Нечёткие множества. Основные понятия теории нечетких множеств. О методах построения функций принадлежности нечет-ких множеств

Нечеткое множество представляет собой совокупность элементов произвольной природы, относительно которых нельзя с полной определенностью утверждать – принадлежит ли тот или иной элемент рассматриваемой совокупности данному множеству или нет. Другими словами, нечеткое множество отличается от обычного множества тем, что для всех, или части его элементов не существует однозначного ответа на вопрос: «Принадлежит или не принадлежит тот или иной элемент рассматриваемому нечеткому множеству»

Для построения нечетких моделей систем само понятие нечеткого множества следует определить строго, чтобы исключить неоднозначность толкования тех или иных его свойств. Наиболее естественным и интуитивно понятным является задание области значений подобной функции как интервал действительных чисел, заключенных между 0 и 1 (включая и сами эти значения).

Математическое определение нечеткого множества. Формально нечеткое множество определяется как множество упорядоченных пар или кортежей вида:, гдеявляется элементом некоторого универсального множества, или универсума, а– функция принадлежности, которая ставит в соответствие каждому из элементовнекоторое действительное число из интервала, т.е. данная функция определяется в форме отображения:

При этом значение для некоторогоозначает, что элементопределенно принадлежит нечеткому множеству, а значениеозначает, что элементопределенно не принадлежит нечеткому множеству.

Формально конечное нечеткое множество в общем случае имеет вид:

Универсум - это множество, содержащее в рамках некоторого контекста все возможные элементы. Формально удобно считать, что функция принадлежности универсума как нечеткого множества тождественно равна единице для всех без исключения элементов:.

Пустое нечеткое множество , или множество, которое не содержит ни одного элемента, обозначаетсяи формально определяется как такое нечеткое множество, функция принадлежности которого тождественно равна нулю для всех без исключения элементов:

Формальное определение нечеткого множества не накладывает никаких ограничений на выбор конкретной функции принадлежности для его представления. Однако на практике удобно использовать те из них, которые допускают аналитическое представление в виде некоторой простой математической функции. Это упрощает не только соответствующие численные расчеты, но и сокращает вычислительные ресурсы, необходимые для хранения отдельных значений этих функций принадлежности.

Функция принадлежности – математическая функция, определяющая степень, с которой элементы некоторого множества принадлежат заданному нечеткому множеству. Данная функция ставит в соответствие каждому элементу нечеткого множества действительное число из интервалаЗадать конкретное нечеткое множество означает определить соответствующую ему функцию принадлежности.

При построении функций принадлежности для нечетких множеств следует придерживаться некоторых правил, которые предопределяются характером неопределенности, имеющей место при построении конкретных нечетких моделей.

С практической точки зрения с каждым нечетким множеством удобно ассоциировать некоторое свойство, которое характеризует рассматриваемую совокупность объектов универсума. При этом по аналогии с классическими множествами рассматриваемое свойство может порождать некоторый предикат, который вполне естественно назвать нечетким предикатом. Данный нечеткий предикат может принимать не одно из двух значений истинности («истина» или «ложь»), а целый континуум значений истинности, которые для удобства выбираются из интервала При этом значению «истина» по-прежнему соответствует число 1, а значению «ложь» - число 0.

Содержательно это означает следующее: чем в большей степени элемент обладает рассматриваемым свойством, тем более близко к 1 должно быть значение истинности соответствующего нечеткого предиката. И наоборот, чем в меньшей степени элементобладает рассматриваемым свойством, тем более близко к 0 должно быть значение истинности этого нечеткого предиката. Если элементопределенно не обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «ложь» (или число 0). Если же элементопределенно обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «истина» (или число 1).

Тогда в общем случае задание нечеткого множества с использованием специального свойства эквивалентно заданию такой функции принадлежности, которая содержательно представляет степень истинности соответствующего одноместного нечеткого предиката.

Понятие нечеткого отношения наряду с понятием самого нечеткого множества следует отнести к фундаментальным основам всей теории нечетких множеств. На основе нечетких отношений определяется целый ряд дополнительных понятий, используемых для построения нечетких моделей сложных систем.

В общем случае нечетким отношением, заданном на множествах (универсумах) , называется некоторое фиксированное нечеткое подмножество декартова произведения этих универсумов. Другими словами, если обозначить произвольное нечеткое отношение через, то по определению, где- функция принадлежности данного нечеткого отношения, которая определяется как отображение. Черезобозначен кортеж изэлементов, каждый из которых выбирается из своего универсума:

Нечеткая логика, которая служит основой для реализации методов нечеткого управления, более естественно описывает характер человеческого мышления и ход его рассуждений, чем традиционные формально-логические системы. Именно поэтому изучение и использование математических средств, для представления нечеткой исходной информации позволяет строить модели, которые наиболее адекватно отражают различные аспекты неопределенности, постоянно присутствующей в окружающей нас реальности.

Нечеткая логика предназначена для формализации человеческих способностей к неточным или приближенным рассуждениям, которые позволяют более адекватно описывать ситуации с неопределенностью. Классическая логика по своей сути игнорирует проблему неопределенности, поскольку все высказывания и рассуждения в формальных логических системах могут иметь только значение «истина» (И ,1) или значение «ложь» (Л ,0). В отличие от этого в нечеткой логике истинность рассуждений оценивается в некоторой степени, которая может принимать и другие отличныезначения. Нечеткая логика использует основные понятия теории нечетких множеств для формализации неточных знаний и выполнения приближенных рассуждений в той или иной предметной области.

В предложенной Л.Заде варианте нечеткой логики множество истинностных значений высказываний обобщается до интервала действительных значений , что позволяет высказыванию принимать любое значение истинности из этого интервала. Это численное значение является количественной оценкой степени истинности высказывания, относительно которого нельзя с полной уверенностью заключить о его истинности или ложности. Использование в качестве множества истинностных значений интервалапозволяет построить логическую систему, в рамках которой оказалось возможным выполнять рассуждения с неопределенностью и оценивать истинность высказываний.

Исходным понятием нечеткой логики является понятие элементарного нечеткого высказывания.

Элементарное нечеткое высказывание – это повествовательное предложение, выражающее законченную мысль, относительно которой мы можем судить об ее истинности или ложности только с некоторой степенью уверенности. В нечеткой логикестепень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала, причем 0 и 1 являются предельными значениями степени истинности и совпадают со значениями «ложь» и «истина» соответственно.

Нечеткая импликация или импликация нечетких высказываний А и В (читается – «ЕСЛИ А, ТО В») – называется бинарная логическая операция, результат которой является нечетким высказыванием, истинность которого может принимать значение, например, определяемое формулой предложенной Э.Мамдани:

Эту форму нечеткой импликации также называют нечеткой импликацией Мамдани или нечеткой импликациейминимума корреляции.

Классическая нечеткая импликация, предложенная Л.Заде:

Продукционные системы были разработаны в рамках исследований по методам искусственного интеллекта и нашли широкое применение для представления знаний и вывода заключений в экспертных системах, основанных на правилах. Поскольку нечеткий вывод реализуется на основе нечетких продукционных правил, рассмотрение базового формализма нечетких продукционных моделей приобретает самостоятельное значение. При этом нечеткие правила продукций не только во многом близки к логическим моделям, но и, что наиболее важно, позволяют адекватно представить практические знания экспертов в той или иной проблемной области.

Правило нечеткой продукции – под этим правилом понимается выражение вида:

где () – имя нечеткой продукции;- сфера применения нечеткой продукции;- условие применимости ядра нечеткой продукции;- ядро нечеткой продукции, в котором- условие ядра (или антецедент);- заключение ядра (или консеквент);- знак логической секвенции (или следования);- метод или способ определения количественного значения степени истинности заключения ядра;- коэффициент определенности или уверенности нечеткой продукции;- постусловия продукции.

Ядро продукции записывается в виде: , где А, В – некоторые выражения нечеткой логики, которые наиболее часто представляются в форме нечетких высказываний.

Продукционная нечеткая система представляет собой некоторое согласованное множество отдельных нечетких продукций в форме.

Нечеткое множество (fuzzyset) представляет собой совокупность элементов произвольной природы, относительно которых нельзя точно утверждать – обладают ли эти элементы некоторым характеристическим свойством, которое используется для задания нечеткого множества.

Пусть X – универсальное (базовое) множество, x – элемент X , а R – некоторое свойство. Обычное (четкое) подмножество A универсального множества X , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар
A = μ A x / x , где μ A x – характеристическая функция, принимающая значение 1 , если x удовлетворяет свойству R , и 0 – в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из X нет однозначного ответа «да-нет» относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества X определяется как множество упорядоченных пар A = μ A x / x , где μ A x – характеристическая функция принадлежности (или просто функция принадлежности ), принимающая значения в некотором вполне упорядоченном множестве M = 0 ; 1 . Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей. Если M = 0 ; 1 , то нечеткое подмножество A может рассматриваться как обычное или четкое множество. Степень принадлежности μ A x является субъективной мерой того, насколько элемент x ∈ X , соответствует понятию, смысл которого формализуется нечетким множеством A .

Носителем нечеткого множества A является четкое подмножество S A универсального множества X со свойством μ A x > 0 , т.е. S A = x ∣ x ∈ X ∧ μ A x > 0 . Иными словами, носителем нечеткого множества A является подмножество S A универсального множества X , для элементов которого функция принадлежности μ A x > 0 больше нуля. Иногда носитель нечеткого множества обозначают support A .

Если носителем нечеткого множества A является дискретное подмножество S A , то нечеткое подмножество A универсального множества X , состоящего из n элементов, можно представить в виде объединения конечного числа одноточечных множеств μ A x / x при помощи символа ∑ : A = ∑ i = 1 n μ A x i / x i . При этом подразумевается, что элементы x i упорядочены по возрастанию в соответствии со своими индексами, т.е. x 1 < x 2 < x 3 < … < x n .

Если носителем нечеткого множества A является непрерывное подмножество S A , то нечеткое подмножество A универсального множества X , рассматривая символ ∫ как непрерывный аналог введенного выше символа объединения для дискретных нечетких множеств ∑ , можно представить в виде объединения бесконечного числа одноточечных множеств μ A x / x:

A = ∫ X μ A x / x .

Пример. Пусть универсальное множество X соответствует множеству возможных значений толщин изделия от 10 мм до 40 мм с дискретным шагом 1 мм. Нечеткое множество A , соответствующее нечеткому понятию «малая толщина изделия», может быть представлено в следующем виде:

A = 1 / 10 ; 0,9 / 11 ; 0,8 / 12 ; 0,7 / 13 ; 0,5 / 14 ; 0,3 / 15 ; 0,1 / 16 ; 0 / 17 ; … ; 0 / 40 ,

A = 1 / 10 + 0,9 / 11 + 0,8 / 12 + 0,7 / 13 + 0,5 / 14 + 0,3 / 15 + 0,1 / 16 + 0 / 17 + … + 0 / 40 ,

где знак суммирования обозначает не операцию арифметического сложения, а объединения элементов в одно множество. Носителем нечеткого множества A будет конечное подмножество (дискретный носитель):

S A = 10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16 .

Если же универсальное множество X является множеством действительных чисел от 10 до 40 , т.е. толщина изделия может принимать все возможные значения в этих пределах, то носителем нечеткого множества A является отрезок S A = 10 ; 16 .

Нечеткое множество с дискретным носителем может быть представлено в виде отдельных точек на плоскости, нечеткое множество с непрерывным носителем может быть представлено в виде кривой, что соответствует дискретной и непрерывной функциям принадлежности μ A x , заданным на универсальном множестве X (рис.2.1).

Рис.2.1. Функции принадлежности нечетких множеств с (а)-дискретным и (б)-непрерывным носителями

Пример. Пусть X = 0 ; 1 ; 2 ; … – множество целых неотрицательных чисел. Нечеткое множество ital малый можно определить как μ ital малый x = x 1 + 0,1 x 2 − 1 .

Рис.2.2. Графическое представление нечеткого множества малый

Нечеткое множество A называется конечным , если его носитель S A является конечным четким множеством. При этом, по аналогии с обычными множествами, можно говорить, что такое нечеткое множество имеет конечную мощность card A = card S A . Нечеткое множество A называется бесконечным , если его носитель S A не является конечным четким множеством. При этом счетным нечетким множеством будет называться нечеткое множество с счетным носителем, имеющим счетную мощность в обычном смысле в терминах теории четких множеств, т.е. если S A содержит бесконечное число элементов, которые однако можно пронумеровать натуральными числами 1,2 ,3 . . . , причем достичь последнего элемента при нумерации принципиально невозможно. Несчетным нечетким множеством будет называться нечеткое множество со несчетным носителем, имеющим несчетную мощность континуума , т.е. если S A содержит бесконечное число элементов, которые невозможно пронумеровать натуральными числами 1,2 ,3 . . .

Пример. Нечеткое понятие «очень маленькое количество деталей» может быть представлено в виде конечного нечеткого множества A = 1 / 0 + 0,9 / 1 + 0,8 / 2 + 0,7 / 3 + 0,5 / 4 + 0,1 / 5 + 0 / 6 + … с мощностью card (A) = 6 и носителем S A = 0 ; 1 ; 2 ; 3 ; 4 ; 5 , который является конечным четким множеством. Нечеткое понятие «очень большое количество деталей» может быть представлено в виде A = 0 / 0 + … + 0,1 / 1 0 + 0,4 / 11 + 0,7 / 12 + 0,9 / 13 + 1 / 14 + 1 / 15 + … + 1 / n + … , n ∈ N – нечеткого множества с бесконечным счетным носителем S A ≡ N (множество натуральных чисел), который имеет счетную мощность в обычном смысле.

Пример. Несчетное нечеткое множество A , соответствующее нечеткому понятию «очень горячо», задано на универсальном множестве значений температур (в Кельвинах) температурой x ∈ [ 0 ; ∞) и функцией принадлежности μ A = 1 − e − x , с носителем S A ≡ R + (множество неотрицательных действительных чисел), который имеет несчетную мощность континуума.

Величина sup x ∈ X μ A x называется высотой нечеткого множества.

Нечеткое множество A нормально , если его высота равна 1 , т.е. верхняя граница его функции принадлежности sup x ∈ X μ A x = 1 . При sup x ∈ X μ A x < 1 субнормальным.

Нечеткое множество называется пустым , если ∀ x ∈ X μ A x = 0 .

Непустое субнормальное множество всегда можно нормализовать, разделив все значения функции принадлежности на ее максимальное значение μ A x sup x ∈ X μ A x .

Нечеткое множество называется унимодальным , если μ A x = 1 только для одной точки x (моды ) универсального множества X .

Нечеткое множество называется точечным , если μ A x > 0 только для одной точки x универсального множества X .

Множеством α -уровня нечеткого множества A , определенного на универсальном множества X , называется четкое подмножество A α универсального множества X , определяемое в виде:

A α = x ∈ X ∣ μ A x ≥ α , где α ∈ 0 ; 1 .

Пример. A = 0,8 / 1 + 0,6 / 2 + 0,2 / 3 + 1 / 4 , A 0,5 = 1 ; 2 ; 4 , где A 0,5 – четкое множество, включающее те элементы x упорядоченных пар μ A x / x , составляющих нечеткое множество A , для которых значение функции принадлежности которых удовлетворяет условию μ A x ≥ α .

Для множеств α -уровня выполняется следующее свойство: если α 1 ≥ α 2 , то мощность подмножества A α 1 не больше мощности подмножества A α 2 .

Элементы x ∈ X , для которых μ A x = 0,5 называются точками перехода нечеткого множества A .

Ядром нечеткого множества A , определенного на универсальном множестве X , называется четкое множество core A , элементы которого удовлетворяют условию core A = x ∈ X ∣ μ A x = 1 .

Границей нечеткого множества A , определенного на универсальном множестве X , называется четкое множество front A , элементы которого удовлетворяют условию front A = x ∈ X ∣ 0 < μ A x < 1 .

Пример. Пусть X = 0 ; 1 ; 2 ; … ; 10 , M = 0 ; 1 . Нечеткое множество несколько можно определить на универсальном множестве натуральных чисел следующим образом: несколько = 0,5 / 3 + 0,8 / 4 + 1 / 5 + 1 / 6 + 0,8 / 7 + 0,5 / 8 ; его характеристики: высота = 1 , носитель = 3 ; 4 ; 5 ; 6 ; 7 ; 8 , точки перехода = 3 ; 8 , ядро = 5 ; 6 , граница = 3 ; 4 ; 7 ; 8 .

Нечеткое множество A , определенное на универсальном множестве X , называется выпуклым , если μ A x ≥ min μ A a ; μ A b ; a < x < b ; x , a , b ∈ X (рис.2.3).

Рис.2.3. Функции принадлежности выпуклого и невыпуклого нечетких множеств

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ И ЛИНГВИСТИЧЕСКИХ ПЕРЕМЕННЫХ

1. Понятие и основные характеристики нечеткого множества

Определение 1.1. ПустьX – универсальное множество.Нечетким множеством A на множествеX (нечетким подмножествомA множестваX ) называется совокупность пар

A = {<μ A (x ),x >}, (1.1)

где x X ,μ A (x ) .X называетсяобластью определения нечеткого множестваA , аμ A –функцией принадлежности этого множества. Значение функции принадлежностиμ A (x ) для конкретного элементаx X называетсястепенью принадлежности этого элемента нечеткому множествуA .

Интерпретацией функции принадлежности является субъективная мера того, насколько элемент x X соответствует понятию, смысл которого формализуется нечетким множествомA . При этом значение, равное 1, означает полное (абсолютное) соответствие, значение, равное 0 – полное (абсолютное) несоответствие.

Определение 1.2. Нечеткие множества с дискретной областью определения называютдискретными нечеткими множествами , не-

четкие множества с непрерывной областью определения – непрерыв-

ными нечеткими множествами.

Обычные (четкие) множества можно также рассматривать в нечетком контексте. Функция принадлежности обычного множества может принимать только два значения: 0, если элемент не принадлежит множеству, и 1, если элемент ему принадлежит.

В литературе можно встретить различные формы записи нечетких множеств. Для дискретной области определения X ={x 1 ,x 2 , …,x n } (возможен также случайn = ∞) существуют следующие формы:

A = {, , …, };

A = {μ A (x 1 )/x 1 ,μ A (x 2 )/x 2 , …,μ A (x n )/x n };

A =μ A (x 1 )/x 1 +μ A (x 2 )/x 2 +…+μ A (x n )/x n =∑ μ A (x j ) /x j .

j = 1

где знак интеграла имеет смысл поточечного объединения наX . Кроме того, как для дискретного, так и для непрерывного случаев применяется обобщенная форма записи:

B = {x x ≈ 2} – множество вещественных чисел,приблизительно равных 2, иC = {x x >> 1} – множество вещественных чисел,на-

много бóльших 1. Возможные формы функций принадлежности этих множеств схематически представлены на рис.1.1 и рис.1.2 соответственно.

Рис. 1.1. Функция принадлежности

Рис. 1.2. Функция принадлежности

нечеткого множества чисел,

нечеткого множества чисел,

приблизительно равных 2

намного бóльших 1

В качестве примера дискретного нечеткого множества можно рассмотреть D = {n n ≈ 1} – множество целых чисел,близких к 1,

возможная форма задания которого следующая:

N = {0.2/-3; 0.4/-2; 0.6/-1; 0.8/0; 1/1; 0.8/2; 0.6/3; 0.4/4; 0.2/5} (остальные точки имеют нулевую степень принадлежности).

Конкретный вид функции принадлежности зависит от смысла, вкладываемого в формализуемое понятие в условиях конкретной задачи, и часто имеет субъективную природу. Большинство методов построения функций принадлежности в той или иной мере основано на обработке информации, получаемой экспертным путем.

Примечание 1. Здесь sup (супремум) – точная верхняя грань функции принадлежности. Если множествоX (область определения) является замкнутым, то супремум функции совпадает с ее максимумом.

Определение 1.5. Еслиh A = 1, то нечеткое множествоA называ-

ется нормальным, иначе (hA < 1) – субнормальным.

Определение 1.6. Носителем нечеткого множестваA называется множество

элементы области определения, хоть в какой-то степени соответствующие формализуемому понятию.

Примечание 2. Не следует путать обозначения sup и Supp. Первое является сокращением отsupremum , второе – отsupport .

Определение 1.7. Множеством уровняα (α -срезом) нечеткого

Ядро нечеткого множества, тем самым, содержит все элементы области определения, полностью соответствующие формализуемому понятию.

откуда следует, что элемент, принадлежащий множеству уровня α , принадлежит также всем множествам меньших уровнейβ ≤α .

Определение 1.9. ПустьA иB – нечеткие множества на множествеX с функциями принадлежностиμ A иμ B соответственно. Гово-

рят, что Aявляется нечетким подмножеством B(B включает в себя

A ), если выполнено следующее условие:

Среди нечетких множеств с числовой областью определения выделяют также класс нечетких чисел инечетких интервалов . Для определения этого класса вводится понятие выпуклости нечетких множеств.

Определение 1.11. Нечеткое подмножествоA вещественной оси называетсявыпуклым , если выполняется следующее условие:

На рис. 1.3 показаны примеры выпуклого (слева) и невыпуклого (справа) нечетких множеств.

Рис. 1.3. К определению выпуклости нечеткого множества

Основные понятия теории нечетких множеств

Определение 1.12. Нечетким интерваломназывается выпуклое нормальное нечеткое множество на числовой области определения, имеющее непрерывную функцию принадлежности и непустое ядро. Нечетким числомназывается нечеткий интервал, ядро которого содержит в точности один элемент.

Для нечетких интервалов и чисел существует теорема представления, согласно которой нечеткое подмножество A вещественной оси является нечетким интервалом тогда и только тогда, когда его функция принадлежности представима в виде:

LA (x), a0 ≤ x< a1 ,

1, a1 ≤ x≤ b1

(x )=

(x), b< u≤ b

Функции L A иR A называются соответственно левой и правой ветвью функции принадлежности нечеткого числа. Эти функции непрерывны, при этомL A на отрезке возрастает отL A (a 0 ) = 0 до

L A (a 1 ) = 1, аR A на отрезке убывает отR A (b 1 ) = 1 доR A (b 0 ) = 0 (рис. 1.4).

Рис. 1.4. К определению нечеткого интервала

Определение 1.13. ПустьA = {A 1 ,A 2 ,… ,A n } – семейство нечетких множеств, заданных на области определенияX .Ã называетсянечетким разбиением X с параметромα (0 <α ≤ 1), если все множестваA j являются выпуклыми и нормальными, и выполняется условие:

x X j {1,… ,n }μ A j (x )≥ α

(т.е. любой элемент области определения принадлежит хотя бы одному из множеств семейства Ã со степенью, не меньшейα – рис. 1.5).

При помощи нечетких множеств можно формально определить неточные и многозначные понятия, такие как «высокая температура», «молодой человек», «средний рост» либо «большой город». Перед формулированием определения нечеткого множества необходимо задать так называемую область рассуждений (universe of discourse). В случае неоднозначного понятия «много денег» большой будет признаваться одна сумма, если мы ограничимся диапазоном и совсем другая - в диапазоне . Область рассуждений, называемая в дальнейшем пространством или множеством, будет чаще всего обозначаться символом . Необходимо помнить, что - четкое множество.

Определение 3.1

Нечетким множеством в некотором (непустом) пространстве , что обозначается как , называется множество пар

Функция принадлежности нечеткого множества . Эта функция приписывает каждому элементу степень его принадлежности к нечеткому множеству , при этом можно выделить три случая:

1) означает полную принадлежность элемента к нечеткому множеству , т.е. ;

2) означает отсутствие принадлежности элемента к нечеткому множеству , т.е.;

3) означает частичную принадлежность элемента к нечеткому множеству .

В литературе применяется символьное описание нечетких множеств. Если - это пространство с конечным количеством элементов, т.е. , то нечеткое множество записывается в виде

Приведенная запись имеет символьный характер. Знак «–» не означает деления, а означает приписывание конкретным элементам степеней принадлежности . Другими словами, запись

означает пару

Точно также знак «+» в выражении (3.3) не означает операцию сложения, а интерпретируется как множественное суммирование элементов (3.5). Следует отметить, что подобным образом можно записывать и четкие множества. Например, множество школьных оценок можно символически представить как

что равнозначно записи

Если - это пространство с бесконечным количеством элементов, то нечеткое множество символически записывается в виде

Пример 3.1

Допустим, что - множество натуральных чисел. Определим понятие множества натуральных чисел, «близких числу 7». Это можно сделать определением следующего нечеткого множества :

Пример 3.2

Если , где - множество действительных чисел, то множество действительных чисел, «близких числу 7», можно определить функцией принадлежности вида

Поэтому нечеткое множество действительных чисел, «близких числу 7», описывается выражением

Замечание 3.1

Нечеткие множества натуральных или действительных чисел, «близких числу 7», можно записать различными способами. Например, функцию принадлежности (3.10) можно заменить выражением

На рис. 3.1а и 3.1б представлены две функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Рис. 3.1. Иллюстрация к примеру 3.2: функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Пример 3.3

Формализуем неточное определение «подходящая температура для купания в Балтийском море». Зададим область рассуждений в виде множества . Отдыхающий I, лучше всего чувствующий себя при температуре 21°, определил бы для себя нечеткое множество

Отдыхающий II, предпочитающий температуру 20°, предложил бы другое определение этого множества:

С помощью нечетких множеств и мы формализовали неточное определение понятия «подходящая температура для купания в Балтийском море». В некоторых приложениях используются стандартные формы функций принадлежности. Конкретизируем эти функции и рассмотрим их графические интерпретации.

1. Функция принадлежности класса (рис. 3.2) определяется как

где . Функция принадлежности, относящаяся к этому классу, имеет графическое представление (рис. 3.2), напоминающее букву «», причем ее форма зависит от подбора параметров , и . В точке функция принадлежности класса принимает значение, равное 0,5.

2. Функция принадлежности класса (рис. 3.3) определяется через функцию принадлежности класса :

Рис. 3.2. Функция принадлежности класса .

Рис. 3.3. Функция принадлежности класса .

Функция принадлежности класса принимает нулевые значения для и . В точках ее значение равно 0,5.

3. Функция принадлежности класса (рис. 3.4) задается выражением

Читатель с легкостью заметит аналогию между формами функций принадлежности классов и .

4. Функция принадлежности класса (рис. 3.5) определяется в виде

Рис. 3.4. Функция принадлежности класса .

Рис. 3.5. Функция принадлежности класса .

В некоторых приложениях функция принадлежности класса может быть альтернативной по отношению к функции класса .

5. Функция принадлежности класса (рис. 3.6) определяется выражением

Пример 3.4

Рассмотрим три неточных формулировки:

1) «малая скорость автомобиля»;

2) «средняя скорость автомобиля»;

3) «большая скорость автомобиля».

В качестве области рассуждений примем диапазон , где - это максимальная скорость. На рис. 3.7 представлены нечеткие множества , и , соответствующие приведенным формулировкам. Обратим внимание, что функция принадлежности множества имеет тип , множества - тип , а множества - тип . В фиксированной точке км/час функция принадлежности нечеткого множества «малая скорость автомобиля» принимает значение 0,5, т.е. . Такое же значение принимает функция принадлежности нечеткого множества «средняя скорость автомобиля», т.е. , тогда как .

Пример 3.5

На рис. 3.8 показана функция принадлежности нечеткого множества «большие деньги». Это функция класса , причем , , .

Рис. 3.6. Функция принадлежности класса .

Рис. 3.7. Иллюстрация к примеру 3.4: функции принадлежности нечетких множеств «малая» , «средняя» , «большая» скорость автомобиля.

Рис. 3.8. Иллюстрация к примеру 3.5: Функция принадлежности нечеткого множества «большие деньги».

Следовательно, суммы, превышающие 10000 руб, можно совершенно определенно считать «большими», поскольку значения функции принадлежности при этом становятся равными 1. Суммы, меньшие чем 1000 руб, не относятся к «большим», так как соответствующие им значения функции принадлежности равны 0. Конечно, такое определение нечеткого множества «большие деньги» имеет субъективный характер. Читатель может иметь собственное представление о неоднозначном понятии «большие деньги». Это представление будет отражаться иными значениями параметров и функции класса .

Определение 3.2

Множество элементов пространства , для которых , называется носителем нечеткого множества и обозначается (support). Формальная его запись имеет вид

Определение 3.3

Высота нечеткого множества обозначается и определяется как

Пример 3.6

Определение 3.4

Нечеткое множество называется нормальным тогда и только тогда, когда . Если нечеткое множество не является нормальным, то его можно нормализовать при помощи преобразования

где - высота этого множества.

Пример 3.7

Нечеткое множество

после нормализации принимает вид

Определение 3.5

Нечеткое множество называется пустым и обозначается тогда и только тогда, когда для каждого .

Определение 3.6

Нечеткое множество содержится в нечетком множестве , что записывается как , тогда и только тогда, когда

для каждого .

Пример включения (содержания) нечеткого множества в нечетком множестве иллюстрируется на рис. 3.9. В литературе встречается также понятие степени включения нечетких множеств. Степень включения нечеткого множества в нечеткое множество на рис. 3.9 равна 1 (полное включение). Нечеткие множества, представленные на рис. 3.10, не удовлетворяют зависимости (3.27), следовательно, включение в смысле определения (3.6) отсутствует. Однако нечеткое множество содержится в нечетком множестве в степени

Выполняется условие

Рис. 3.12. Нечеткое выпуклое множество.

Рис. 3.13. Нечеткое вогнутое множество.

Рис. 3.13 иллюстрирует нечеткое вогнутое множество. Легко проверить, что нечеткое множество является выпуклым (вогнутым) тогда и только тогда, когда являются выпуклыми (вогнутыми) все его -разрезы.

Нечеткое множество - это множество пар , где x принимает некоторое информативное значение, а m(x) отображает x в единичный отрезок, принимая значения от 0 до 1. При этом m(x) представляет собой степень принадлежности x к чему-либо (0 - не принадлежит, 1 - принадлежит на все 100%).

Так, на пример, можно задать для числа 7 множество:

<0/1>,<0.4/3>,<1/7> Это множество говорит о том, что 7 - это на 0% единица, на 40% тройка и на 100% семерка.

Нечеткая переменная определяется как .

A - наименование переменной,

X={x} - область определения переменной, набор возможных значений x,

Ca={} - нечеткое множество, описывающее ограничения на возможные значения переменной A (семантику).

Пример: <"Семь",{1,3,7},{<0/1>,<0.4/3>,<1/7>}>. Этой записью мы определили соответствия между словом и некоторыми цифрами. Причем, как в названии переменной, так и в значениях x можно было использовать любые записи, несущие какую-либо информацию.

Лингвистическая переменная определяется как .

B - наименование переменной.

T - множество её значений (базовое терм-множество), состоит из наименований нечетких переменных, областью определения каждой из которых является множество X.

G - синтаксическая процедура (грамматика), позволяющая оперировать элементами терм-множества T, в частности - генерировать новые осмысленные термы. T`=T U G(T) задает расширенное терм-множество (U - знак объединения).

M - семантическая процедура, позволяющая приписать каждому новому значению лингвистической переменной нечеткую семантику, путем формирования нового нечеткого множества.

Нечеткое множество (или нечеткое число), описывает некотоpые понятия в фyнкциональном виде, т. е. такие понятия как "пpимеpно pавно 5", "скоpость чyть больше 300 км/ч" и т. д., как видно эти понятия невозможно пpедставить одним числом, хотя в pеальности люди очень часто пользyются ими.

Hечеткая пеpеменная это тоже самое, что и нечеткое число, только с добавлением имени, котоpым фоpмализyется понятие описуемое этим числом.

Лингвистическая пеpеменная это множество нечетких пеpеменных, она использyется для того чтобы дать словесное описание некотоpомy нечеткомy числy, полyченномy в pезyльтате некотоpых опеpаций. Т. е. пyтем некотоpых опеpаций подбиpается ближайшее по значению из лингвистической пеpеменной.

Хочy дать несколько советов для твоей пpоги. Hечеткие числа лyчше хpанить как отсоpтиpованное множество паp (соpтиpyется по носителям), за счет этого можно yскоpить выполнения всех логических и математических опеpаций. Когда pеализyешь аpифметические опеpации, то нyжно yчитывать погpешность вычислений, т. е. 2/4 <> 1/2 для компьютеpа, когда я с этим столкнyлся, мне пpишлось несколько yсложнить сpавнение паp, а сpавнений пpиходится делать много. Hосители в нечетких числах должны быть кpатными какому-нибуть числy, иначе pезyльтаты аpиф. опеpаций бyдyт "некpасивыми", т. е. pезyльтат бyдет неточным, особенно это видно пpи yмножении.

За счет хpанения нечетких чисел в отсоpтиpованном виде, я добился того что аpифметические опеpации y меня выполняются по почти линейной зависимости (во вpемени), т. е. пpи yвеличении количества паpа, скоpость вычислений падала линейно. Я пpидyмал и pеализовал точные аpиф. опеpации пpи котоpых не имеет значение кол-во и кpатность носителей, pезyльтат всегда бyдет точным и "кpасивым", т. е. если пеpвоначальные числа были похожи на пеpевеpнyтyю параболу, то и pезyльтат бyдет похожим, а пpи обычных опеpациях он полyчается стyпенчатым. Я так же ввел понятие "обpатные нечеткие числа" (хотя не до конца pеализовал), для чего они нyжны? Как ты знаешь пpи вычитании или делении число из котоpого вычитается дpyгое должно быть шиpе, а это большая пpоблема пpи pешении сложных ypавнений, вот "обpатные нечеткие числа" позволяют это делать.

Базовые операции над нечеткими множествами.

ОБЪЕДИНЕНИЕ: создается новое множество из элементов исходных множеств, причем для одинаковых элементов принадлежность берется максимальной.

A U B = {} Maub(x) = max {Ma(x), Mb(x)} ПЕРЕСЕЧЕНИЕ: создается новое множество из одинаковых элементов исходных множеств, принадлежность которых берется минимальной. A П B = {} Maпb(x) = min {Ma(x), Mb(x)} ДОПОЛНЕНИЕ: инвертируется принадлежность каждого элемента. C = ~A = {} Mc(x) = 1-Ma(x) СТЕПЕНЬ: принадлежность каждого элемента возводится в степень. CON - концентрация, степень=2 (уменьшает степень нечеткости) DIN - растяжение, степень=1/2 (увеличивает степень нечеткости) РАЗНОСТЬ: новое множество состоит из одинаковых элементов исходных множеств. A - B = {} Ma-b(x) = Ma(x)-Mb(a), если Ma(x)>Mb(x) иначе 0 НОСИТЕЛЬ: состоит из элементов исходного множества, принадлежности которых больше нуля. Supp(A) = {x|x?X /\ Ma(x)>0} УМНОЖЕНИЕ НА ЧИСЛО: принадлежности элементов домножаются на число. q*A = {} СУПРЕМУМ: Sup - точная верхняя грань (максимальное значение принадлежности, присутствующее в множестве).

НОРМАЛИЗАЦИЯ: нечеткое множество нормально если супремум множества равен единице. Для нормализации перечитывают принадлежности элементов:

M"a(x) = Ma(x)/(Sup Ma(x)) АЛЬФА-СРЕЗ: множество альфа уровня - те элементы исходного множества, принадлежность которых выше или равна заданного порога. Порог, равный 1/2, называют точкой перехода. Aq = {x|x?X /\ Ma(x)>q} НЕЧЕТКОЕ ВКЛЮЧЕНИЕ: степень включения нечеткого множества V(A1,A2) = (Ma1(x0)->Ma2(x0))&(Ma1(x1)->Ma2(x1))&.. По Лукасевичу: Ma1(x)->Ma2(x) = 1&(1-Ma1(x)+Ma2(x)) По Заде: Ma1(x)->Ma2(x) = (1-Ma1(x)) \/ Ma2(x) НЕЧЕТКОЕ РАВЕНСТВО: степень нечеткого равенства R(A1,A2) = V(A1,A2) & V(A2,A1)

Словарь

АДАПТАЦИЯ - Любое изменение в структуре или функции организма, которое позволяет ему выживать во внешней среде.

АЛЛЕЛИ - Возможные значения генов.

ГА - Генетический алгоритм. Интеллектуальное исследование произвольного поиска. . Представлен Holland 1975.

ГА МОДЕЛЬ ОСТРОВА (IMGA) - Популяция ГА разделена в несколько подсовокупностей, каждая из которых беспорядочно инициализирована и выполняет независимый последовательный ГА на собственной подпопуляции. Иногда, пригодные ветви решений мигрируют между подсовокупностями. [Например. Levine 1994].

ГЕНЫ - Переменные в хромосоме.

ГЕНЕТИЧЕСКИЙ ДРЕЙФ - Члены популяции сходятся к некоторой отметке пространства решения вне оптимума из-за накопления стохастических ошибок.

ГЕНОТИП - Фактическая структура. Кодированная хромосома.

ГП - Генетическое программирование. Прикладные программы использующие принципы эволюционной адаптации к конструкции процедурного кода.

ДИПЛОИД - В каждом участке хромосомы имеется пара генов. Это позволяет сохраняться долгосрочной памяти.

КГА - Компактный ГА (CGA). В CGA, две или больше совокупности ген постоянно взаимодействуют и взаимно развиваются.

КРОССИНГОВЕР - Обмен отрезками хромосом родителей. В диапазоне от 75 до 95% появляются самые лучшие особи.

ЛОКУС - Позиция гена в хромосоме.

МУТАЦИЯ - Произвольная модификация хромосомы.

СИНАПС - Вход нейрона.

СХЕМА (шемма) - Подмножество подобных хромосом, содержащих модель значений гена.

СХОДИМОСТЬ - Прогрессия к увеличивающейся однородности. Ген, как считают, сходится когда 95% популяции имеет то же самое значение .

УНС - Унифицированная нейронная сеть.

ФИТНЕС-ФУНКЦИЯ - Значение являющееся целевым функциональным значением решения. Оно также называется функцией оценки или функцией цели в проблемах оптимизации.

ФЕНОТИП - Физическое выражение структуры. Декодированный набор ген.

ХРОМОСОМА - Составляющий вектор, строка, или решение.

  • Д. -Э. Бэстенс, В. .М. Ван Ден Берг, Д. Вуд. .Hейронные сети и финансовые рынки.., Москва, научное издательство.ТВП., 1997.
  • Галушкин А. И. .Hейрокомпьютеры и их применение. Книга 1. Теория нейронных сетей.. Москва, Издательское предприятие редакции журнала.Радиотехника.,2000.
  • Тейво Кохонен, Гвидо Дебок.Анализ финансовых данных с помощью самоорганизующихся карт., Москва, издательский дом.Альпина., 2001.
  • Ф. Уоссерман. .Hейрокомпьютерная техника., Москва, издательство.Мир., 1992.
  • Шумский C. A. .Hейрокомпьютинг и его применение в экономике и бизнесе., Москва, издательство МИФИ, 1998.
  • А. И. Змитрович Интеллектуальные информационные системы. - Минск.: HТООО "Тетра Системс", 1997. - 368с.
  • В. В. Корнеев, А. Ф. Гарев, С. В. Васютин, В. В. Райх Базы данных. Интеллектуальная обработка информации. - М.: "Hолидж", 2000. - 352с.