Но они могут возникать и по другой причине, а именно из-за преждевременного вторжения сигналов программы. Обычно этому способствуют утомление, волнение или спешка.

Приведу примеры. При подготовке данной лекции, когда я делала письменные заметки, судьба преподнесла мне несколько подобных описок. Приведу их, снабдив соответствующими исправлениями.

Итак, существуют доказательства (субъективные и объективные) того, что сигналы, исходящие из программы (т. е. "активные") и поступающие из внешней среды (т. е. "реактивные"), функционально несимметричны в том смысле, что первые опережают вторые.

Но несимметричность их имеет еще один, более важный аспект. Как показал Н. А. Бернштейн, "активные" сигналы обеспечивают существенные параметры движения, а "реактивные" - несущественные, технические детали движения.

Эту мысль можно хорошо проиллюстрировать на движениях уровня D. Вы уже знаете, что движения уровня D очень легко приспосабливаются к внешним обстоятельствам.

Например, если вам нужно вывернуть шуруп и у вас нет отвертки, а на глаза попадается перочинный нож, то вы пытаетесь воспользоваться лезвием ножа. При этом ваше действие в общих чертах строится так, как если бы вы работали отверткой, но оно прилаживается к свойствам ножа. Двигательное оформление действия, его технические подробности - это несущественные переменные, а его принципиальная структура - существенная переменная. Изменить последнюю нельзя. Например, вы не можете взять клещами шуруп и потянуть его как гвоздь; вы должны сообразоваться с логикой этого предмета, т. е. обязательно его отвинчивать.

Это сообразование с логикой предмета и определяется программой, которая задает общий план действия, и только благодаря этому действие оказывается выполнимым в осложненных условиях.

Итак, оба вида сигналов несимметричны и с качественно-функциональной стороны.

Наконец, последний вопрос связан с трудностью преодоления одного старого и прочно укоренившегося заблуждения. Оно состоит во взгляде на стимул как на агент, автоматически действующий на организм.

Когда изображается "дуга" реакции, то на орган чувств направляется стрелка, которая изображает "поступивший" стимул, и этот момент никак специально не обсуждается - вроде бы и так очевидно, что раз стимул есть, значит он действует.

На самом деле в жизни происходит иначе. Вообще говоря, в случае резкого удара или яркой вспышки стимул и в самом деле действует автоматически, наподобие толчка. Представьте себе: тишина - и вдруг резкий звонок будильника, это стимул-толчок. И вот применительно только к таким случаям можно рисовать стрелку, идущую от стимула на орган чувств. Обычно же бывает совершенно иначе.

Во-первых, обычно субъект или организм погружен в целое море внешних воздействий, которые без конца "бомбардируют" его; во-вторых, он выбирает стимулы, а не они его.

В связи с этим расскажу одну историю. Однажды в частной беседе несколько психологов обсуждали противопоставление принципов активности и реактивности, разгорелась дискуссия. "А все-таки принцип реактивности очень хорош, - сказал один из коллег,- он прозрачен, ясен, правильно описывает события. Вот, например, лежит на столе ручка - я ее беру. Что произошло? Ручка подействовала на мои глаза, последовало мое движение, я ее взял".

Пример действительно прост и ясен, но он может быть обращен как раз против принципа реактивности. И вот каким образом.

16 января 1966, там же) - российский ученый, нейро- и психофизиолог, основатель отечественной школы биомеханики, создатель нового направления исследований - физиологии активности, член-корреспондент Академии медицинских наук СССР (1946), лауреат Сталинской премии (1948). Сын психиатра Александра Бернштейна (1870-1922), внук физиолога Натана Бернштейна (1836-1891), племянник математика Сергея Бернштейна (1880-1968).

Окончил медицинский факультет (1919), а затем прослушал курс математического факультета Московского университета . В 1919-1922 гг. служил военным врачом в Красной армии. В 1922-1950 гг. Н. А. Бернштейн руководил созданной им лабораторией биомеханики в Центральном институте труда, позднее во Всесоюзном институте экспериментальной медицины. В 1920-1930-е гг. под его руководством были созданы лаборатории биомеханики в Научно-исследовательском институте физкультуры и ряде других отраслевых научных учреждений.

Н. А. Бернштейн был человек очень разносторонних талантов: он увлекался математикой, музыкой, лингвистикой, инженерным делом. Однако все свои знания и способности он сконцентрировал на решении главной проблемы своей жизни - изучении движений животных и человека. Так, математические знания позволили ему стать основоположником современной биомеханики, в частности биомеханики спорта. Практика врача-невропатолога снабдила его огромным фактическим материалом, касающимся расстройств движений при различных заболеваниях и травмах центральной нервной системы. Занятия музыкой дали возможность подвергнуть тончайшему анализу движения пианиста и скрипача: он экспериментировал в том числе и на себе, наблюдая за прогрессом собственной фортепианной техники. Инженерные знания и навыки помогли Н. А. Бернштейну усовершенствовать методы регистрации движений - он создал ряд новых техник регистрации сложных движений. Наконец, лингвистические интересы, несомненно, сказались на стиле, которым написаны его научные труды: тексты Н.А. Бернштейна - одни из самых поэтичных образцов научной литературы. Его язык отличается сжатостью, четкостью и в то же время необыкновенной живостью и образностью. Конечно, все эти качества языка отражали и качества его мышления.

Н. А. Бернштейн является основателем и главой отечественной школы биомеханики, которая благодаря ему почти до конца 1940-х годов оставалась одной из ведущих в мировой науке. Широко развернутые в СССР по его нициативе экспериментальные исследования биомеханики движений здоровых и больных людей (трудовых, спортивных, при игре на фортепиано, при поражениях головного мозга, при пользовании протезами конечностей и т. д.) позволили проследить все узловые точки кинематической цепи, образующей биомеханическую модель движений человека, и разработать эффективные методики рационализации их построений («Общая биомеханика», 1926). Важные результаты были получены благодаря коренному усовершенствованию Н. А. Бернштейном техники регистрации движений: еще в 1920-х годах он модифицировал метод циклографии - скоростного фотографирования меток или лампочек, закрепленных на движущихся частях тела, предложив съемку на движущуюся пленку - киноциклографию.

Главное научное достижение Н. А. Бернштейна - создание им принципиально нового направления исследований - физиологии и, шире, биологии активности, сделавшее необходимым пересмотр ряда важнейших представлений не только в нейрофизиологии, но и всей теоретической биологии и психологии, а также заложившее теоретическую основу нейрокибернетики, бионики, теории управления, энергетики и т. д. Решая конкретную задачу биомеханики - изучение нейротипологических механизмов управления двигательными актами, - ученый установил, что движение есть частный случай более фундаментального свойства живого - активности, вне которого не могут быть поняты никакие другие проявления жизнедеятельности организма, особенно человеческого. Такой вывод, фактически противоречил физиологической концепции И. П. Павлова , основанной на принципе реактивности как главного регулятора важнейших жизненных актов. В области нейрофизиологии это требовало отказа от павловской модели рефлекторной дуги и замены ее идеей рефлекторного кольца, в связи с которой Бернштейн еще в середине 1930-х годов одним из первых сформулировал принцип обратной связи, ставший позднее основополагающим в теории информации и всей совокупности компьютерных наук. В психологии идея активности сделала необходимым коренное изменение взгляда на поведение человека, которое стало трактоваться не как совокупность реакций на поступающие извне сигналы, а как реализация установки на преодоление неблагоприятного давления окружения и противостояние ему, запрограммированной в модели потребного будущего.

Несмотря на то, что эти идеи шли вразрез с учением И. П. Павлова, а значит и с советской идеологией, основанной на упрощенном и даже искаженном толковании павловской модели человеческого поведения, Н. А. Бернштейн в 1946 году стал членом-корреспондентом АМН СССР, а его книга «О построении движений» (1947) была в 1948 году отмечена Сталинской премией. Этими официальными отличиями Бернштейн был обязан главным образом важным практическим приложениям, которые нашла его концепция - на ее основе были разработаны и успешно применялись эффективные методы восстановления двигательных функций у раненых во время Великой Отечественной войны , была создана более совершенная техника протезирования. Позднее плодотворность идей Н. А. Бернштейна подтвердилась при конструировании шагающих автоматов, разработке компьютерных управляющих устройств и составлении методик подготовки космонавтов. Все это не спасло его от антисемитской кампании - борьбы с безродными космополитами. В этот тяжелый для себя период ученый не отказался ни от одной из своих идей, очень дорого заплатив за это. Уже готовый набор его книги «О ловкости и ее развитии» (практическое приложение его теории к проблемам спорта) был уничтожен (книга была опубликована лишь в 1991 году), а в 1950 году, сразу же после объединенной сессии АН и АМН СССР, формально утвердившей монопольный статус павловской концепции высшей нервной деятельности, он был изгнан из созданной им лаборатории биомеханики и навсегда лишен возможности вести экспериментальные исследования. Последний период жизни Н. А. Бернштейн был занят особой деятельностью. К нему домой шли ученые и научные работники разных профессий: врачи, физиологи, математики, кибернетики, музыканты, лингвисты - для научных бесед. Они искали у него советов, оценок, консультаций, новых точек зрения. Другую половину дня ученый был занят собственной научной, теоретической работой - обоснованием физиологии и биологии активности. Он подводил итоги и снова осмысливал результаты, полученные в предыдущие периоды своей жизни. Уже после его смерти многие узнали, что за два года до кончины Н. А. Бернштейн сам поставил себе диагноз - рак печени, после чего снялся с учета из всех поликлиник и строго расписал оставшийся срок жизни, который он тоже определил с точностью до месяца. Он успел закончить и даже просмотреть гранки своей последней книги «Очерки по физиологии движений и физиологии активности» (1966).

кл слова: научные, Бернштейн Н.А., движение, двигательные навыки

Никола́й Алекса́ндрович Бернште́йн (24 октября (5 ноября) 1896, Москва — 16 января 1966, там же) — советский психофизиолог и физиолог, создатель нового направления исследований — физиологии активности. Сын психиатра Александра Бернштейна, внук физиолога Натана Бернштейна. Лауреат Сталинской премии.

Концепция физиологии активности, созданная Бернштейном на основе глубокого теоретического и эмпирического анализа естественных движений человека в норме и патологии (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Бернштейном новых методов их регистрации, послужила основой для глубокого понимания целевой детерминации человеческого поведения, механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии. В работах Бернштейна получило свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики.
С именем Н. Бернштейна связан современный этап развития биомеханики, его «физиология движений» составляет теоретическую основу этой науки.
Идеи Бернштейна нашли широкое практическое применение при восстановлении движений у раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др.

Звания и награды

Член-корреспондент Академии медицинских наук СССР.
За монографию «О построении движений» удостоен Сталинской премии (1948).

Общая биомеханика (1926)
Проблема взаимоотношений координации и локализации (1935)
О построении движений (1947)
Очерки по физиологии движений и физиологии активности (1966)
Физиология движений и активность (1990)
О ловкости и её развитии (1991) (НАЧНУ ВЫКЛАДЫВАТЬ В БЛИЖАЙШЕЕ ВРЕМЯ ИЩИТЕ КЛ СЛОВО БЕРНШТЕЙН Н.А.)

Основные положения теории Н.А. Бернштейна

В основе научного творчества Н.А. Бернштейна лежит его новое понимание жизнедеятельности организма, в соответствии с которым он рассматривается не как реактивная система, пассивно приспосабливающаяся к условиям среды (именно это следует из условно-рефлекторной теории), а как созданная в процессе эволюции активная, целеустремленная система. Иначе говоря, процесс жизни есть не простое «уравновешивание с внешней средой», а активное преодоление этой среды.

Фигура этого ученого является одной из наиболее значительных среди исследователей мозга XX в. Выдающейся его заслугой является то, что он первый в мировой науке использовал изучение движений в качестве способа познания закономерностей работы мозга. По мнению Н.А. Бернштейна, для тех, кто хочет понять, как работает мозг, как функционирует центральная нервная система (ЦНС), в природе едва ли существует более благодатный объект, чем исследование процессов управления движениями. Если до него движения человека изучали для того, чтобы их описать, то Н.А. Бернштейн стал изучать их, чтобы понять, как происходит управление ими.

В процессе исследования этих механизмов им были открыты такие фундаментальные явления в управлении, как сенсорные коррекции и принцип иерархического, уровневого управления, которые лежат в основе работы этих механизмов и без понимания которых правильное представление о закономерностях работы мозга в процессе управления движениями оказывается невозможным.

Следует особо подчеркнуть, что открытие этих явлений имело громадное значение и для развития многих других областей человеческого знания. Особенно наглядно это проявилось по отношению к одной из наиболее ярких наук XX столетия - кибернетике. Как известно, эта область современных знаний возникла в результате симбиоза (взаимовыгодное сосуществование) таких наук, как математика и физиология (ее раздела «Высшая нервная деятельность»). В основе всех кибернетических систем лежит открытый физиологами и удачно использованный математиками принцип обратной связи. Это название есть не что иное, как современное и более распространенное название принципа сенсорных коррекций, который был впервые описан Н.А. Бернштейном еще в 1928 г., т.е. за 20 лет до того, как это сделал создатель кибернетики Норберт Винер.

В соответствии с теорией сенсорных коррекций для выполнения какого-либо движения мозг не только посылает определенную команду мышцам, но и получает от периферийных органов чувств сигналы о достигнутых результатах и на их основании дает новые корректирующие команды. Таким образом, происходит процесс построения движений, в котором между мозгом и исполнительными органами существует не только прямая, но и непрерывная обратная связь.

Дальнейшие исследования привели Н.А. Бернштейна к гипотезе о том, что для построения движений различной сложности команды отдаются на различных уровнях (иерархических этажах) нервной системы. При автоматизации движений функции управления передаются на более низкий (неосознаваемый) уровень.

Еще одно из замечательных достижений Н.А. Бернштейна представляет собой открытое им явление, которое он назвал «повторением без повторения». Суть его заключается в следующем. При повторении одного и того же движения (например, шагов в ходьбе или беге), несмотря на один и тот же конечный результат (одинаковая длина, время выполнения и т.п.), путь работающей конечности и напряжения мышц в чем-то различны. При этом многократные повторения таких движений не делают эти параметры одинаковыми. Если соответствие и встречается, то не как закономерность, а как случайность. А это значит, что при каждом новом выполнении нервная система не повторяет одни и те же команды мышцам и каждое новое повторение совершается в несколько отличных условиях. Поэтому для достижения одного и того же результата нужны не одинаковые, а существенно различные команды мышцам.

На основании этих исследований был сформулирован важнейший для обучения движениям вывод: тренировка движения состоит не в стандартизации команд, не в «научении командам», а в научении каждый раз отыскивать и передавать такую команду, которая в условиях каждого конкретного повторения движения приведет к нужному двигательному результату.

Из всего этого следует еще один важный вывод: движение не хранится готовым в памяти, как это следует из условно-рефлекторной теории (и как, к сожалению, многие думают до сих пор), не извлекается в случае нужды из кладовых памяти, а каждый раз строится заново в процессе самого действия, чутко реагируя на изменяющуюся ситуацию. В памяти хранятся не штампы самих движений, а предписания (логарифмы) для их конструирования, которые строятся на основе механизма не стереотипного воспроизведения, а целесообразного приспособления.

Неоценимое значение имеет теория Н.А. Бернштейна и для понимания роли сознания в управлении движениями. Во многих учебных пособиях до сих пор можно встретить утверждение о том, что проникновение сознанием в каждую деталь движения содействует повышению скорости и качества его освоения. Это слишком упрощенное и во многом ошибочное утверждение. Нецелесообразность и даже принципиальная невозможность подобного тотального контроля со стороны сознания очень образно и убедительно могут быть продемонстрированы в ряде примеров. Приведем один из них.

Для этого рассмотрим, каким образом обеспечивается деятельность такого исключительного по своей сложности, точности, подвижности и жизненной важности органа, каким является зрительный аппарат человека.

Его двигательную активность обеспечивают 24 работающих попарно мышцы. Все эти мышцы осуществляют свою работу в тончайшем взаимном согласовании с раннего утра и до позднего вечера, причем совершенно бессознательно и в большинстве своем непроизвольно. Нетрудно себе представить, что если бы управление этими двумя дюжинами мышц, осуществляющих всевозможные согласования поворотов глаз, управление хрусталиком, расширение и сужение зрачков, наведение глаз на фокус и т.п., требовало произвольного внимания, то на это понадобилось бы столько труда, что лишило бы человека возможности произвольного управления другими органами тела.

Уровни построения движения

Прежде чем перейти к непосредственному рассмотрению механизмов, лежащих в основе освоения движений с позиции теории Н.А. Бернштейна, необходимо хотя бы в самом общем и кратком виде познакомиться с тем, что представляют собой уровни построения движений, что явилось основой их формирования и поступательного развития.

На протяжении долгих тысячелетий эволюции животного мира такой первоосновой и главной причиной развития явилась жизненная необходимость движения, все усложняющаяся двигательная активность. В процессе эволюции имело место безостановочное усложнение и увеличение разнообразия двигательных задач, решение которых было жизненно необходимо в борьбе различных особей за свое существование, за свое место на планете.

Этот процесс непрерывного двигательного приспособления сопровождался анатомическими усложнениями тех центральных нервных структур, которые должны были управлять новыми видами движений и которые для этого обрастали сверху новыми аппаратами управления, все более мощными и совершенными, более приспособленными к решению все усложняющихся двигательных задач. Эти вновь возникающие более молодые устройства не отрицали и не устраняли более древние, а лишь возглавляли их, благодаря чему формировались новые более совершенные и работоспособные образования.

Каждое из таких поочередно возникавших новых устройств мозга приносило с собой новый список движений, точнее говоря, новый круг посильных для данного вида животных двигательных задач. Следовательно, возникновение каждой очередной новой мозговой надстройки знаменовало собой биологический отклик на новое качество или новый класс двигательных задач.

Это также является убедительным свидетельством того, что именно двигательная активность, ее усложнение и разнообразие являлись на протяжении тысячелетий главной причиной развития и совершенствования функций головного мозга и нервной системы в целом. В результате такого развития сформировалось человеческое координационно-двигательное устройство ЦНС, представляющее собой наивысшую по сложности и совершенству структуру, превосходящую все другие подобные системы у каких бы то ни было живых существ. Эта структура состоит из нескольких разновозрастных (в эволюционном плане) уровней управления движениями, каждый из которых характеризуется своими особыми мозговыми анатомическими образованиями и особым, характерным только для него составом той чувствительности, на которую он опирается в своей деятельности, из которой он образует свои сенсорные коррекции (свое сенсорное поле).

Постепенно увеличиваясь, сложность двигательных задач становилась такой, что ни один даже самый молодой и совершенный уровень сам не мог справиться с их решением. В результате ведущему более молодому уровню приходилось привлекать к себе помощников из числа нижележащих более древних уровней, передавая им все большее количество вспомогательных коррекций, обеспечивающих плавность, быстроту, экономичность, точность движений, лучше оснащенных именно для этих видов коррекций. Такие уровни и их сенсорные коррекции называют фоновыми. А тот уровень, который сохраняет за собой верховное управление двигательным актом, его важнейшими смысловыми коррекциями, называется ведущим.

Таким образом, физиологический уровень построения движений - это совокупность взаимно обусловливающих друг друга явлений, таких как: а) особый класс двигательных задач; б) соответствующий им тип коррекций; в) определенный мозговой этаж и (как итог всего предыдущего) г) определенный класс (список) движений.

В настоящее время у человека выделяют пять уровней построения движений, которые обозначаются буквами А, B, C, D и E и имеют следующие названия:

A - уровень тонуса и осанки;
B - уровень синергии (согласованных мышечных сокращений);
C - уровень пространственного поля;
D - уровень предметных действий (смысловых цепей);
E - группа высших кортикальных уровней символической координации (письма, речи и т.п.).

Каждому из этих уровней соответствуют определенные анатомические образования в ЦНС и характерные только для него сенсорные коррекции.

Относительная степень развития отдельных координационных уровней у разных людей может быть различной. Поэтому та или иная степень развития и тренируемости свойственна не отдельным движениям, а целым контингентам движений, которыми управляет тот или иной уровень.

Таким образом, все многообразие двигательной активности человека представляет собой несколько раздельных пластов, различающихся по происхождению, смыслу и множеству физиологических свойств. Качество управления движениями обеспечивается согласованной, синхронной деятельностью ведущего и фоновых уровней. При этом ведущий уровень обеспечивает проявление таких характеристик, как переключаемостъ, маневренность, находчивость, а фоновые уровни - слаженность, пластичность, послушность, точность.

Основные трудности управления движениями

Для того чтобы понять необходимость всей той сложной, многоуровневой системы управления, которая представлена выше, необходимо иметь ясное представление о тех трудностях, которые приходится преодолевать нервной системе в процессе управления движениями. Эти трудности обусловлены следующими причинами:

необычайное богатство подвижности двигательного аппарата человеческого тела, требующее распределения внимания между десятками и сотнями видов подвижности с целью стройного согласования их между собой;

необходимость ограничения огромного избытка степеней свободы, которыми насыщено человеческое тело;

упругая податливость мышечных тяг, которые не могут так же точно и строго передавать движение, как твердые рычаги машин или жесткий буксир;

множество внешних сил (инерции, трения, реактивных и др.), возникающих в процессе движения, направленность и интенсивность действия которых трудно (а зачастую и невозможно) предугадать.

В своей повседневной жизни человек нисколько не задумывается о существовании этих трудностей, легко выполняя многие сложные двигательные действия. Вместе с тем каждой из этих трудностей в отдельности достаточно, чтобы сделать невыполнимой задачу создания искусственного механизма, хотя бы в отдаленной степени сравнимого по своей управляемости с человеческим организмом.

Многие сложнейшие физиологические устройства здорового организма человеком просто не замечаются, пока не возникают случаи, когда это устройство вдруг выбывает из строя. Только тогда и обнаруживается, как оно важно в норме и какие огромные нарушения вызываются его расстройством. Так происходит, например, в случаях нарушения чувствительных проводящих путей спинного мозга, по которым передаются ощущения от суставно-мышечного аппарата (обратная афферентация) при заболеваниях спинной сухоткой, или табесом. При этом теряется возможность ощущать положение той или иной части тела (в повседневной жизни так может получиться, если отсидеть или отлежать руку или ногу). У больных полностью нарушается координация движений, хотя сами мышцы еще в принципе сохраняют свои функции: они или вообще не могут ходить, или с трудом передвигаются с опорой на два костыля при обязательном зрительном контроле движений.

Какое огромное распределение внимания потребовалось бы, если бы всеми элементами сложного движения, например такого, как ходьба, бег, метание, нужно было управлять сознательно, с обращением внимания на каждый из них! Одна только такая трудность может сделать движение неуправляемым.

Однако она выглядит совсем незначительной по сравнению с другой, которая связана с необыкновенной подвижностью человеческого тела. Подвижность кинематических цепей тела человека огромна и исчисляется десятками степеней свободы. Так, подвижность запястья относительно лопатки насчитывает 7 степеней свободы, а подвижность кончиков пальцев относительно грудной клетки - 16. Для сравнения надо отметить, что подавляющее большинство машин, работающих без непрерывного управления человеком, при всей кажущейся их сложности обладают всего одной степенью свободы, т.е. тем, что называется вынужденным движением.

Две степени свободы встречаются редко. Переход от одной степени свободы к двум означает огромный качественный скачок. Две степени означают, что подвижная точка получает свободу выбора любой из бесконечного множества доступных траекторий движения. Одним из редких примеров в технике может служить автоматическое управление морским судном, представляющее собой соединение мощного и точного компаса и передачи к машинам, управляющим рулем. Благодаря этому устройству корабль, имеющий на поверхности моря две степени свободы (т.е. возможность двигаться в любом направлении), автоматически направляется по одному совершенно определенному пути. Этот пример показывает, что выбор пути в таких условиях может происходить только на основе постоянного контроля за ходом движения со стороны бдительного органа чувств, роль которого в данном случае выполняет компас.

Три степени свободы означают для вещественной точки абсолютную свободу передвижения внутри какого-то участка пространства, границ которого она в состоянии достигнуть. Например, тремя степенями свободы обладает совершенно ничем не связанная вольно порхающая в воздухе пушинка.

Таким образом, трудность номер один, которая создается необходимостью распределять внимание между множеством подвижных шарниров (суставов), оказывается не столь значимой по сравнению с трудностью номер два - необходимостью преодоления непомерного избытка степеней свободы, которыми насыщено человеческое тело.

Координация - это и есть преодоление избыточных степеней свободы органов движения, превращение их в управляемые системы.

Очередная трудность управления связана с особенностями мышечной тяги. Мышцы - это единственное средство, которым располагает наш организм для совершения работы, т.е. активных телодвижений. Они представляют собой своеобразные упругие жгуты, которыми подвижные части тела оснащены со всех сторон.

Управление движениями посредством упругих тяг представляет собой очень большие трудности, потому что двигательный результат здесь зависит не только от того, как ведут себя сами тяги, но и от множества других, побочных и неподвластных причин, среди которых ведущую роль играет действие уже упоминавшихся всевозможных внешних сил.

Каким же образом организму удается справиться с таким многообразием, на первый взгляд, неразрешимых трудностей, да еще и так, что человек их даже не замечает, а зачастую и не догадывается об их существовании? Располагая неограниченными возможностями в плане подвижности, человеческое тело может быть управляемым только в том случае, если каждая из степеней свободы будет «обуздана» определенным видом чувствительности, который будет вести за ней непрерывный контроль и корректировку.

Поэтому спасительным принципом, обеспечивающим управляемость костно-мышечного двигательного аппарата человека, явился принцип контроля над движением при помощи чувствительной (афферентной) сигнализации, непрерывно поступающей от органов чувств, и внесения на ее основе непрерывных поправок в каждый момент движения. Этот принцип назван Н.А. Бернштейном принципом сенсорных коррекций («сенсорный» в переводе с латинского - «опирающийся на чувствительность»). При этом преобладающей является мышечно-суставная (проприоцептивная) чувствительность. «Проприоцептивный» («сам себя воспринимающий») - это чувствительность собственного тела. Все другие виды чувствительности (зрение, слух, осязание и др.) в различных случаях в большей или меньшей степени выступают лишь в роли помощников проприоцептивной чувствительности.

Найдя такой эффективный принцип преодоления всевозможных трудностей управления, природа в дальнейшем позаботилась о формировании и совершенствовании нервных структур и механизмов, обеспечивающих его реализацию. В результате мы и получили то устройство нервной системы, которое обеспечивает как управление уже освоенными движениями, так и процесс формирования новых двигательных действий.

Формирование движений у детей и подростков

Естественные двигательные возможности растущего организма определяются процессом созревания и совершенствования функций двигательных структур центральной нервной системы. Формирование всех отделов мозга, отвечающих за движение, и проводящих их нервных путей заканчивается к 2-летнему возрасту. Дальше уже начинается длительная работа по совершенствованию их функций, по прилаживанию друг к другу всех уровней построения движений, наиболее существенные черты которых происходят между 2 и 14 годами - возрастом окончательного созревания.

Возраст 3 года - это время, когда ребенок окончательно перестает быть «высшей обезьянкой» и впервые осваивает такие двигательные действия, которые совершенно недоступны обезьяне. В этом же возрасте начинает обнаруживаться и неравноценность между правой и левой сторонами тела.

Возраст от 3 до 7 лет представляет собой период преимущественно количественного усиления и накапливания всех уровней построения движений, которые начинают заполняться свойственным им содержанием. Дети этого возраста уже не увальни - они грациозны и подвижны.

Следующий период - это возраст 7-10 лет. Набор двигательных навыков детей пополняется еще двумя - силой и точностью. Это возраст, в котором жизненная практика очень чутко уловила необходимость приучения к трудовым навыкам. Это период перехода в работоспособное состояние пирамидной двигательной системы ребенка. В это время формируются мелкие и точные движения, и ребенку уже есть чем занять себя, сидя за столом. У мальчиков совершенствуются метательные и ударные движения.

После 10-11 лет наступает сложный период «ломки», охватывающей все стороны жизнедеятельности растущего организма, вплоть до 14-15-летнего возраста. Поэтому данный период развития очень трудно охарактеризовать. Гармония и согласие, достигнутые к этому времени между отдельными уровнями построения движений, вновь как бы нарушаются. На них отражаются огромные сдвиги в деятельности желез внутренней секреции, всей многосложной химии пубертатного периода (периода полового созревания).

Такая перестройка всего обмена веществ рассматривается как ударное строительство, которому приносится в жертву многое другое. Одним из следствий является неуклюжесть, временное снижение ловкости, а иногда и силы. Эти нарушения никак не связаны с какими бы то ни было непорядками в самих двигательных системах мозга. Поэтому необходимо спокойно продолжать работу по наполнению уровней свойственным им содержанием, т.е. стараться расширять свой двигательный опыт путем освоения все новых разнообразных движений. Такая систематическая работа очень скоро окажет благотворное влияние как на сами двигательные проявления, так и на душевную, эмоциональную и социальную стороны жизни растущего человека.

Формирование двигательного навыка

Правильное и результативное выполнение любого движения возможно только благодаря стройному взаимодействию нескольких уровней построения движений. Такое взаимодействие не возникает сразу, само собой. Для его формирования требуется большая работа. Эта работа и есть то, что называется упражнением, в результате которого и происходит формирование двигательных умений и навыков.

Этот процесс по сути представляет собой изменяющийся характер управления движениями, внешне выражающийся в неодинаковой степени владения двигательным действием.

Двигательное умение - это такая степень владения техникой действия, когда управление осуществляется при ведущей роли сознания, а само действие отличается нестабильным способом решения двигательной задачи.

Уже из этого определения видно, что самой характерной чертой двигательного умения является то, что управление движениями происходит при ведущей роли сознания. Другими характерными чертами двигательного умения являются:

отсутствие стабильности, постоянный поиск способов наилучшего решения двигательной задачи;

невысокая скорость;

малая прочность, неустойчивость к сбивающим факторам;

отсутствие возможности для переключения внимания на объекты окружающей обстановки.

Первоначальное умение выполнять двигательное действие возникает на основе следующих факторов:

уже имеющегося двигательного опыта, ранее выработанных координаций, ощущений и восприятий;

состояния общей физической подготовленности;

знания техники действия и особенностей его выполнения;

сознательных попыток построить некоторую новую для себя систему движений.

Несмотря на перечисленные недостатки, двигательные умения имеют большое значение в процессе овладения движениями, которое заключается в следующем:

основой двигательного умения является творческий поиск способов выполнения движений, что несет в себе большие образовательные возможности;

двигательные умения имеют большую познавательную ценность, поскольку приучают анализировать сущность двигательных задач, условия их решения, управлять собственной умственной и двигательной деятельностью;

двигательные умения являются тем уровнем владения двигательным действием, который характерен для всех подводящих упражнений;

двигательное умение представляет собой первый уровень владения двигательным действием, являющийся переходной стадией к формированию двигательного навыка, которую миновать невозможно.

Двигательный навык - это такая степень владения техникой действия, при которой управление движениями происходит автоматически и выполнение действия отличается высокой надежностью.

Двигательные навыки, как высшая ступень владения двигательным действием, имеют исключительно большое значение в учебной, трудовой, бытовой и физкультурно-спортивной практике. Для них характерны свои отличительные черты, многие из которых являются прямой противоположностью тем, которые характерны для умений. Основными из них являются:

автоматизированный характер управления действием;

высокая быстрота действия;

стабильность результата действия;

чрезвычайная прочность и надежность.

Каким же образом и благодаря чему становится возможным достижение таких характеристик двигательного действия? И на этот сложный вопрос четкий ответ дает учение о построении движений Н.А. Бернштейна.

В соответствии с этой теорией навык активно формируется нервной системой, и в этом процессе последовательно сменяют друг друга существенно различные между собой и расположенные в строгой последовательности фазы или этапы.

Такими фазами являются: определение ведущего уровня; определение двигательного состава навыка; выявление и роспись коррекций; автоматизация, стандартизация и стабилизация двигательного навыка. Границы перечисленных фаз формирования навыка в значительной мере условны и могут частично налагаться друг на друга.

На основании всего изложенного в данном разделе материала можно сделать следующие очень важные заключения:

навык - это координационная структура, представляющая собой освоенное умение решать тот или иной вид двигательной задачи;

построение двигательного навыка есть активный процесс, а не пассивное следование потоку внешних воздействий, как это следует из теории условных рефлексов;

построение двигательного навыка есть смысловое цепное действие, состоящее из целого ряда качественно различных фаз, логически переходящих одна в другую;

двигательный навык не является раз и навсегда закрепленным шаблоном или стереотипом и является вариативным и пластичным в полную меру того уровня, на котором осуществляется управление им.

В связи с представленными выше положениями необходимо обратить внимание еще на одно важное обстоятельство. Многие ученые как у нас в стране, так и за рубежом расходятся в представлениях о том, что является первичным - умение или навык. В приведенном выше определении двигательного навыка и многих других положениях теории Н.А. Бернштейна очень убедительно обосновано и подтверждено положение о том, что первой стадией овладения действием является стадия умения, а высшей и последней - стадия навыка. Иначе говоря, двигательное умение переходит в двигательный навык владения действием, а не наоборот, как можно прочесть в ряде учебников и учебных пособий.

В соответствии с изложенными представлениями все описанные выше фазы процесса формирования двигательного навыка могут быть объединены в три стадии, в течение которых происходит преодоление избыточных степеней свободы движущихся органов и превращение их в управляемые системы.

Первая стадия характеризуется невысокой скоростью, напряженностью, неточностью движений. Это объясняется необходимостью блокирования излишних степеней свободы кинематической цепи. Этой стадии соответствуют первые две фазы становления навыка и частично третья.

Вторая стадия характеризуется постепенным исчезновением напряженности, становлением мышечной координации, повышением скорости и точности двигательного акта. Для этой стадии характерны третья и четвертая фазы - роспись коррекций и автоматизация управления.

Третья стадия формирования навыка характеризуется снижением доли участия активных мышечных усилий в осуществлении движения за счет использования реактивных сил, что обеспечивает динамическую устойчивость движений и экономичность энергозатрат. В течение этой стадии реализуются фазы стандартизации и стабилизации двигательного навыка.

Общая структура и основные задачи процесса освоения двигательных действий

Все рассмотренные выше этапы и стадии формирования двигательного навыка, изложенные в соответствии с теорией о построении движений Н.А. Бернштейна, находятся в полном соответствии с хорошо известными и широко распространенными представлениями об общей структуре процесса обучения двигательным действиям, в которой выделяют три этапа усвоения учебного материала.

Работа на этих этапах характеризуется определенными отличительными чертами, которые находят отражение в особенностях задач освоения, а также в используемых средствах и методах.

В соответствии с этой структурой содержанием первого этапа являются формирование целостного представления о двигательном действии и его первоначальное разучивание. На этом этапе формируются предпосылки для усвоения двигательного действия и возникает первоначальное двигательное умение, позволяющее выполнять двигательное действие в общих чертах.

Второй этап характеризуется углубленным детализированным разучиванием. В результате на этом этапе происходит уточнение двигательного умения, и оно частично переходит в навык.

Третий этап - это процесс достижения мастерства в овладении техникой осваиваемого двигательного действия. Ему соответствуют закрепление и дальнейшее совершенствование двигательного действия, в результате чего и формируется прочный навык. Происходит приспособление навыка к различным условиям его выполнения.

Эта общая структура процесса освоения двигательного действия не должна рассматриваться как совершенно неизменная стандартная схема. В определенной мере она может быть конкретизирована и модифицирована в зависимости от конкретных целей, задач освоения двигательных действий, их особенностей и т.п. Так, в условиях массового образования основное внимание уделяется первому и частично второму этапам, а дальнейшее совершенствование навыков происходит в процессе самостоятельных занятий. В то же время в спортивной тренировке имеют место все три этапа, причем последний рассматривается как главный предмет деятельности и представляет собой многолетний процесс.

Двигательные ошибки: их предупреждение и исправление

Выполнить движение сразу правильно, без ошибок в обычных условиях, как правило, оказывается невозможно. Данное обстоятельство очень осложняет процесс освоения движений. Некоторые ошибки обусловлены закономерностями формирования двигательного навыка, другие связаны с отсутствием необходимых представлений, третьи - с несоблюдением определенных условий и т.п.

Успех в освоении движений во многом зависит от того, насколько правильно определены причины происхождения двигательных ошибок и насколько методы их исправления соответствуют истинным причинам их возникновения. Наиболее типичными являются следующие группы ошибок:

внесение в двигательный акт дополнительных ненужных движений;

закрепощенность движений, несоразмерность мышечных усилий, ненужное привлечение дополнительных групп мышц;

отклонения в направлении и амплитуде движений;

искаженность общего ритма двигательного действия;

выполнение движения на недостаточно высокой скорости.

Основными причинами этих ошибок являются:

неправильное или недостаточно полное представление о структуре и двигательном составе осваиваемого двигательного действия;

неправильное или недостаточно полное понимание двигательной задачи;

недостаточность двигательного опыта занимающегося;

недостаточная физическая подготовленность занимающегося;

неуверенность, боязнь, чувство утомления и т.п.;

неправильная организация процесса освоения двигательного действия.

Для повышения эффективности освоения двигательных действий и профилактики ошибок большое значение имеет правильный регламент их выполнения. Основными параметрами такого регламента являются число повторений и интервалы отдыха между ними. Их конкретные характеристики могут быть самыми различными, так как определяются многими факторами (сложностью движений, этапом освоения, индивидуальными возможностями занимающегося и т.п.). Вместе с тем во всех случаях следует помнить и соблюдать следующие общие правила:

число повторений нового действия определяется возможностями занимающегося улучшать движение при каждой новой попытке;

повторное выполнение с одними и теми же ошибками является сигналом к перерыву для отдыха и обдумыванию своих действий;

интервалы отдыха должны обеспечивать оптимальную готовность к выполнению очередной попытки - как физическую, так и психическую;

продолжать освоение движений при сильном утомлении нецелесообразно и даже вредно;

перерывы между занятиями должны быть как можно короче, чтобы не потерять уже приобретенные умения и навыки.

1896-1966) - выдающийся сов. психофизиолог. Концепция физиологии активности, созданная Б. на основе теоретического и эмпирического анализа естественных движений человека (спортивных, трудовых, после ранений и травм органов движения и др.) с использованием разработанных Б. новых методов их регистрации и обработки (циклография), послужила основой для глубокого понимания целевой детерминации человеческого поведения (см. Двигательная задача, Координация движении), механизмов формирования двигательных навыков, уровней построения движений в норме и их коррекции при патологии. В работах Б. получили свое обоснование решение психофизиологической проблемы в материалистическом духе с использованием последних достижений физиологической науки, а также отдельные идеи кибернетики. Концепция Б. нашла широкое практическое применение при восстановлении движений раненых во время Великой Отечественной войны и в последующий период, при формировании спортивных навыков, создании различных кибернетических устройств и др. См. также Двигателъный навык, Двигательный состав, Действие, Живое движение, Рефлекторное кольцо. (Е. Е. Соколова.)

БЕРНШТЕЙН Николай Александрович

Николай Александрович (1896-1966) - российский физиолог, чьи работы по регуляции движений оказали большое влияние на психологию. Сын известного психиатра, ученика С.С. Корсакова, А.Н. Бернштейна. После окончания в 1919 г. медицинского отделения Московского ун-та был мобилизован на Гражданскую войну и служил врачом на Восточном фронте (1919-1920). Вернувшись в Москву, начал заниматься в ЦИТ, организованном А.К. Гастевым, регистрацией движений человека и анализом их физических параметров - биомеханикой (Общая биомеханика, 1926). Метод биомеханики, разработанный немецким анатомом О. Фишером и французским физиологом Ж. Мареем, заключался в фотографировании движений человека с прикрепленными к сочленениям лампочками. В этих исследованиях обнаружилось, что двигательный аппарат человека, в отличие от механизма, обладает огромным количеством степеней свободы движения. В начале XX в. над проблемой двигательной координации работали физиологи Ч. Шеррингтон (принцип воронки, или общего пути для нервных импульсов) и А.А. Ухтомский (принцип доминанты). Б. выдвинул в качестве основы координации принцип сенсорных коррекций, согласно которому нервная система отслеживает и корректирует складывающуюся по ходу движения ситуацию на двигательной периферии или же предваряет ее, посылая опережающие сигналы (Клинические пути современной биомеханики // Сборник трудов Гос. института усовершенствования врачей в Казани, 1929). Анализируя циклограммы - графики зависимости прикладываемых мышечных усилий от времени, - Б. выделил три типа волн: первые, спонтанно-иннервационные, были обусловлены импульсами из ЦНС; вторые, механически-реактивные, имели чисто периферическое происхождение, отражая механические процессы в ске-летно-мышечном аппарате движущегося органа; третьи, названные реактивно-ин-нервационными, по предположению Б., свидетельствовали о взаимодействии центральных команд и периферических процессов. Циклическая связь центра и периферии была выражена Б. с помощью дифференциального уравнения второго порядка (Проблема взаимоотношений координации и локализации // Архив биологических наук. 1935. Т. 38. № 1). Научной идеологией Б. на этом этапе был целостный подход, общий для некоторых биологов (X. Дриш), физиологов (К. Гольдштейн) и психологов (гештальт-психология) начала века. Уже в первой работе по биомеханике рабочего удара он сравнил ударное движение с монолитом, который отзывается весь в целом на каждое изменение одной из частей. Он считал движение морфологическим объектом, который реагирует, развивается, инволюционирует подобно живому существу (Биодинамическая нормаль удара / Исследования Центрального института труда. 1924. Т. 1. Вып. 2). В 1930-е гг. Б. много работал в разных сферах практики: изучал движения пианистов, патологические походки, ходьбу и бег ребенка, движения спортсменов, рабочее место вагоновожатых трамвая. Подобно рабочему удару, который он анализировал в ЦИТе, каждое движение Б. считал целенаправленными, отвечающим определенной задаче. Он в корне преобразовал представление прежней физиологии о проекте или моторном образе движения: если проект движения - закодированный в НС его двигательный состав - представлен в телесных категориях, то двигательная задача формулируется в пространственных терминах, категориях внешнего мира. Внешний мир (от чистого пространства до предмета и символа) представлен в руководящих движением афферентных синтезах. Афферентные синтезы распределены по уровням построения движений. За книгу О построении движений (1947), в которой развивались эти представления о двигательной координации, Б. получил Государственную премию (1948). В начале 1950-х Б. вынужден был уйти из всех учреждений, в которых он работал, в результате нападок на него на Павловской сессии и во время кампании против космополитизма. Тем не менее в последний период своей жизни, когда Б. не имел доступа к экспериментальным исследованиям, он много общался с кибернетиками, биофизиками и разрабатывал идеи физиологии активности. Б. переформулировал положения своей теории построения движений на кибернетический язык и получил понятия, близкие к теории систем или концепции регуляции (обратные связи, сличение и т.п.). Но при этом Б., который вырос на холистской идеологии, подчеркивал отличие живых организмов от машин, отмечая, что в отличие от кибернетических систем, инициатива движения принадлежит организму. В движении особым образом содержится то, что должно наступить в результате этого движения - его цель; только живое способно предвидеть ситуацию и моделировать будущее. Интерес психологов к работам Б. имел несколько пиков. В 1925-1927 гг. Б. был сотрудником Психологического ин-та, которым тогда руководил К.Н. Корнилов. Реактологи надеялись сделать форму движения дискриминативным признаком для определения типа реакций и найти по циклограммам психологические характеристики движения. В годы ВОВ и сразу после ее окончания идеи Б. о построении движений были использованы в работах группы психологов под руководством А.В. Запорожца и А.Н. Леонтьева по восстановлению движений у получивших ранения людей. Ведущие российские психологи середины XX в. А.Н. Леонтьев, А.Р. Лурия и С.Л. Рубинштейн сошлись на том, что концепция Б. предоставляет широкие возможности для психологического исследования движений. Наконец, идеи Б. об управлении движениями оказались созвучными нарождавшимся инженерной и когнитивной психологии: в 1960-х гг. Л.М. Веккер, Б.М. Величков-ский, В. П. Зинченко и др. стали говорить о построении образа в терминах теории построения движений. Посмертно вышли, ставшие классическими, Очерки по физиологии движений и физиологии активности, переизданы в книге Физиология движений и активность, М., 1990 и О ловкости и ее развитии, М., 1990. И.Е. Сиротки на

(1896–1966)

Николай Александрович Бернштейн – один из немногих, кто сам никогда не относил себя к психологам, но тем не менее заслужил славу одного из крупнейших теоретиков психологии. Сегодня, по прошествии ХХ века, становится все более очевидно, что теоретические основания нашей науки сложились не столько из фантазий сексуально неудовлетворенных невротиков и пробежек подопытных крыс сквозь лабиринты, сколько из глубокого осмысленных наблюдений за реальной активностью живых существ. Природа этой активности, закономерности, которым она подчиняется, – и есть основа знания о поведении. Ценнейший вклад в познание этой природы внес наш соотечественник физиолог Н.А. Бернштейн.

Историки науки, исследуя творчество ученого, обычно много внимания уделяют влиянию на него других ученых и научных направлений. Влиянию же семьи, в которой прошли детские и юношеские годы будущего ученого, отводится меньше внимания. Однако нередко культурные традиции семьи передаются как эстафетная палочка, причем такая, на которой каждое поколение оставляет свои зарубки. Н.А. Бернштейн родился в Москве 5 октября 1896 г. в семье, культурные корни которой прослеживаются с ХVIII века. Дед со стороны отца, Натан Осипович Бернштейн, умер за пять лет до рождения Николая Александровича. Однако его влияние на детей и – через них – на внука не вызывает сомнений. Он был врачом, физиологом, общественным деятелем. Еще будучи студентом-медиком в Московском университете, он в 1853 г. был удостоен золотой медали за научные достижения. В 1865 г. его назначили приват-доцентом Новороссийского университета в Одессе по кафедре физиологии и анатомии. Натан Осипович изучал физиологию в лучших лабораториях того времени: в 1866 г. – в Берлинской физиологической лаборатории Р.Дюбуа-Реймона, в 1868–1869 гг. – в лаборатории К.Людвига в Лейпциге. В 1871 г. в Новороссийский университет пришел И.М. Сеченов. С этого года Натан Осипович оставил за собой только курс анатомии, передав физиологию Сеченову.

Отец Николая Александровича – Александр Николаевич (Натанович) Бернштейн – был известным московским психиатром, учеником С.С. Корсакова. Его деятельность оставила заметный след в психиатрии. Но, кроме эрудиции и творческого вклада в психиатрию, в его трудах ясно просматривается очень широкий круг интересов – от точных до гуманитарных наук и искусства. Вопросы психиатрии и психологии он связывал с передовой для того времени физиологией, с идеями Сеченова.

Нельзя не обратить внимание, что детские и юношеские годы Николая Александровича прошли среди людей с широким кругом интересов, в обстановке творческих поисков в науке и серьезного отношения к проблемам воспитания и образования.


Образование Н.А. Бернштейн получил в Московском университете. Поступил он на историко-философский факультет, намереваясь посвятить себя филологии, но с началом I мировой войны перевелся на медицинский. Он попал в ускоренный выпуск – проучившихся 4 года медиков отправляли на фронт. Однако окончание университета пришлось на 1919 г., фронты были уже другие. Бернштейн был мобилизован в Красную армию в качестве военврача. После демобилизации в 1920 г. недолго проработал психиатром в клинике В.А. Гиляровского, но вскоре перешел в Центральный институт труда (ЦИТ), где через короткое время возглавил лабораторию биомеханики.

Основатель ЦИТа, революционер и идеолог новой культуры труда А.К. Гастев искал специалиста для занятий биомеханикой трудовых движений. Основной задачей, поставленной Гастевым перед лабораторией Бернштейна, было изучение трудовых движений человека в естественных условиях с целью облегчения труда и повышения его эффективности.

В физиологии было известно, что двигательный аппарат человека обладает огромным количеством степеней свободы движения. Это дает живому организму несравнимую с движениями механизма свободу, но эта особенность создает огромные сложности для регуляции движений: нервная система, в принципе, не способна управлять процессами на двигательной периферии с помощью одних только центробежных команд. До Бернштейна был известен только один способ решения проблемы степеней свободы – «выключение» лишних степеней свободы. Бернштейн предложил другое решение: непредсказуемую, складывающуюся по ходу движения ситуацию на периферии нужно отслеживать post factum или предваряя изменения с помощью «опережающих коррекций».

Идея проверки движения чувствованием разрабатывалась еще Сеченовым. Но Бернштейн усмотрел в сенсорной коррекции конститутивный элемент двигательного акта, сравнимый по сложности с интеллектуальным процессом. То есть движение, по Бернштейну, весьма далеко от механического выполнения команды, получаемой от нервной системы, и представляет собой процесс решения двигательной задачи.

После трех лет работы в ЦИТе стало ясно, что научные интересы Бернштейна трудно совместимы с полуутопическими замыслами Гастева, намеревавшегося конструировать движение, как конструируют машину, задавая человеку любые двигательные установки. В 1925 г. Бернштейн ушел из ЦИТа, перевезя исследовательскую аппаратуру в Институт психологии, где проблема живого движения вызывала большой интерес. В каких бы стенах по том ни работал ученый – он изучал движения пианистов в Государственном институте музыкальной науки, патологию походки в Институте профзаболеваний, ходьбу ребенка в Институте охраны здоровья детей и подростков, движения спортсменов в Институте физкультуры – он продолжал начатую в двадцатые годы линию – исследование живого движения. Подобно рабочему удару, который был классическим объектом исследований в ЦИТе, и все другие движения Бернштейн представлял целенаправленными, отвечающими определенной задаче.

Анализ движений в конечном счете перерос из задачи исследования в средство познания законов работы центральной нервной системы человека. Бернштейн считал, что «…моторика человека может и должна оказаться превосходным индикатором для изучения в ней процессов, происходящих в центральной нервной системе». Он подчеркивал, что этот «двигательный индикатор высшей нервной деятельности» отличается большой выразительностью, способностью отражать быстротекущие процессы работы мозга». «Движение уже перестает быть интересным нам своей чисто внешней феноменологической стороной. Мы уже уловили, что в нем содержится богатейший материал о деятельности ЦНС; правда, содержится он там в зашифрованном виде, но ведь нет такого шифра, которого нельзя было бы раскрыть при достаточном внимании и упорстве, при достаточной воле к этому».

Сформулированный Бернштейном принцип сенсорных коррекций стал одним из важнейших в современных подходах к регуляции поведения человека и животных. Предвосхитив основные принципы кибернетики, Бернштейн уже в 1929 г., опираясь на идеи высоко ценимых им Сеченова и Ухтомского, развил принцип обратной связи, предлагая перейти от павловского представления о разомкнутой рефлекторной дуге к представлению о замкнутом контуре регулирования.

Полемика с Павловым для Бернштейна была делом жизни: он не допускал мысли, что схема рефлекса приложима к образованию двигательного навыка, к любому человеческому движению. Для него рефлекс – «это не элемент действия, а элементарное действие», которое появилось на свет «там же, где возникло первое в мире «элементарное ощущение», – в обстановке лабораторного эксперимента». Как возражение Павлову он писал книгу «История учения о нервном импульсе». Во Всесоюзном институте экспериментальной медицины в 1936 г. была запланирована их очная дискуссия. Но Павлов умер. Узнав, что его оппонент больше никогда не сможет ему ответить, Бернштейн отдал в типографию распоряжение рассыпать набор книги. В 1950 г. во время объединенной сессии Академии наук СССР и Академии медицинских наук (известной как «павловская сессия») работы Бернштейна были подвергнуты критике за «антипавловскую» направленность. Аргументом обвинения было то, что в его книге «О построении движений» (которая за два года до этого получила Государственную премию) не было ссылок на Павлова. Сам он вскоре был уволен из институтов и до конца дней уже не имел лабораторной базы для работы. Возвращение его работ в научный оборот состоялось в период хрущевской «оттепели». Когда кончилась насильственная «павловизация» наук о жизни, в обнаружившемся интеллектуальном вакууме альтернативные модели Бернштейна были подняты на щит физиологами, кибернетиками, психологами.

В начале 60-х гг. Бернштейн много общается с физиками и математиками, пишет в кибернетические издания, выступает с лекциями на семинаре, организованном молодыми математиками, биологами и физиками. Семинары проходили в Институте нейрохирургии, в хорошую погоду все собирались в саду института. Это было похоже на аристотелевский Лицей: лектор гулял перед аудиторией, кто-то сидел на скамейке, кто-то лежал на траве… Бернштейн частично излагал идеи книги «О построении движений», а частично проигрывал на слушателях свои соображения относительно того, что потом получило название физиологии активности. В противовес изучению организма в покоящихся состояниях новое направление исследований, считал Бернштейн, должно делать упор на активное поведение организма, преодоление им среды, а не приспособление к ней.

Бернштейн писал о том, что тезис об активности был противопоставлен им гомеостазу. Однако физиология активности имела не только и не столько научное, сколько идеологическое звучание. Она была вдохновлена идеями двадцатых годов об организации труда, когда верили, что тяжелый механический труд может стать активным, целеустремленным, радостным. Идея активности была полумечтой, полуутопией в обществе, жизнь которого в сталинский период была основана на «реактивности» его членов по отношению к власти. Не случайно в период хрущевской «оттепели» физиология активности получила общественное звучание, а сам Бернштейн стал, как сказали бы в наши дни, культовой фигурой. И хотя теория построения движений была очень близка кибернетическим моделям управления, лежащая в основе этой теории идеология активности не позволяла Бернштейну согласиться с отождествлением «активного организма» с механизмом. Он неутомимо отстаивал свою излюбленную идею в полемике с кибернетикой, подчеркивая, что если кибернетическое устройство определяется программой, то инициатива движения организма находится в нем самом; только живое целеустремленно, способно формулировать цель и предвидеть – «моделировать» – будущее.

В начале 50-х гг. Бернштейн читал лекции на философском факультете Московского университета, где его слушали также преподаватели и студенты психологического отделения. Его работы многими прочитывались как философские, хотя в них и не было развернутых методологических дискуссий. Без долгих предисловий Бернштейн писал о психических процессах как о высшем уровне функционирования организма, используя как психологические, так и нейрофизиологические термины, которые он, в отличие от Павлова, не считал взаимоисключающими. В понятии об уровнях построения движения, которые в одно и то же время были и морфологическими, и функциональными образованиями, получила развитие идея Сеченова о движении как связующем звене между познанием объективного мира и субъективным чувством.

Интерес психологов к работам Бернштейна пережил несколько пиков. В 1925–1927 гг. Бернштейн был сотрудником психологичесского института, которым тогда руководил Корнилов. Реактологи надеялись сделать форму движения дискриминативным признаком для определения типа реакции. В годы Великой Отечественной войны и сразу после ее окончания идеи Бернштейна о построении движений были использованы в контексте изучения восстановления движений. А.Н. Леонтьев, А.Р. Лурия и С.Л. Рубинштейн в это время сошлись во мнении о том, что концепция Бернштейна дает большие возможности для психологического исследования движений; Лурия даже назвал теорию построения движений психологической физиологией». Наконец, идеи Бернштейна об управлении движениями оказались созвучными нарождавшимся в 50–60-х гг. кибернетике и когнитивной психологии. Молодые психологи 60-х Л.М. Веккер, Б.М. Величковский, Ю.Б. Гиппенрейтер, В.П. Зинченко и другие стали говорить о построении образа по аналогии с построением движения. Эти работы легли в основание инженерной и когнитивной психологии в нашей стране.

За год до смерти Бернштейн поставил себе безнадежный диагноз, созвал учеников, раздал им темы для работы и принялся лихорадочно готовить свою последнюю книгу. Он еще успел прочесть верстку, но «Очерки по физиологии движений и физиологии активности» увидели свет уже посмертно.