Нечёткие множества. Основные характеристики нечетких множеств. Основные понятия теории нечетких множеств

В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков

Нечеткие множества в системах управления

Под редакцией
доктора технических наук, профессора Ю.Н. Золотухина


Предисловие. 3

ВВЕДЕНИЕ.. 4

1. НЕЧЕТКИЕ МНОЖЕСТВА.. 5

Примеры записи нечеткого множества. 5

Основные характеристики нечетких множеств. 5

Примеры нечетких множеств. 6

О методах построения функций принадлежности нечетких множеств. 7

Операции над нечеткими множествами. 8

Наглядное представление операций над нечеткими множествами. 9

Свойства операций È и Ç. 9

Алгебраические операции над нечеткими множествами. 10

Расстояние между нечеткими множествами, индексы нечеткости. 13

Принцип обобщения. 16

2. НЕЧЕТКИЕ ОТНОШЕНИЯ.. 17

Операции над нечеткими отношениями. 18

Композиция двух нечетких отношений. 21

Условные нечеткие подмножества. 23

3. НЕЧЕТКАЯ И ЛИНГВИСТИЧЕСКАЯ ПЕРЕМЕННЫЕ.. 27

Нечеткие числа. 28

Операции над нечеткими числами. 28

Нечеткие числа (L-R)-типа. 29

4. НЕЧЕТКИЕ ВЫСКАЗЫВАНИЯ И НЕЧЕТКИЕ МОДЕЛИ СИСТЕМ... 32

Правила преобразований нечетких высказываний. 33

Способы определения нечеткой импликации. 33

Логико-лингвистическое описание систем, нечеткие модели. 35

Модель управления паровым котлом.. 36

Полнота и непротиворечивость правил управления. 39

Литература. 40

Предисловие

Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, ╬ 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества , допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy ). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

В последние 5-7 лет началось использование новых методов и моделей в промышленности. И хотя первые применения нечетких систем управления состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.

Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".

Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.

Основная цель предлагаемого вниманию читателей учебного пособия - привлечь внимание студентов, аспирантов и молодых научных сотрудников к нечеткой проблематике и дать доступное введение в одну из интереснейших областей современной науки.

профессор Ю.Н.Золотухин

ВВЕДЕНИЕ

Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

1. НЕЧЕТКИЕ МНОЖЕСТВА

Пусть E - универсальное множество, x - элемент E , а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция , принимающая значение 1 , если x удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей . Если M = {0,1} , то нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Нечеткое множество - это множество пар , где x принимает некоторое информативное значение, а m(x) отображает x в единичный отрезок, принимая значения от 0 до 1. При этом m(x) представляет собой степень принадлежности x к чему-либо (0 - не принадлежит, 1 - принадлежит на все 100%).

Так, на пример, можно задать для числа 7 множество:

<0/1>,<0.4/3>,<1/7> Это множество говорит о том, что 7 - это на 0% единица, на 40% тройка и на 100% семерка.

Нечеткая переменная определяется как .

A - наименование переменной,

X={x} - область определения переменной, набор возможных значений x,

Ca={} - нечеткое множество, описывающее ограничения на возможные значения переменной A (семантику).

Пример: <"Семь",{1,3,7},{<0/1>,<0.4/3>,<1/7>}>. Этой записью мы определили соответствия между словом и некоторыми цифрами. Причем, как в названии переменной, так и в значениях x можно было использовать любые записи, несущие какую-либо информацию.

Лингвистическая переменная определяется как .

B - наименование переменной.

T - множество её значений (базовое терм-множество), состоит из наименований нечетких переменных, областью определения каждой из которых является множество X.

G - синтаксическая процедура (грамматика), позволяющая оперировать элементами терм-множества T, в частности - генерировать новые осмысленные термы. T`=T U G(T) задает расширенное терм-множество (U - знак объединения).

M - семантическая процедура, позволяющая приписать каждому новому значению лингвистической переменной нечеткую семантику, путем формирования нового нечеткого множества.

Нечеткое множество (или нечеткое число), описывает некотоpые понятия в фyнкциональном виде, т. е. такие понятия как "пpимеpно pавно 5", "скоpость чyть больше 300 км/ч" и т. д., как видно эти понятия невозможно пpедставить одним числом, хотя в pеальности люди очень часто пользyются ими.

Hечеткая пеpеменная это тоже самое, что и нечеткое число, только с добавлением имени, котоpым фоpмализyется понятие описуемое этим числом.

Лингвистическая пеpеменная это множество нечетких пеpеменных, она использyется для того чтобы дать словесное описание некотоpомy нечеткомy числy, полyченномy в pезyльтате некотоpых опеpаций. Т. е. пyтем некотоpых опеpаций подбиpается ближайшее по значению из лингвистической пеpеменной.

Хочy дать несколько советов для твоей пpоги. Hечеткие числа лyчше хpанить как отсоpтиpованное множество паp (соpтиpyется по носителям), за счет этого можно yскоpить выполнения всех логических и математических опеpаций. Когда pеализyешь аpифметические опеpации, то нyжно yчитывать погpешность вычислений, т. е. 2/4 <> 1/2 для компьютеpа, когда я с этим столкнyлся, мне пpишлось несколько yсложнить сpавнение паp, а сpавнений пpиходится делать много. Hосители в нечетких числах должны быть кpатными какому-нибуть числy, иначе pезyльтаты аpиф. опеpаций бyдyт "некpасивыми", т. е. pезyльтат бyдет неточным, особенно это видно пpи yмножении.

За счет хpанения нечетких чисел в отсоpтиpованном виде, я добился того что аpифметические опеpации y меня выполняются по почти линейной зависимости (во вpемени), т. е. пpи yвеличении количества паpа, скоpость вычислений падала линейно. Я пpидyмал и pеализовал точные аpиф. опеpации пpи котоpых не имеет значение кол-во и кpатность носителей, pезyльтат всегда бyдет точным и "кpасивым", т. е. если пеpвоначальные числа были похожи на пеpевеpнyтyю параболу, то и pезyльтат бyдет похожим, а пpи обычных опеpациях он полyчается стyпенчатым. Я так же ввел понятие "обpатные нечеткие числа" (хотя не до конца pеализовал), для чего они нyжны? Как ты знаешь пpи вычитании или делении число из котоpого вычитается дpyгое должно быть шиpе, а это большая пpоблема пpи pешении сложных ypавнений, вот "обpатные нечеткие числа" позволяют это делать.

Базовые операции над нечеткими множествами.

ОБЪЕДИНЕНИЕ: создается новое множество из элементов исходных множеств, причем для одинаковых элементов принадлежность берется максимальной.

A U B = {} Maub(x) = max {Ma(x), Mb(x)} ПЕРЕСЕЧЕНИЕ: создается новое множество из одинаковых элементов исходных множеств, принадлежность которых берется минимальной. A П B = {} Maпb(x) = min {Ma(x), Mb(x)} ДОПОЛНЕНИЕ: инвертируется принадлежность каждого элемента. C = ~A = {} Mc(x) = 1-Ma(x) СТЕПЕНЬ: принадлежность каждого элемента возводится в степень. CON - концентрация, степень=2 (уменьшает степень нечеткости) DIN - растяжение, степень=1/2 (увеличивает степень нечеткости) РАЗНОСТЬ: новое множество состоит из одинаковых элементов исходных множеств. A - B = {} Ma-b(x) = Ma(x)-Mb(a), если Ma(x)>Mb(x) иначе 0 НОСИТЕЛЬ: состоит из элементов исходного множества, принадлежности которых больше нуля. Supp(A) = {x|x?X /\ Ma(x)>0} УМНОЖЕНИЕ НА ЧИСЛО: принадлежности элементов домножаются на число. q*A = {} СУПРЕМУМ: Sup - точная верхняя грань (максимальное значение принадлежности, присутствующее в множестве).

НОРМАЛИЗАЦИЯ: нечеткое множество нормально если супремум множества равен единице. Для нормализации перечитывают принадлежности элементов:

M"a(x) = Ma(x)/(Sup Ma(x)) АЛЬФА-СРЕЗ: множество альфа уровня - те элементы исходного множества, принадлежность которых выше или равна заданного порога. Порог, равный 1/2, называют точкой перехода. Aq = {x|x?X /\ Ma(x)>q} НЕЧЕТКОЕ ВКЛЮЧЕНИЕ: степень включения нечеткого множества V(A1,A2) = (Ma1(x0)->Ma2(x0))&(Ma1(x1)->Ma2(x1))&.. По Лукасевичу: Ma1(x)->Ma2(x) = 1&(1-Ma1(x)+Ma2(x)) По Заде: Ma1(x)->Ma2(x) = (1-Ma1(x)) \/ Ma2(x) НЕЧЕТКОЕ РАВЕНСТВО: степень нечеткого равенства R(A1,A2) = V(A1,A2) & V(A2,A1)

Словарь

АДАПТАЦИЯ - Любое изменение в структуре или функции организма, которое позволяет ему выживать во внешней среде.

АЛЛЕЛИ - Возможные значения генов.

ГА - Генетический алгоритм. Интеллектуальное исследование произвольного поиска. . Представлен Holland 1975.

ГА МОДЕЛЬ ОСТРОВА (IMGA) - Популяция ГА разделена в несколько подсовокупностей, каждая из которых беспорядочно инициализирована и выполняет независимый последовательный ГА на собственной подпопуляции. Иногда, пригодные ветви решений мигрируют между подсовокупностями. [Например. Levine 1994].

ГЕНЫ - Переменные в хромосоме.

ГЕНЕТИЧЕСКИЙ ДРЕЙФ - Члены популяции сходятся к некоторой отметке пространства решения вне оптимума из-за накопления стохастических ошибок.

ГЕНОТИП - Фактическая структура. Кодированная хромосома.

ГП - Генетическое программирование. Прикладные программы использующие принципы эволюционной адаптации к конструкции процедурного кода.

ДИПЛОИД - В каждом участке хромосомы имеется пара генов. Это позволяет сохраняться долгосрочной памяти.

КГА - Компактный ГА (CGA). В CGA, две или больше совокупности ген постоянно взаимодействуют и взаимно развиваются.

КРОССИНГОВЕР - Обмен отрезками хромосом родителей. В диапазоне от 75 до 95% появляются самые лучшие особи.

ЛОКУС - Позиция гена в хромосоме.

МУТАЦИЯ - Произвольная модификация хромосомы.

СИНАПС - Вход нейрона.

СХЕМА (шемма) - Подмножество подобных хромосом, содержащих модель значений гена.

СХОДИМОСТЬ - Прогрессия к увеличивающейся однородности. Ген, как считают, сходится когда 95% популяции имеет то же самое значение .

УНС - Унифицированная нейронная сеть.

ФИТНЕС-ФУНКЦИЯ - Значение являющееся целевым функциональным значением решения. Оно также называется функцией оценки или функцией цели в проблемах оптимизации.

ФЕНОТИП - Физическое выражение структуры. Декодированный набор ген.

ХРОМОСОМА - Составляющий вектор, строка, или решение.

  • Д. -Э. Бэстенс, В. .М. Ван Ден Берг, Д. Вуд. .Hейронные сети и финансовые рынки.., Москва, научное издательство.ТВП., 1997.
  • Галушкин А. И. .Hейрокомпьютеры и их применение. Книга 1. Теория нейронных сетей.. Москва, Издательское предприятие редакции журнала.Радиотехника.,2000.
  • Тейво Кохонен, Гвидо Дебок.Анализ финансовых данных с помощью самоорганизующихся карт., Москва, издательский дом.Альпина., 2001.
  • Ф. Уоссерман. .Hейрокомпьютерная техника., Москва, издательство.Мир., 1992.
  • Шумский C. A. .Hейрокомпьютинг и его применение в экономике и бизнесе., Москва, издательство МИФИ, 1998.
  • А. И. Змитрович Интеллектуальные информационные системы. - Минск.: HТООО "Тетра Системс", 1997. - 368с.
  • В. В. Корнеев, А. Ф. Гарев, С. В. Васютин, В. В. Райх Базы данных. Интеллектуальная обработка информации. - М.: "Hолидж", 2000. - 352с.

1.1 Основные термины и определения

Понятие нечеткого множества - эта попытка математической формализации нечеткой информации для построения математических моделей. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно принадлежать к данному множеству с различной степенью. При таком подходе высказывания типа “такой-то элемент принадлежит данному множеству” теряют смысл, поскольку необходимо указать “насколько сильно” или с какой степенью конкретный элемент удовлетворяет свойствам данного множества.

Определение 1. Нечетким множеством (fuzzy set) на универсальном множестве U называется совокупность пар (), где - степень принадлежности элемента к нечеткому множеству . Степень принадлежности - это число из диапазона . Чем выше степень принадлежности, тем в большей мерой элемент универсального множества соответствует свойствам нечеткого множества.

Определение 2. Функцией принадлежности (membership function) называется функция, которая позволяет вычислить степень принадлежности произвольного элемента универсального множества к нечеткому множеству.

Если универсальное множество состоит из конечного количества элементов , тогда нечеткое множество записывается в виде . В случае непрерывного множества U используют такое обозначение

Примечание: знаки и в этих формулах означают совокупность пар и u.

Пример 1. Представить в виде нечеткого множества понятие “мужчина среднего роста”.

Решение: = 0/155+0.1/160 + 0.3/165 + 0.8/170 +1/175 +1/180 + 0.5/185 +0/180.

Определение 3. Лингвистической переменной (linguistic variable) называется переменная, значениями которой могут быть слова или словосочетания некоторого естественного или искусственного языка.

Определение 4. Терм–множеством (term set) называется множество всех возможных значений лингвистической переменной.

Определение 5. Термом (term) называется любой элемент терм–множества. В теории нечетких множеств терм формализуется нечетким множеством с помощью функции принадлежности.

Пример 2. Рассмотрим переменную “скорость автомобиля ”, которая оценивается по шкале “низкая ", "средняя ", "высокая ” и “очень высокая ".

В этом примере лингвистической переменной является “скорость автомобиля ”, термами - лингвистические оценки “низкая ", "средняя ", "высокая ” и “очень высокая ”, которые и составляют терм–множество.

Определение 6. Дефаззификацией (defuzzification) называется процедура преобразования нечеткого множества в четкое число.

В теории нечетких множеств процедура дефаззификации аналогична нахождения характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одноэкстремальными функциями принадлежности. Для многоэкстремальных функций принадлежности в Fuzzy Logic Toolbox запрограммированы такие методы дефаззификации:

Centroid - центр тяжести;

Bisector - медиана;

LOM (Largest Of Maximums) - наибольший из максимумов;

SOM (Smallest Of Maximums) - наименьший из максимумов;

Mom (Mean Of Maximums) - центр максимумов.

Определение 7. Дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Физическим аналогом этой формулы является нахождение центра тяжести плоской фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого множества. В случае дискретного универсального множества дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Определение 8. Дефаззификация нечеткого множества по методу медианы состоит в нахождении такого числа a, что .

Геометрической интерпретацией метода медианы является нахождения такой точки на оси абцисс, что перпендикуляр, восстановленный в этой точке, делит площадь под кривой функции принадлежности на две равные части. В случае дискретного универсального множества дефаззификация нечеткого множества по методу медианы осуществляется по формуле .

Определение 9. Дефаззификация нечеткого множества по методу центра максимумов осуществляется по формуле:

где G – множество всех элементов из интервала , имеющих максимальную степень принадлежности нечеткому множеству .

В методе центра максимумов находится среднее арифметическое элементов универсального множества, имеющих максимальные степени принадлежностей. Если множество таких элементов конечно, то формула из определения 9 упрощается к следующему виду:

где - мощность множества G.

В дискретном случае дефаззификация по методам наибольшего из максимумов и наименьшего из максимумов осуществляется по формулам и , соответственно. Из последних трех формулы видно, что если функция принадлежности имеет только один максимум, то его координата и является четким аналогом нечеткого множества.

Пример 3. Провести дефаззификацию нечеткого множества “мужчина среднего роста ” из примера 1 по методу центра тяжести.

Решение: Применяя формулу из определения 7, получаем:

Определение 10. Нечеткой базой знаний (fuzzy knowledge base) о влиянии факторов на значение параметра y называется совокупность логических высказываний типа:

ТО , для всех ,

где - нечеткий терм, которым оценивается переменная в строчке с номером jp ();

Количество строчек-конъюнкций, в которых выход y оценивается нечетким термом , ;

Количество термов, используемых для лингвистической оценки выходного параметра y.

С помощью операций (ИЛИ) и (И) нечеткую базу знаний из определения 10 перепишем в более компактном виде:

Определение 11. Нечетким логическим выводом (fuzzy logic inference) называется апроксимация зависимости с помощью нечеткой базы знаний и операций над нечеткими множествами.

Пусть - функция принадлежности входа нечеткому терму , , , , т. е. ; - функция принадлежности выхода y нечеткому терму , , т. е. . Тогда степень принадлежности конкретного входного вектора нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

где - операция максимума (минимума).

Нечеткое множество , соответствующее входному вектору , определяется следующим образом:

где - операция объединения нечетких множеств.

Четкое значение выхода y, соответствующее входному вектору определяется в результате деффаззификации нечеткого .

1.2. Свойства нечетких множеств

Определение 12. Высотой нечеткого множества называется верхняя граница его функции принадлежности: . Для дискретного универсального множества супремум становится максимумом, а значит высотой нечеткого множества будет максимум степеней принадлежности его элементов

Определение 13. нормальным, если его высота равна единице. Нечеткие множества не являющиеся нормальными называются субнормальными . Нормализация ‑ преобразование субнормального нечеткого множества в нормальное определяется так: . В качестве примера на рис. 1 показана нормализация нечеткого множества с функцией принадлежности .

Рисунок 1 - Нормализация нечеткого множества

Определение 14. Носителем нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют ненулевые степени принадлежности: .

Определение 15. Нечеткое множество называется пустым , если его носитель является пустым множеством.

Определение 16. Ядром нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности равные единице: . Ядро субнормального нечеткого множества пустое.

Определение 17. - сечением (или множеством -уровня) нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности большие или равные : , . Значение называют -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) -уровне.

Рис. 2 иллюстрирует определения носителя, ядра, - сечения и - уровня нечеткого множества.

Рисунок 2 - Ядро, носитель и - сечение нечеткого множества

Определение 18. Нечеткое множество называется выпуклым если: , , . Альтернативное определение: нечеткое множество будет выпуклым , если все его - сечения - выпуклые множества. На рис. 3 приведены примеры выпуклого и невыпуклого нечетких множеств.

Рисунок 3 - К определению выпуклого нечеткого множества

Определение 19. Нечеткие множества и равны () если .

1.3. Операции над нечеткими множеств

Определения нечетких теоретико-множественных операций объединения, пересечения и дополнения могут быть обобщены из обычной теории множеств. В отличие от обычных множеств, в теории нечетких множеств степень принадлежности не ограничена лишь бинарной значениями 0 и 1 ‑ она может принимать значения из интервала . Поэтому, нечеткие теоретико-множественные операции могут быть определены по-разному. Ясно, что выполнение нечетких операций объединения, пересечения и дополнения над не нечеткими множествами должно дать такие же результаты, как и при использование обычных канторовских теоретико-множественных операций. Ниже приведены определения нечетких теоретико-множественных операций, предложенных Л. Заде.

Определение 20. Дополнением нечеткого множества заданного на называется нечеткое множество с функцией принадлежности для всех . На рис. 4 приведен пример выполнения операции нечеткого дополнения.

Рисунок 4 - Дополнение нечеткого множества

Определение 21. Пересечением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения минимума также обозначается знаком , т.е. .

Определение 22. Объединением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения максимума также обозначается знаком , т.е. .

Обобщенные определения операций нечеткого пересечения и объединения - треугольной нормы (t-нормы) и треугольной конормы (t-конормы или s-нормы) приведены ниже.

Определение 23. Треугольной нормой (t-нормой)

Наиболее часто используются такие t-нормы: пересечение по Заде ‑ ; вероятностное пересечение ‑ ; пересечение по Лукасевичу ‑ . Примеры выполнения пересечения нечетких множеств с использованием этих t-норм показаны на рис. 5.

Рисунок 5 - Пересечение нечетких множеств с использованием различных t-норм

Определение 25. Треугольной конормой (s-нормой) называется бинарная операция на единичном интервале , удовлетворяющая следующим аксиомам для любых :

Наиболее часто используются такие s-нормы: объединение по Заде ‑ ; вероятностное объединение ‑ ; объединение по Лукасевичу ‑ . Примеры выполнения объединения нечетких множеств с использованием этих s-норм показаны на рис. 6.

Наиболее известные треугольные нормы приведены в табл. 1.

Рисунок 6 - Объединение нечетких множеств с использованием различных s-норм

Таблица 1 - Примеры треугольных норм

Параметр

1.4. Нечеткая арифметика

В этом разделе рассматриваются способы расчета значений четких алгебраических функций от нечетких аргументов. Материал основывается на понятиях нечеткого числа и принципа нечеткого обобщения. В конце раздела приводятся правила выполнения арифметических операций над нечеткими числами.

Определение 25. Нечетким числом называется выпуклое нормальное нечеткое множество с кусочно-непрерывной функцией принадлежности, заданное на множестве действительных чисел. Например, нечеткое число "около 10" можно задать следующей функцией принадлежности: .

Определение 26. Нечеткое число называется положительным (отрицательным) если , ().

Определение 27. Принцип обобщения Заде. Если ‑ функция от n независимых переменных и аргументы заданы нечеткими числами , соответственно, то значением функции называется нечеткое число с функцией принадлежности:

Принцип обобщения позволяет найти функцию принадлежности нечеткого числа, соответствующего значения четкой функции от нечетких аргументов. Компьютерно-ориентированная реализация принципа нечеткого обобщения осуществляется по следующему алгоритму:

Шаг 1. Зафиксировать значение .

Шаг 2. Найти все n-ки , , удовлетворяющие условиям и , .

Шаг 3. Степень принадлежности элемента нечеткому числу вычислить по формуле: .

Шаг 4. Проверить условие "Взяты все элементы y?". Если "да", то перейти к шагу 5. Иначе зафиксировать новое значение и перейти к шагу 2.

Шаг 5. Конец.

Приведенный алгоритм основан на представлении нечеткого числа на дискретном универсальном множестве, т.е. . Обычно исходные данные , задаются кусочно-непрерывными функциями принадлежности: . Для вычисления значений функции аргументы , дискретизируют, т.е. представляют в виде . Число точек выбирают так, чтобы обеспечить требуемую точность вычислений. На выходе этого алгоритма получается нечеткое множество, также заданное на дискретном универсальном множестве. Результирующую кусочно-непрерывную функцию принадлежности нечеткого числа получают как верхнюю огибающую точек .

Пример 4. Нечеткие числа и заданы следующими трапециевидными функциями принадлежности:

Необходимо найти нечеткое число с использованием принципа обобщения из определения 27.

Зададим нечеткие аргументы на четырех точках (дискретах): {1, 2, 3 4} для и {2, 3, 4 8} для . Тогда: и . Процесс выполнения умножения над нечеткими числами сведен в табл. 2. Каждый столбец таблицы соответствует одной итерации алгоритма нечеткого обобщения. Результирующее нечеткое множество задано первой и последней строчками таблицы. В первой строке записаны элементы универсального множества, а в последней строке - степени их принадлежности к значению выражения . В результате получаем: . Предположим, что тип функция принадлежности будет таким же, как и аргументов и , т. е. трапециевидной. В этом случае функция принадлежности задается выражением: . На рис. 7 показаны результаты выполнения операции с представлением нечетких множителей на 4-х дискретах. Красными звездочками показаны элементы нечеткого множества из табл. 2, а тонкой красной линией - трапециевидная функция принадлежности.

Исследуем, как измениться результат нечеткого обобщения при увеличении числа дискрет, на которых задаются аргументы. Нечеткое число при задании аргументов и на 30 дискретах приведено на рис. 7. Синими точками показаны элементы нечеткого множества , найденные по принципу обобщения, а зеленой линией - верхняя огибающая этих точек ‑ функция принадлежности . Функция принадлежности результата имеет форму криволинейной трапеции, немного выгнутой влево.

Таблица 2 - К примеру 4

1 , где. По -сечения нечеткого множества, а жирной синей линией -кусочно-линейная аппроксимация функции принадлежности нечеткого числа

Аннотация: В лекции представлены методы моделирования экономических задач с использованием нечетких множеств в среде Mathcad. Введены основные понятия теории нечетких множеств. На примерах показаны операции над множествами, расчет свойств. Рассмотрены оригинальные задачи, в которых применен нечетко-множественный подход в процессе принятия решения. Техника моделирования реализована с помощью матриц программы Mathcad.

Цель лекции. Познакомить с нечеткими множествами. Научить ставить задачу для построения нечетко-множественной модели. Показать, как строить нечеткие множества и производить действия над ними в Mathcad. Представить методы решения нечетко-множественной модели в процессе решения задач.

6.1 Нечетко-множественное моделирование

При моделировании широкого класса реальных объектов возникают необходимость принимать решения в условиях неполной нечеткой информации. Современным перспективным направлением моделирования различного вида неопределенностей является теория нечетких множеств. В рамках теории нечетких множеств разработаны методы формализации и моделирования рассуждений человека, таких понятий как "более или менее высокий уровень инфляции", "устойчивое положение на рынке", "более ценный" и т.д.

Впервые понятие нечетких множеств предложил американский ученый Л.А.Заде (1965 г). Его идеи послужили развитию нечеткой логики. В отличие от стандартной логики с двумя бинарными состояниями (1/0, Да/Нет, Истина/Ложь), нечеткая логика позволяет определять промежуточные значения между стандартными оценками. Примерами таких оценок являются: "скорее да, чем нет", "наверное да", "немного вправо", "резко влево" в отличие от стандартных: "вправо" или "влево", "да". В теории нечетких множеств введены нечеткие числа как нечеткие подмножества специализированного вида, соответствующих высказываниям типа " значение переменной примерно равно а". В качестве примера рассмотрим треугольное нечеткое число , где выделяются три точки: минимально возможное, наиболее ожидаемое и максимально возможное значение фактора. Треугольные числа – это самый часто используемый на практике тип нечетких чисел, причем, чаще всего их используют в качестве прогнозных значений параметра. Например, ожидаемое значение инфляции на следующий год. Пусть наиболее вероятное значение – 10%, минимально возможное – 5%, а максимально возможное – 20%, тогда все эти значения могут быть сведены к виду нечеткого подмножества или нечеткого числа A: А: (5, 10, 20)

С введением нечетких чисел оказалось возможным прогнозировать будущие значения параметров, которые меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраическим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности). Применение нечетких чисел позволяет задавать расчетный коридор значений прогнозируемых параметров. Тогда ожидаемый эффект оценивается экспертом также как нечеткое число со своим расчетным разбросом (степенью нечеткости).

Нечеткая логика , как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

6.2 Основные понятия теории нечетких множеств

Множество - неопределяемое понятие математики. Георг Кантор (1845 – 1918) – немецкий математик, чьи работы лежат в основе современной теории множеств, дает такое понятие: "…множество - это многое, мыслимое как единое".

Множество, включающее в себя все объекты, рассматриваемые в задаче, называют универсальным множеством. Универсальное множество принято обозначать буквой . Универсальное множество является максимальным множеством в том смысле, что все объекты являются его элементами, т.е. утверждение в рамках задачи всегда истинно. Минимальным множеством является пустое множество – , которое не содержит ни одного элемента. Все остальные множества в рассматриваемой задаче являются подмножествами множества . Напомним, что множество называют подмножеством множества , если все элементы являются также элементами . Задание множества - это правило, позволяющее относительно любого элемента универсального множества однозначно установить, принадлежит множеству или не принадлежит. Другими словами, это правило, позволяющее определить, какое из двух высказываний, или , является истинным, а какое ложным. Одним из способов задания множеств является задание с помощью характеристической функции.

Характеристической функцией множества называют функцию , заданную на универсальном множестве и принимающую значение единица на тех элементах множества , которые принадлежат , и значение нуль на тех элементах, которые не принадлежат :

(6.1)

В качестве примера рассмотрим универсальное множество и два его подмножества: - множество чисел, меньших 7, и - множество чисел, немного меньших 7. Характеристическая функция множества имеет вид

(6.2)

Множество в данном примере является обычным множеством.

Записать характеристическую функцию множества , используя лишь 0 и 1, невозможно. Например, включать ли в числа 1 и 2? "намного" или "ненамного" число 3 меньше 7? Ответы на эти и подобные им вопросы могут быть получены в зависимости от условий задачи, в которой используются множества и , а также от субъективного взгляда того, кто решает эту задачу. Множество называется нечетким множеством. При составлении характеристической функции нечеткого множества решающий задачу (эксперт) может высказать свое мнение относительно того, в какой степени каждое из чисел множества принадлежит множеству . В качестве степени принадлежности можно выбрать любое число с отрезка . При этом означает полную уверенность эксперта в том, что - столь же полную уверенность, что говорит о том, что эксперт затрудняется в ответе на вопрос, принадлежит ли множеству или не принадлежит. Если , то эксперт склонен отнести к множеству , если же , то не склонен.

Функцией принадлежности нечеткого множества называют функцию , которая

Такую функцию называют функцией принадлежности нечеткому множеству . - Максимальное значение функции принадлежности , присутствующее в множестве - верхняя грань - называется супремум. Функция принадлежности отражает субъективный взгляд специалиста на задачу, вносит индивидуальность в ее решение.

Характеристическую функцию обычного множества можно рассматривать как функцию принадлежности этому множеству, но в отличие от нечеткого множества , принимает лишь два значения: 0 или 1.

Нечетким множеством называют пару , где - универсальное множество , - функция принадлежности нечеткого множества .

Несущим множеством или носителем нечеткого множества называют подмножество множества , состоящее из элементов, на которых .

Точкой перехода нечеткого множества называют элемент множества , на котором .

В рассматриваемом примере, где , - множество чисел, меньших 7, - множество чисел, немного меньших 7, субъективно выбираем значения для множества , которые будут составлять функцию принадлежности . В таблице 6.1 представлены функции принадлежности и для и .

Таблица 6.1.
1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 0 0 0 0
0 0 0,5 0,6 0,8 0,9 0 0 0 0

Часто используется более компактная запись конечных или счетных нечетких множеств. Так, вместо приведенного выше табличного представления подмножеств и , эти подмножества можно записать следующим образом.

Лекция 4. Моделирование и принятие решений в ГИС.

1. Нечеткие множества

2. Методы оптимизации

Нечеткие множества

Наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах представляет сегодня одну из важных задач развития ГИС, особенно по применению их в различных сферах управления.

Значительное продвижение в этом направлении сделано 30 лет тому назад про- ром Калифорнийского университета (Беркли) Лотфи А. Заде. Его работа «Fuzzy Sets», появившаяся в 1965 г. в журнале Information and Control, №8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятиемножества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0,1)), а не как в классической теории только значения 0 либо 1. Такие множества были названынечеткими(fuzzy).

Им были также определены операции над нечеткими множествами и предложены обобщения известных методов логического вывода.

Рассмотрим некоторые основные положения теории нечетких множеств.

Пусть Е - универсальное множество, х - элементЕ, аК - некоторое свойство. Обычное (четкое) подмножествоА универсального множестваЕ, элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар , где - характеристическая функция , принимающая значение 1 , если х удов­летворяет свойству R , и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да - нет» относительно свойства R . В связи с этим не­четкое подмножество А универсального множестваЕ определяется как множество упорядоченных пар , где - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве М (например, М = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А . Множество М назы­вают множеством принадлежностей . Если М = {0,1} , то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Пусть М = и А - нечеткое множество с элементами из универсального множества Е и множеством принадлежностей М .

Величина называется высотой нечеткого множества А . Нечеткое множество А нормально , если его высота равна 1 , т. е. верхняя граница его функ­ции принадлежности равна 1 ( =1 ). При < 1 нечеткое множест­во называется субнормальным.


Нечеткое множество пусто , если Непустое субнормальное множество можно нормализовать по формуле

В приведенных выше примерах использованы прямые методы, когда эксперт либо просто задает для каждого значение , либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности используются для измеримых понятий, таких как скорость, время, расстояние, дав­ление, температура и т. д., или когда выделяются полярные значения.

Косвенные методы определения значений функции принадлежности использу­ются в случаях, когда нет элементарных измеримых свойств, через которые опре­деляется интересующее нас нечеткое множество. Как правило, это методы попар­ных сравнений. Если бы значения функций принадлежности были нам известны, например то попарные сравнения можно представить мат­рицей отношений , где (операция деления).

На практике эксперт сам формирует матрицу А , при этом предполагается, что диагональные элементы равны 1, а для элементов, симметричных относительно диагонали, =1/ , т. е. если один элемент оценивается в а раз выше чем другой, то этот последний должен быть в 1/ раз сильнее. В общем случае задача сводится к поиску вектора , удовлетворяющего уравнению вида , где - наибольшее собственное значение матрицы А .

Введение понятия лингвистической переменной, и допущение, что в качестве ее значений (термов) выступают нечеткие множества, фактически позволяет создать аппарат описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Поскольку матрица А положительно-определенная по построению, решение данной задачи существует при принятом значении () и является положительным. С(Т), где С(Т) - множество сгенерированных термов, называется расширен­ным терм-множеством лингвистической переменной;

М - семантическая процедура, позволяющая превратить каждое новое значе­ние лингвистической переменной, образуемое процедурой С, в нечеткую перемен­ную, т. е. сформировать соответствующее нечеткое множество.

Введя понятие лингвистической переменной и допуская, что в качестве ее зна­чений (термов) выступают нечеткие множества, фактически позволяет создать аппарат описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.