Обратно пропорциональные величины. "Обратно пропорциональные величины" в книгах


Если две величины связаны между собой так, что при увеличении (уменьшении ) значения одной из них в несколько раз значение второй уменьшается (увеличивается ) во столько же раз, то такие величины называются обратно пропорциональными.

В жизни встречается много таких величин.


Скорость и время при одинаковой длине пути .

Если скорость уменьшается, то время увеличивается, а если скорость увеличивается, то время уменьшается.


Количество рабочих и время при определении объёма работ .

При выполнении одной и той же работы, чем меньше работников, тем больше нужно времени, чтобы выполнить эту работу и наоборот.


Длина и ширина прямоугольника при постоянной площади прямоугольника .

Если площадь прямоугольника постоянна, то при увеличении длины, ширина уменьшается и наоборот.


ПРИМЕР:


Если на 15 руб, нужно купить несколько килограммов конфет, то количество конфет будет зависеть от цены одного килограмма. Чем выше цена, тем меньше можно купить на эти деньги товара. Это видно из таблицы.

С повышением в несколько раз цены конфет уменьшается во столько же раз число килограммов конфет, которое можно купить на 15 руб. В этом случае две величины (вес товара и его цена ) обратно пропорциональны .


ПРИМЕР:


Если расстояние между двумя городами 1200 км, то оно может быть пройдено в различное время в зависимости от скорости передвижения. Существуют разные способы передвижения : пешком, на лошади, на велосипеде, на пароходе, в автомобиле, на поезде, на самолёте. Чем меньше скорость, тем больше нужно времени для передвижения. Это видно из таблицы.


С увеличением скорости в несколько раз время передвижения уменьшается во столько же раз. Значит, при данных условиях скорость и время – величины обратно пропорциональные.


Свойство обратно пропорциональных величин.


Если две величины обратно пропорциональны, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

Возьмём пример, который мы рассматривали ранее. Там мы имели дело с двумя величинами – скоростью движения и временем. Если мы будем рассматривать по таблице значения этих величин слева направо, то увидим, что значения первой величины (скорости) возрастают, а значения второй (времени) убывают, причём скорость увеличивается во столько же раз, во сколько раз уменьшается время . Нетрудно сообразить, что если написать отношение каких-нибудь значений одной величины, то оно не будет равно отношению соответствующих значений другой величины. В самом деле, если мы возьмём отношение четвертого значения верхней величины к седьмому значению (40: 80) , то оно не будет равно отношению четвертого и седьмого значений нижней величины (30: 15) . Это можно написать так:

40: 80 не равно 30: 15 , или 40: 80 ≠ 30: 15 .

Но если вместо одного из этих отношений взять обратное, то получится равенство, т. е. из этих отношений можно будет составить пропорцию.


ПРИМЕР:

80: 40 = 30: 15

40: 80 = 15: 30.


Формула обратной пропорциональности.


Для данной пары обратно пропорциональных величин произведение любого значения одной величины на соответствующее значение другой величины есть число постоянное (т. е. не изменяющееся ).

Принимая во внимание всё сказанное, легко вывести формулу обратной пропорциональности. Обозначим некоторое значение одной величины буквой х , а соответствующее значение другой величины – буквой у . Тогда на основании изложенного произведение х на у должно быть равно некоторой постоянной величине, которую обозначим буквой К , т. е.:


х × у = К.

В этом равенстве х – множимое, у – множитель и К – произведение. По свойству умножения множитель равен произведению, делённому на множимое. Значит:

ЗАДАЧА:


Автор одного сочинения рассчитал, что если его книга будет иметь обычный формат, то в ней будет 96 станиц, если же карманный формат, то в ней окажется 300 страниц. Он испробовал разные варианты, начал с 96 страниц и тогда у него на странице получилось 2500 букв. Сколько будет букв на странице, если в книжке будет 100 страниц ?

Во всей книге 240000 букв, так как :

2500 × 96 = 240000.


Принимая это во внимание, воспользуемся формулой обратной пропорциональности (у – число букв на странице, х – число страниц ),

К = 240000 ,

следовательно,

Итак, на странице 2400 букв.

Подобно этому узнаем, что если в книге будет 120 страниц, то число букв на странице будет :

§ 129. Предварительные разъяснения.

Человек постоянно имеет дело с самыми разнообразными величинами. Служащий и рабочий стараются к определённому времени попасть на службу, на работу, пешеход спешит дойти до известного места кратчайшим путём, истопник парового отопления беспокоится о том, что температура в котле медленно поднимается, хозяйственник строит планы снижения стоимости продукции и т. д.

Таких примеров можно было бы привести сколько угодно. Время, расстояние, температура, стоимость - всё это разнообразные величины. В первой и во второй частях настоящей книги мы ознакомились с некоторыми особенно часто встречающимися величинами: площадью, объёмом, весом. Со многими величинами мы встречаемся при изучении физики и других наук.

Представьте себе, что вы едете в поезде. Время от времени вы смотрите на часы и замечаете, как долго вы уже находитесь в пути. Вы говорите, например, что со времени отправления вашего поезда прошло 2, 3, 5, 10, 15 часов и т. д. Эти числа обозначают различные промежутки времени; они называются значениями этой величины (времени). Или вы смотрите в окно и следите по дорожным столбам за расстоянием, которое проходит ваш поезд. Перед вами мелькают числа 110, 111, 112, 113, 114 км. Эти числа обозначают различные расстояния, которые прошёл поезд от места отправления. Они тоже называются значениями, на этот раз другой величины (пути или расстояния между двумя пунктами). Таким образом, одна величина, например время, расстояние, температура, может принимать сколько угодно различных значений.

Обратите внимание на то, что человек почти никогда не рассматривает только одну величину, а всегда с в я з ы в а е т её с какими-нибудь другими величинами. Ему приходится одновременно иметь дело с двумя, тремя и большим числом величин. Представьте себе, что вам нужно к 9 часам попасть в школу. Вы смотрите на часы и видите, что в вашем распоряжении 20 минут. Тогда вы быстро соображаете, стоит ли вам садиться в трамвай или вы успеете дойти до школы пешком. Подумав, вы решаете идти пешком. Заметьте, что в то время, когда вы думали, вы решали некоторую задачу. Эта задача стала простой и привычной, так как вы решаете такие задачи каждый день. В ней вы быстро сопоставили несколько величин. Именно вы посмотрели на часы, значит, учли время, затем вы мысленно представили себе р а с с т о я н и е от вашего дома до школы; наконец, вы сравнили две величины: скорость вашего шага и скорость трамвая, и сделали вывод, что за данное время (20 мин.) вы успеете дойти пешком. Из этого простого примера вы видите, что в нашей практике некоторые величины связаны между собой, т. е. зависят друг от друга

В главе двенадцатой было рассказано об отношении однородных величин. Например, если один отрезок равен 12 м, а другой 4 м, то отношение этих отрезков будет 12: 4.

Мы говорили, что это есть отношение двух однородных величин. Можно сказать иначе, что это есть отношение двух чисел одного наименования.

Теперь, когда мы больше познакомились с величинами и ввели понятие значения величины, можно по-новому высказать определение отношения. В самом деле, когда мы рассматривали два отрезка 12 м и 4 м, то мы говорили об одной величине - длине, а 12 м и 4 м - это были только два разных значения этой величины.

Поэтому в дальнейшем, когда мы станем говорить об отношении, то будем рассматривать при этом два значения одной какой-нибудь величины, а отношением одного значения величины к другому значению той же величины будем называть частное от деления первого значения на второе.

§ 130. Величины прямо пропорциональные.

Рассмотрим задачу, в условие которой входят две величины: расстояние и время.

Задача 1. Тело, движущееся прямолинейно и равномерно, проходит в каждую секунду 12 см. Определить путь, пройденный телом в 2, 3, 4, ..., 10 секунд.

Составим таблицу, по которой можно было бы следить за изменением времени и расстояния.

Таблица даёт нам возможность сопоставить эти два ряда значений. Мы видим из неё, что когда значения первой величины (времени) постепенно увеличиваются в 2, 3, ..., 10 раз, то и значения второй величины (расстояния) тоже увеличиваются в 2, 3,..., 10 раз. Таким образом, при увеличении значений одной величины в несколько раз значения другой величины увеличиваются во столько же раз, а при уменьшении значений одной величины в несколько раз значения другой величины уменьшаются во столько же раз.

Рассмотрим теперь задачу, в которую входят две такие величины: количество материи и стоимость её.

Задача 2. 15 м ткани стоят 120 руб. Вычислить стоимость этой ткани для нескольких других количеств метров, указанных в таблице.

По этой таблице мы можем проследить, каким образом постепенно возрастает стоимость товара в зависимости от увеличения его количества. Несмотря на то что в этой задаче фигурируют совсем другие величины (в первой задаче - время и расстояние, а здесь - количество товара и его стоимость), тем не менее в поведении этих величин можно обнаружить большое сходство.

В самом деле, в верхней строке таблицы идут числа, обозначающие число метров ткани, под каждым из них написано число, выражающее стоимость соответствующего количества товара. Даже при беглом взгляде на эту таблицу видно, что числа и в верхнем и в нижнем ряду возрастают ; при более же внимательном рассмотрении таблицы и при сравнении отдельных столбцов обнаруживается, что во всех случаях значения второй величины возрастают во столько же раз, во сколько возрастают значения первой, т. е. если значение первой величины возросло, положим, в 10 раз, то и значение второй величины увеличилось тоже в 10 раз.

Если мы станем просматривать таблицу справа налево , то обнаружим, что указанные значения величин будут уменьшаться в одинаковое число раз. В этом смысле между первой задачей и второй имеется безусловное сходство.

Пары величин, с которыми мы встретились в первой и второй задачах, называются прямо пропорциональными.

Таким образом, если две величины связаны между собой так, что с увеличением (уменьшением) значения одной из них в несколько раз значение другой увеличивается (уменьшается) во столько же раз, то такие величины называются прямо пропорциональными.

О таких величинах говорят также, что они связаны между собой прямо пропорциональной зависимостью.

В природе и в окружающей нас жизни встречается множество подобных величин. Приведём примеры:

1. Время работы (день, два дня, три дня и т. д.) и заработок , полученный за это время при подённой оплате труда.

2. Объём какого-нибудь предмета, сделанного из однородного материала, и вес этого предмета.

§ 131. Свойство прямо пропорциональных величин.

Возьмём задачу, в которую входят следующие две величины: рабочее время и заработок. Если ежедневный заработок 20 руб., то заработок за 2 дня будет 40 руб., и т. д. Удобнее всего составить таблицу, в которой определённому числу дней будет соответствовать определённый заработок.

Рассматривая эту таблицу, мы видим, что обе величины приняли 10 различных значений. Каждому значению первой величины соответствует определённое значение второй величины, например 2 дням соответствуют 40 руб.; 5 дням соответствуют 100 руб. В таблице эти числа написаны одно под другим.

Мы уже знаем, что если две величины прямо пропорциональны, то каждая из них в процессе своего изменения увеличивается во столько же раз, во сколько раз увеличивается и другая. Отсюда сразу следует: если мы возьмём отношение каких-нибудь двух значений первой величины, то оно будет равно отношению двух соответствующих значений второй величины. В самом деле:

Почему это происходит? А потому, что эти величины прямо пропорциональны, т. е. когда одна из них (время) увеличилась в 3 раза, то и другая (заработок) увеличилась в 3 раза.

Мы пришли, следовательно, к такому выводу: если взять два каких-нибудь значения первой величины и разделить их одно на другое, а потом разделить одно на другое соответствующие им значения второй величины, то в обоих случаях получится одно и то же число, т. е. одно и то же отношение. Значит, два отношения, которые мы выше написали, можно соединить знаком равенства, т. е.

Нет сомнения в том, что если бы мы взяли не эти отношения, а другие и не в том порядке, а в обратном, то также получили бы равенство отношений. В самом деле, будем рассматривать значения наших величин слева направо и возьмём третьи и девятые значения:

60:180 = 1 / 3 .

Значит, мы можем написать:

Отсюда вытекает такой вывод: если две величины прямо пропорциональны, то отношение двух произвольно взятых значений первой величины равно отношению двух соответствующих значений второй величины.

§ 132. Формула прямой пропорциональности.

Составим таблицу стоимости различных количеств конфет, если 1 кг их стоит 10,4 руб.

Теперь поступим таким образом. Возьмём любое число второй строки и разделим его на соответствующее число первой строки. Например:

Вы видите, что в частном всё время получается одно и то же число. Следовательно, для данной пары прямо пропорциональных величин частное от деления любого значения одной величины на соответствующее значение другой величины есть число постоянное (т. е. не изменяющееся). В нашем примере это частное равно 10,4. Это постоянное число называется коэффициентом пропорциональности. В данном случае оно выражает цену единицы измерения, т. е. одного килограмма товара.

Как найти или вычислить коэффициент пропорциональности? Чтобы это сделать, нужно взять любое значение одной величины и разделить его на соответствующее значение другой.

Обозначим это произвольное значение одной величины буквой у , а соответствующее значение другой величины - буквой х , тогда коэффициент пропорциональности (обозначим его К ) найдём посредством деления:

В этом равенстве у - делимое, х - делитель и К - частное, а так как по свойству деления делимое равно делителю, умноженному на частное, то можно написать:

y = Kx

Полученное равенство называется формулой прямой пропорциональности. Пользуясь этой формулой, мы можем вычислить сколько угодно значений одной из прямо пропорциональных величин, если знаем соответствующие значения другой величины и коэффициент пропорциональности.

Пример. Из физики мы знаем, что вес Р какого-либо тела равен его удельному весу d , умноженному на объём этого тела V , т. е. Р = d V .

Возьмём пять железных болванок различного объёма; зная удельный вес железа (7,8), можем вычислить веса этих болванок по формуле:

Р = 7,8 V .

Сравнивая эту формулу с формулой у = Кх , видим, что у = Р , х = V , а коэффициент пропорциональности К = 7,8. Формула та же, только буквы другие.

Пользуясь этой формулой, составим таблицу: пусть объем 1-й болванки равен 8 куб. см, тогда вес её равен 7,8 8 = 62,4 (г). Объём 2-й болванки 27 куб. см. Её вес равен 7,8 27 = 210,6 (г). Таблица будет иметь такой вид:

Вычислите сами числа, недостающие в этой таблице, пользуясь формулой Р = d V .

§ 133. Другие способы решения задач с прямо пропорциональными величинами.

В предыдущем параграфе мы решили задачу, в условие которой входили прямо пропорциональные величины. Для этой цели мы предварительно вывели формулу прямой пропорциональности и потом эту формулу применяли. Теперь мы покажем два других способа решения подобных задач.

Составим задачу по числовым данным, приведённым в таблице предыдущего параграфа.

Задача. Болванка объёмом 8 куб. см весит 62,4 г. Сколько будет весить болванка объёмом 64 куб. см?

Решение. Вес железа, как известно, пропорционален его объёму. Если 8 куб. см весят 62,4 г, то 1 куб. см будет весить в 8 раз меньше, т. е.

62,4: 8 = 7,8 (г).

Болванка объёмом 64 куб. см будет весить в 64 раза больше, чем болванка в 1 куб. см, т. е.

7,8 64 = 499,2(г).

Мы решили нашу задачу способом приведения к единице. Смысл этого названия оправдывается тем, что для её решения нам пришлось в первом вопросе найти вес единицы объёма.

2. Способ пропорции. Решим эту же задачу способом пропорции.

Так как вес железа и его объём - величины прямо пропорциональные, то отношение двух значений одной величины (объёма) равно отношению двух соответствующих значений другой величины (веса), т. е.

(буквой Р мы обозначили неизвестный вес болванки). Отсюда:

(г).

Задача решена способом пропорций. Это значит, что для её решения была составлена пропорция из чисел, входящих в условие.

§ 134. Величины обратно пропорциональные.

Рассмотрим следующую задачу: «Пять каменщиков могут сложить кирпичные стены дома в 168 дней. Определить, во сколько дней могли бы выполнить ту же работу 10, 8, 6 и т. д. каменщиков».

Если 5 каменщиков сложили стены дома за 168 дней, то (при одинаковой производительности труда) 10 каменщиков могли бы выполнить это вдвое скорее, так как в среднем 10 человек выполняют работу в два раза большую, чем 5 человек.

Составим таблицу, по которой можно было бы следить за изменением числа рабочих и рабочего времени.

Например, чтобы узнать, сколько дней потребуется 6 рабочим, надо сначала вычислить, сколько дней требуется одному рабочему (168 5 = 840), а затем - шести рабочим (840: 6 = 140). Рассматривая эту таблицу, мы видим, что обе величины приняли шесть различных значений. Каждому значению первой величины соответствует определённее; значение второй величины, например 10-ти соответствует 84, числу 8 - число 105 и т. д.

Если мы будем рассматривать значения обеих величин слева направо, то увидим, что значения верхней величины возрастают , a значения нижней убывают . Возрастание и убывание подчинено следующему закону: значения числа рабочих увеличиваются во столько же раз, во сколько раз уменьшаются значения затраченного рабочего времени. Ещё проще эту мысль можно выразить так: чем б о л ь ш е занято в каком-либо деле рабочих, тем меньше им нужно времени для выполнения определённой работы. Две величины, с которыми мы встретились в этой задаче, называются обратно пропорциональными.

Таким образом, если две величины связаны между собой так, что с увеличением (уменьшением) значения одной из них в несколько раз значение другой уменьшается (увеличивается) во столько же раз, то такие величины называются обратно пропорциональными.

В жизни встречается много подобных величин. Приведём примеры.

1. Если на 150 руб. нужно купить несколько килограммов конфет, то количество конфет будет зависеть от ц е н ы одного килограмма. Чем выше цена, тем меньше можно купить на эти деньги товара; это видно из таблицы:

С повышением в несколько раз цены конфет уменьшается во столько же раз число килограммов конфет, какое можно купить на 150 руб. В этом случае две величины (вес товара и его цена) обратно пропорциональны.

2. Если расстояние между двумя городами 1 200 км, то оно может быть пройдено в различное время в зависимости от скорости передвижения. Существуют разные способы передвижения: пешком, на лошади, на велосипеде, на пароходе, в автомобиле, поездом, на самолёте. Чем меньше скорость , тем больше нужно времени для передвижения. Это видно из таблицы:

С увеличением скорости в несколько раз время передвижения уменьшается во столько же раз. Значит, при данных условиях скорость и время - величины обратно пропорциональные.

§ 135. Свойство обратно пропорциональных величин.

Возьмём второй пример, который мы рассматривали в предыдущем параграфе. Там мы имели дело с двумя величинами - скоростью движения и временем. Если мы будем рассматривать по таблице значения этих величин слева направо, то увидим, что значения первой величины (скорости) возрастают, а значения второй (времени) убывают, причём скорость увеличивается во столько же раз, во сколько раз уменьшается время. Нетрудно сообразить, что если написать отношение каких-нибудь значений одной величины, то оно не будет равно отношению соответствующих значений другой величины. В самом деле, если мы возьмём отношение четвёртого значения верхней величины к седьмому значению (40: 80), то оно не будет равно отношению четвёртого и седьмого значений нижней величины (30: 15). Это можно написать так:

40: 80 не равно 30: 15, или 40: 80 =/= 30: 15.

Но если вместо одного из этих отношений взять обратное, то получится равенство, т. е. из этих отношений можно будет составить пропорцию. Например:

80: 40 = 30: 15,

40: 80 = 15: 30."

На основании изложенного мы можем сделать такой вывод: если две величины обратно пропорциональны, то отношение двух произвольно взятых значений одной величины равно обратному отношению соответствующих значений другой величины.

§ 136. Формула обратной пропорциональности.

Рассмотрим задачу: «Имеется 6 кусков шёлковой ткани разной величины и различных сортов. Стоимость всех кусков одинаковая. В одном куске 100 м ткани ценой по 20 руб. за метр. Сколько метров в каждом из остальных пяти кусков, если метр ткани в эгих кусках соответственно стоит 25, 40, 50, 80, 100 руб.?» Для решения этой задачи составим таблицу:

Нам нужно заполнить пустые клетки в верхней строке этой таблицы. Попробуем сначала определить, сколько метров во втором куске. Это можно сделать следующим образом. Из условия задачи известно, что стоимость всех кусков одинаковая. Стоимость первого куска определить легко: в нём 100 м и каждый метр стоит 20 руб., значит, в первом куске шёлка на 2 000 руб. Так как во втором куске шёлка на столько же рублей, то, разделив 2 000 руб. на цену одного метра, т. е. на 25, мы найдём величину второго куска: 2 000: 25 = 80 (м). Таким же образом мы найдём величину всех остальных кусков. Таблица примет вид:

Нетрудно видеть, что между числом метров и ценой существует обратно пропорциональная зависимость.

Если вы сами проделаете необходимые вычисления, то заметите, что каждый раз вам придётся делить число 2 000 на цену 1 м. Наоборот, если вы теперь начнёте умножать величину куска в метрах на цену 1 м, то всё время будете получать число 2 000. Этого и нужно было ожидать, так как каждый кусок стоит 2 000 руб.

Отсюда можно сделать такой вывод: для данной пары обратно пропорциональных величин произведение любого значения одной величины на соответствующее значение другой величины есть число постоянное (т. е. не изменяющееся).

В нашей задаче это произведение равно 2 000. Проверьте, что и в предыдущей задаче, где говорилось о скорости движения и времени, необходимом для переезда из одного города в другой, существовало также постоянное для той задачи число (1 200).

Принимая во внимание все сказанное, легко вывести формулу обратной пропорциональности. Обозначим некоторое значение одной величины буквой х , а соответствующее значение другой ве личины - буквой у . Тогда на основании изложенного произведение х на у должно быть равно некоторой постоянной величине, которую обозначим буквой К , т. е.

х у = К .

В этом равенстве х - множимое, у - множитель и K - произведение. По свойству умножения множитель равен произведению, делённому на множимое. Значит,

Это и есть формула обратной пропорциональности. Пользуясь ею, мы можем вычислить сколько угодно значений одной из обратно пропорциональных величин, зная значения другой и постоянное число К .

Рассмотрим ещё задачу: «Автор одного сочинения рассчитал, что если его книга будет иметь обычный формат, то в ней будет 96 страниц, если же карманный формат, то в ней окажется 300 страниц. Он испробовал разные варианты, начал с 96 страниц, и тогда у него на странице получилось 2 500 букв. Затем он взял те числа страниц, какие указаны ниже в таблице, и снова вычислил, сколько букв будет на странице».

Попробуем и мы вычислить, сколько будет букв на странице, если в книге будет 100 страниц.

Во всей книге 240 000 букв, так как 2 500 96 = 240 000.

Принимая это во внимание, воспользуемся формулой обратной пропорциональности (у - число букв на странице, х - число страниц):

В нашем примере К = 240 000, следовательно,

Итак, на странице 2 400 букв.

Подобно этому узнаем, что если в книге будет 120 страниц, то число букв на странице будет:

Наша таблица примет вид:

Остальные клетки заполните самостоятельно.

§ 137. Другие способы решения задач с обратно пропорциональными величинами.

В предыдущем параграфе мы решали задачи, в условия которых входили обратно пропорциональные величины. Мы предварительно вывели формулу обратной пропорциональности и потом эту формулу применяли. Теперь мы покажем для таких задач два других способа решения.

1. Способ приведения к единице.

Задача. 5 токарей могут сделать некоторую работу в 16 дней. Во сколько дней могут выполнить эту работу 8 токарей?

Решение. Между числом токарей и рабочим временем существует обратно пропорциональная зависимость. Если 5 токарей делают работу за 16 дней, то одному человеку для этого понадобится в 5 раз больше времени, т. е.

5 токарей выполняют работу в 16 дней,

1 токарь выполнит её в 16 5 = 80 дней.

В задаче спрашивается, во сколько дней выполнят работу 8 токарей. Очевидно, они справятся с работой в 8 раз скорее, чем 1 токарь, т. е. за

80: 8 = 10 (дней).

Это и есть решение задачи способом приведения к единице. Здесь пришлось прежде всего определить время выполнения работы одним рабочим.

2. Способ пропорции. Решим ту же задачу вторым способом.

Так как между числом рабочих и рабочим временем существует обратно пропорциональная зависимость, то можно написать: продолжительность работы 5 токарей новое число токарей (8) продолжительность работы 8 токарей прежнее число токарей (5) Обозначим искомую продолжительность работы буквой х и подставим в пропорцию, выраженную словами, необходимые числа:

Та же самая задача решена способом пропорций. Для её решения нам пришлось составить пропорцию из чисел, входящих в условие задачи.

Примечание. В предыдущих параграфах мы рассмотрели вопрос о прямой и обратной пропорциональности. Природа и жизнь дают нам множество примеров прямой и обратной пропорциональной зависимости величин. Однако нужно заметить, что эти два вида зависимости являются только простейшими. Наряду с ними встречаются иные, более сложные зависимости между величинами. Кроме того, не нужно думать, что если какие-нибудь две величины одновременно возрастают, то между ними обязательно существует прямая пропорциональность. Это далеко не так. Например, плата за проезд по железной дороге возрастает в зависимости от расстояния: чем дальше мы едем, тем больше платим, ко это не значит, что плата пропорциональна расстоянию.

Прямая и обратная пропорциональности

Если t s - пройденный путь (в километрах), и он движется равномерно со скоростью 4 км/ч, то зависимость между этими величинами можно выразить формулой s = 4t . Так как каждому значению I соответствует единственное значение 5, то можно говорить о том, что с помощью формулы s = 4t задана функция. Ее называют прямой пропорциональностью и определяют следующим образом.

Определение. Прямой пропорциональностью называется функция, которая может быть задана при помощи формулы у = kх , где k - не равное нулю действительное число.

Название функции у = kх связано с тем, что в формуле у = kх есть переменные х и у , которые могут быть значениями величин. А если отношение двух величин равно некоторому числу, отличному от нуля, их называют прямо пропорциональными. В нашем случае y /x = k (k ≠ 0). Это число называют коэффициентом пропорциональности .

Функция у = kх является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана выше. Другой пример: если в одном пакете муки 2 кг, а куплено х таких пакетов, то всю массу купленной муки (обозначим ее через у ) можно представить в виде формулы у = 2х , т.е. зависимость между количеством пакетов и всей массой купленной муки является прямой пропорциональностью с коэффициентом k = 2.

Напомним некоторые свойства прямой пропорциональности, ко­торые изучаются в школьном курсе математики.

у = kх и областью ее значений является множество действительных чисел.

2. Графиком прямой пропорциональности является прямая, проходящая через начало координат. Поэтому для построения графика прямой пропорционально­сти достаточно найти лишь одну точку, при­надлежащую ему и не совпадающую с началом координат, а затем через эту точку и начало координат провести прямую.

Например, чтобы построить график функ­ции у = 2х, достаточно иметь точку с коорди­натами (1, 2), а затем через нее и начало коор­динат провести прямую (рис. 89).

3. При k > 0 функция у = kх возрастает на всей области определе­ния; при k < 0 - убывает на всей области определения.

4. Если функция f - прямая пропорциональность и (х 1 ,у 1), (х 2 ,у 2), - x и у, причем x 2 ≠ 0, то x 1 /x 2 = y 1 /y 2

Действительно, если функция f - прямая пропорциональность, то она может быть задана формулой у = kх, и тогда у 1 = kх 1 , у 2 = kх 2 . Так как при х 2 ≠ 0 и k ≠ 0, то у 2 ≠ 0. Поэтому y 1 /y 2 = kx 1 /kx 2 = x 1 /x 2

Если значениями переменных х и у служат положительные дейст­вительные числа, то доказанное свойство прямой пропорционально­сти можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у увеличивается (уменьшается) во столько же раз.

Это свойство присуще только прямой пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рассмат­риваются прямо пропорциональные величины.

Задача 1. За 8 ч токарь изготовил 16 деталей. Сколько часов по­требуется токарю на изготовление 48 деталей, если он будет работать с той же производительностью?

Решение. В задаче рассматриваются величины - время работы токаря, количество сделанных им деталей и производительность (т.е. количество деталей, изготавливаемых токарем за 1 ч), причем послед­няя величина постоянна, а две другие принимают различные значения. Кроме того, количество сделанных деталей и время работы - величи­ны прямо пропорциональные, так как их отношение равно некоторому числу, не равному нулю, а именно - числу деталей, изготавливае­мых токарем за 1 ч. Если количество сделанных деталей обозначить буквой у, время работы х, а производительность - k , то получим, что y/x = k или у = kх, т.е. математической моделью ситуации, представленной в задаче, является прямая пропорциональность.

Решить задачу можно двумя арифметическими способами:

1 способ: 2 способ:

1) 16:8 = 2 (дет.) 1) 48:16 = 3 (раза)

2) 48:2 = 24(ч) 2) 8-3 = 24(ч)

k, он равен 2, а затем, зная, что у = 2х, нашли значение y при условии, что у = 48.

При решении задачи вторым способом мы воспользовались свой­ством прямой пропорциональности: во сколько раз увеличивается количество деталей, сделанных токарем, во столько же раз увеличива­ется и количество времени на их изготовление.

Перейдем теперь к рассмотрению функции, называемой обратной пропорциональностью.

Если t - время движения пешехода (в часах), v - его скорость (в км/ч) и он прошел 12 км, то зависимость между этими величинами можно выразить формулой v · t = 20 или v= 20/t . Так как каждому значению t (t ≠0) соответствует единственное значение скорости v, то можно говорить о том, что с помощью формулы v =20/t задана функция. Ее называют обратной пропорциональностью и определяют следующим образом.

Определение. Обратной пропорциональностью называется функция, которая может быть задана при помощи формулы у = k/x , где k не равное нулю действительное число.

Название данной функции связано с тем, что в у = k/x есть перемен­ные x и у, которые могут быть значениями величин. А если произведе­ние двух величин равно некоторому числу, отличному от нуля, то их называют обратно пропорциональными. В нашем случае xy = k (к ≠ 0). Это число k называют коэффициентом пропорциональности.

Функция у = k/x является математической моделью многих реальных ситуаций, рассматриваемых уже в начальном курсе математики. Одна из них описана перед определением обратной пропорциональ­ности. Другой пример: если купили 12 кг муки и разложили ее в x банок по у кг в каждую, то зависимость между данными величинами можно представить в виде х · у = 12, т.е. она является обратной про­порциональностью с коэффициентом k = 12.

Напомним некоторые свойства обратной пропорциональности, известные из школьного курса математики.

1. Областью определения функции у = k/x и областью ее значений x является множество действительных чисел, отличных от нуля.

2. Графиком обратной пропорциональности является гипербола.

3. При k > 0 ветви гиперболы расположены в 1-й и 3-й четвертях и функция у = k/x является убывающей на всей области определения x (рис. 90). При k < 0 ветви гиперболы расположены во 2-й и 4-й четвертях и функция у = k/x является возрастающей на всей области определения х (рис.91)



4. Если функция f - обратная пропорциональность и (х 1 ,у 1), (х 2 ,у 2) - пары соответственных значений переменных х и у, то x 1 /x 2 = y 1 /y 2 .

Действительно, если функция f - обратная пропорциональность, то она может быть задана формулой у = k/x , и тогда у 1 = k/x 1 , у 2 = k/x 2 . Так как х ≠ 0, х 2 ≠ 0 и k ≠ 0, то y 1 /y 2 = k/x 2: k/x 1 = k ·x 1 / k ·x 2 = x 1 /x 2 .

Если значениями переменных x и у служат положительные дейст­вительные числа, то это свойство обратной пропорциональности можно сформулировать так: с увеличением (уменьшением) значения переменной х в несколько раз соответствующее значение переменной у уменьшается (увеличивается) во столько же раз.

Это свойство присуще только обратной пропорциональности, и им можно пользоваться при решении текстовых задач, в которых рас­сматриваются обратно пропорциональные величины.

Задача 2. Велосипедист, двигаясь со скоростью 10 км/ч, проехал расстояние от А до В за 6 ч. Сколько времени потратит велосипедист на обратный путь, если будет ехать со скоростью 20 км/ч?

Решение. В задаче рассматриваются величины: скорость движе­ния велосипедиста, время движения и расстояние от А до В , причем последняя величина постоянна, а две другие принимают различные значения. Кроме того, скорость и время движения - величины об­ратно пропорциональные, так как их произведение равно некото­рому числу, а именно пройденному расстоянию. Если время движе­ния велосипедиста обозначить буквой у , скорость - х , а расстояние АВ – k , то получим, что ху = k или у = k/x , т.е. математической моделью ситуации, представленной в задаче, является обратная пропор­циональность.

Решить задачу можно двумя способами:

1 способ: 2 способ:

1) 10-6 = 60 (км) 1) 20:10 = 2 (раза)

2)60:20 = 3(ч) 2)6:2 = 3(ч)

Решая задачу первым способом, мы сначала нашли коэффициент пропорциональности k , он равен 60, а затем, зная, что у = 60/x, нашли значение у при условии, что х = 20.

При решении задачи вторым способом мы воспользовались свойст­вом обратной пропорциональности: во сколько раз увеличивается скорость движения, во столько же раз уменьшается время на прохож­дение одного и того же расстояния.

Заметим, что при решении конкретных задач с обратно пропор­циональными или прямо пропорциональными величинами наклады­ваются некоторые ограничения на x и у , в частности, они могут рас­сматриваться не на всем множестве действительных чисел, а на его подмножествах.

Задача 3. Лена купила х карандашей, а Катя в 2 раза больше. Обозначьте число карандашей, купленных Катей, через у , выразите у через х и постройте график установленного соответствия при усло­вии, что х ≤ 5. Является ли это соответствие функцией? Какова ее об­ласть определения и область значений?

Решение. Катя купила у = 2х каранда­шей. При построении графика функции у = 2х необходимо учесть, что переменная х обо­значает количество карандашей и х ≤ 5, значит, она может принимать только зна­чения 0, 1, 2, 3, 4, 5. Это и будет область определения данной функции. Чтобы полу­чить область значений данной функции, надо каждое значение х из области опреде­ления умножить на 2, т.е. это будет множе­ство {0, 2, 4, 6, 8, 10}. Следовательно, гра­фиком функции у = 2х с областью опреде­ления {0, 1, 2, 3, 4, 5} будет множество то­чек, изображенных на рисунке 92. Все эти точки принадлежат прямой у = 2х.

Упражнения

1. Известно, что функция f является прямой пропорциональ­ностью, задана на множестве X = {1, 2, 3, 4, 5, 6} и при х, равном 3, значение функции равно 12.

а) Задайте функцию f

б) Какие свойства функции f

в) Какие из названных свойств вы будете использовать, решая задачу: «В 3 пакета разложили поровну 12 кг муки. Сколько кило­граммов муки можно разложить в 6 таких пакетов?»

2. Известно, что функция f является обратной пропорционально­стью, задана на множестве X = {1, 2, 3, 5, 6, 10, 15, 30} и при х, рав­ном 5, значение функции f равно 6.

а) Задайте функцию f при помощи формулы и таблицы; постройте ее график.

б) Какие свойства функции f можно проиллюстрировать при по­мощи таблицы и графика?

в) Какие из названных свойств вы будете использовать, решая за­дачу: «Муку разложили в 10 пакетов по 3 кг в каждый. Сколько полу­чилось бы пакетов, если бы в каждый положили по 6 кг муки?»

3. Покажите, что зависимость между величинами, о которых идет речь в нижеприведенной задаче, может быть выражена формулой у = kх.

Из 24 м ткани сшили 8 одинаковых платьев. Сколько потребуется ткани на 16 таких же платьев?

4. Учитель, проводя с детьми анализ задачи (см. упр. 3), спрашива­ет: «Если на 8 платьев израсходовали 24 м ткани, то на 16 платьев израсходуют больше или меньше ткани?» Дети отвечают, что больше, так как 16 больше 8.

О каком свойстве и какой функции в этом случае идет речь?

5. Задайте при помощи формулы соответствие, которое рассматри­вается в задании:

а) Запиши несколько примеров на деление с результатом 10.

б) Составь все возможные примеры на сложение однозначных чи­сел с ответом 10.

Установите, являются ли эти соответствия функциями.

Одна сторона прямоугольника 3 см, а другая - х см. Какова площадь см 2) этого прямоугольника? Постройте график полученно­го соответствия при условии, что х ≤ 6. Докажите, что это соответст­вие - функция.

Площадь прямоугольника с основанием х см равна 12 см 2 . Како­ва высота см) этого прямоугольника?

Покажите, что соответствие между значениями переменных x и у является функцией и постройте ее график при условии, что 1 ≤ х ≤ 12.

Учащимся дано задание заполнить таблицу

b
24:b

Задает ли эта таблица функцию? Какую? Какое свойство этой функ­ции можно проиллюстрировать при помощи данной таблицы?

9. Обоснуйте, используя определения прямой или обратной пропорциональности и их свойства, решение различными арифметиче­скими способами следующих задач:

а) С участка собрали 6 мешков картофеля по 40 кг в каждом. Этот картофель разложили в ящики по 20 кг в каждый. Сколько ящиков потребовалось?

б) Из куска ткани длиной 24 м сшили 8 одинаковых костюмов. Сколько потребуется ткани на 32 таких же костюма?

10. Какие вспомогательные модели можно использовать на этапе поиска плана решения задач из упражнения 9, если рассматривать их в начальной школе, т.е. при условии, что дети не знают ни прямой, ни обратной пропорциональности?

11. Какие из нижеприведенных задач можно решить в начальной школе двумя способами:

а) Велосипедист ехал со скоростью 12 км/ч и был в пути 2 ч. Сколько времени потребуется пешеходу, чтобы пройти это расстояние со ско­ростью 4 км/ч?

б) Из 100 кг свеклы при переработке получается 16 кг сахара. Сколько килограммов сахара получится из 3 т свеклы?

в) Два опытных участка имеют одинаковую площадь. Ширина первого участка 30 м, ширина второго - 40 м. Найдите длину первого участка, если известно, что длина второго участка равна 75 м.

46. Основные выводы § 9

Рассмотрев материал данного параграфа, мы уточнили наши зна­ния о таких понятиях, как:

Числовая функция;

Область определения функции;

Область значений функции;

График функции;

Прямая пропорциональность;

Обратная пропорциональность.

Вспомнили, что числовую функцию можно задать с помощью формулы (она представляет собой уравнение с двумя переменными), графика на координатной плоскости, таблицы.

Выяснили, что функции могут обладать свойством монотонности, т. е. возрастать или убывать на некотором промежутке.

Особо выделили свойства, присущие только прямой и обратной пропорциональности, поскольку их можно использовать при обуче­нии младших школьников решению задач с пропорциональными величинами.

две величины, связанные между собой так, что с увеличением (уменьшением) одной величины в несколько раз другая уменьшается (увеличивается) во столько же раз. О. п. в. х и у связаны соотношением ху = k (то есть х = и у = , где k постоянно).

  • - см. Пропорциональная избирательная система...

    Большой юридический словарь

  • - ....

    Энциклопедический словарь экономики и права

  • - I система организации представительства, которая в результате дает представительное собрание, по возможности точно соответствующее настроению всех групп избирателей, и которая, следовательно, признает права...
  • - См. Satiropoulos, "Système proportionnel des élections" ; E. Kl öti, "Die Proportionalwahl in der Schweiz" ; E. Смирнов, " П. выборы ", во 2-м томе сборника под его ред.: " Государственный строй и политические партии в Европе " ...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Химия...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Соли, Химия...

    Энциклопедический словарь Брокгауза и Евфрона

  • - две величины, связанные между собой так, что с увеличением одной величины в несколько раз другая уменьшается во столько же раз. О. п. в. х и у связаны соотношением ху = k ...

    Большая Советская энциклопедия

  • - см. Пропорциональность...

    Большой энциклопедический словарь

  • - обра́тно нар., употр. очень часто 1. Если вы идете, едете, возвращаетесь и т. п. , значит, туда, откуда вы раньше ушли, уехали, или назад, в противоположном направлении. Дойдя до угла, он повернул...

    Толковый словарь Дмитриева

  • - нареч...

    Орфографический словарь русского языка

  • - ОБРА́ТНО, нареч. 1. Назад; в обратном направлении. Пошел обратно. Получить обратно деньги. 2. Противоположно, наоборот. Все нравоучения на него действовали обратно. «Россиянину легко понять горюхинца и обратно...

    Толковый словарь Ушакова

  • - обра́тно I нареч. обстоят. места 1. В обратном направлении; назад. 2. На прежнее место. II нареч. качеств.-обстоят. разг. В противовес чему-либо; наоборот...

    Толковый словарь Ефремовой

  • - обр"атно, нареч...

    Русский орфографический словарь

  • - Величины, имеющие между собою одинаковое отношение...
  • - Линии, имеющие общую единицу...

    Словарь иностранных слов русского языка

  • - см.: мама дорогая!.....

    Словарь русского арго

"Обратно пропорциональные величины" в книгах

Определение величины стресса

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Определение величины стресса В литературе, в том числе и научной, часто встречаются выражения типа «сильный стресс», «умеренный стресс», «устойчивость к стрессу», «стресс-реактивность», «стресс-сенситивность», «стресс-резистентность» и т. п. Подобные выражения содержат

ПРОПОРЦИОНАЛЬНЫЕ СЧЕТЧИКИ

Из книги Атомная энергия для военных целей автора Смит Генри Деволф

ПРОПОРЦИОНАЛЬНЫЕ СЧЕТЧИКИ Хотя с помощью ионизационной камеры и можно отмечать отдельные?-частицы, гораздо удобнее заставить возникающие первоначально ионы производить другие ионы в той же области электрического поля; от усилительного контура при этих условиях

Величины

Из книги Энциклопедический словарь (В) автора Брокгауз Ф. А.

Величины Величины и количества, о которых приходится говорить в науках физикоматематических и естественных, весьма разнообразны. Таковы В. длин, поверхностей, объемов, углов, кривизн и радиусов кривизны, скоростей, ускорений, количеств движений, масс, сил, моментов сил и

Безразмерные величины

Из книги Большая Советская Энциклопедия (БЕ) автора БСЭ

Несоизмеримые величины

Из книги Большая Советская Энциклопедия (НЕ) автора БСЭ

Обратно пропорциональные величины

Из книги Большая Советская Энциклопедия (ОБ) автора БСЭ

Световые величины

Из книги Большая Советская Энциклопедия (СВ) автора БСЭ

Фотометрические величины

Из книги Большая Советская Энциклопедия (ФО) автора БСЭ

Средние величины

Из книги Большая Советская Энциклопедия (СР) автора БСЭ

Относительные величины

Из книги Большая Советская Энциклопедия (ОТ) автора БСЭ

Величины отклонений

Из книги Модели управления персоналом автора Померанцева Евгения

Величины отклонений Величина отклонения определяется путем соотнесения агрегированной оценки исходного показателя (в баллах) с остальными агрегированными оценками показателей по наиболее актуальным вопросам для каждой конкретной организации.Исходным показателем

Восприятие величины

Из книги Основы общей психологии автора Рубинштейн Сергей Леонидович

Восприятие величины Воспринимаемая величина предметов зависит от их угловой величины и расстояния, с которого они наблюдаются. Зная величину предмета, мы по его угловой величине определяем расстояние, на котором он находится; обратно, зная, на каком он расстоянии, мы по

В БАРСЕЛОНУ И ОБРАТНО В БАРСЕЛОНУ И ОБРАТНО Из Каталонии с любовью Cергей Загатин 17.10.2012

Из книги Газета Завтра 984 (41 2012) автора Завтра Газета

Величины Меньшова

Из книги Литературная Газета 6427 (№ 33-34 2013) автора Литературная Газета

Величины Меньшова В цикле "Монолог в четырёх частях" канал «Культура» представил одну из самых таинственных персон советского русского кинематографа. Категория «таинственности» использована вовсе не потому, что хочется в экспозиции заметки захватить внимание

Величины и шкалы

Из книги автора

Величины и шкалы В этом разделе мы в значительной мере следуем увлекательному изложению этой темы в книге Б.Г.Артемьева и Ю.Е.Лукашова «Справочное пособие для специалистов метрологических служб».Шкалы - это способ упорядочивания значений. Причем значения мы понимаем