Переменные величины. Переменные и постоянные величины. Постоянные и переменные величины

Объектом исследования в курсе математического анализа являются различные величины, исследуются возможности описания с помощью этих величин реально происходящих явлений или процессов.

Величины могут быть переменными и постоянными , то есть меняющимися, или не меняющимися в процессе исследования. Эти заключения являются условными, покажем это на примере. Координаты нашего города, конечно, являются постоянными величинами, по их значениям легко находится местоположение города на карте. Однако, это утверждение является истинным только для находящихся на Земле. Если наблюдать за местоположением нашего города с космической станции, его координаты будут меняться с вращением Земли. Изучая земные дела, мы уверенно можем считать эти величины постоянными.

Переменные величины могут быть независимыми и зависимыми , меняющимися в зависимости от каких-то других величин. Эти понятия также условны. К примеру, время меняется независимо от чего либо, и его следует считать переменной величиной. Однако, с позиций общей теории относительности Эйнштейна это совсем не так.

Если рассмотреть уравнение окружности , в нем участвует две переменные величины и . Одной из них можно придавать в некоторой области любые значения, другая находится из приведенного уравнения. Следовательно, одну из них можно считать независимой, другую - зависимой переменной. При этом независимой переменной может считаться любая из них, тогда вторая будет зависимой.

Для работы с величинами необходимо задать множество , то есть совокупность значений, которые могут принимать эти величины в процессе их использования. В школе вас знакомили с несколькими множествами. Рассмотрим только некоторые из них.

Пусть множество является множеством натуральных чисел, это множество содержит бесконечное количество элементов, обозначение показывает, что элемент принадлежит множеству натуральных чисел.

Обозначим - множество действительных (вещественных) чисел, тогда множество является подмножеством множества , то есть полностью расположено на множестве и является его частью. Обозначение .

Множество всех действительных чисел обычно располагается на некоторой оси, называемой вещественной (числовой) осью. Каждому числу множества соответствует точка на оси.

Для краткой записи используются следующие обозначения:

– «для любого», «для всякого»,

– «существует», «найдется»,

– «следует»,

– «равносильно»,

– «ставится в соответствие»,

: – «имеет место».

Например, выражение

читается «для всякого x из A имеет место ».

Функция. Способы ее задания

Вернемся к независимым и зависимым переменным. Независимую переменную часто называют аргументом, зависимую – функцией.

Из разнообразных способов поведения переменных величин наиболее важен тот, при котором переменная величина стремится к некоторому пределу. В этом случае значения, принимаемые переменной величиной х , становятся сколь угодно близкими к некоторому постоянному числу a - пределу этой переменной величины. Говорят, что переменная величина стремится, неограниченно приближается к постоянному числу а (своему пределу). Дадим более подробно соответствующее определение.

Переменная величина х стремится к пределу a (a - постоянное число), если абсолютная величина разности между х и а становится в процессе изменения переменной величины сколь угодно малой..

То же самое определение можно сказать и другими словами.

Определение. Постоянное число а называется пределом переменной величины х, если - абсолютная величина разности между х и а становится в процессе изменения переменной величины х сколь угодно малой.

Тот факт, что число а , является пределом переменной величины, записывается следующим образом:

( - первые буквы слова limes - предел) или х -> a

Уточним, что следует понимать под словами "величина становится сколь угодно малой", имеющимися вопределении предела. Зададимся произвольным положительным числом , тогда, если, начиная с некоторого момента в изменении переменной величины х, значения сделаются, и будут становиться меньше, чем это .

Переменная величина стремится к пределу , если для любого положительного . начиная с некоторого момента в изменении переменной , выполняется неравенство .

Определение предела имеет простой геометрический смысл: неравенство означает, что находится в -окрестности точки , т.е. в интервале (рис. 26). Таким образом, определение предела в геометрической форме: число является пределом переменной величины , если для любой (произвольно малой) -окрестности точки можно указать такой момент в изменении переменной начиная с которого все ее значения
попадают в указанную -окрестность точки a.

Необходимо представлять себе процесс приближения к пределу в динамике. Взяли некоторую - окрестность точки a ; начиная с некоторого момента в изменении , все значения попадают в эту окрестность. Теперь возьмем более тесную - окрестность точки a ; начиная с некоторого (более отдаленного в сравнении с первым) момента в изменении , все ее значения попадут в - окрестность точки а и т.д. (рис. 1).


Введя определение предела переменной величины, мы постарались его подробно обсудить и расшифровать. Однако в этом определении осталась нераскрытой одна, весьма существенная, деталь; что следует понимать под словами "начиная с некоторого момента в изменении переменной величины "? Это ясно тогда, когда процесс изменения переменной протекает во времени: начиная с некоторого момента (времени). Но не всегда мы имеем дело с переменными величинами, изменение которых протекает во времени. Как же быть в этих случаях? Выход состоит в расшифровке этого места в общем определении предела переменной специфическим образом для каждого типа переменных величин: по-своему для последовательностей, по-своему для функций и т.д.

Предел последовательности. Прежде всего необходимо вспомнить определение последовательности: если все значения, принимаемые переменной величиной х , можно занумеровать помощью всевозможных натуральных чисел х } ,х 2 ,...х п,..., причем значение с большим номером принимается после значения с меньшим номером, то говорят, что переменная х пробегает последовательность значений х х,х 2 ,...х п... ; или просто, что имеется последовательность (числовая последовательность).

Определение. Числовой последовательностью называется действительная функция натурального аргумента, т. е. функция, у которой = N и ЕÌR.

Она обозначается символом , где , или короче, . Число , зависящее от n, называется nым членом последовательности. Расставив значения последовательности по порядку номеров, получаем, что последовательность можно отождествить со счётным набором действительных чисел, т. е.

Примеры:

а) Последовательность является постоянной и состоит из равных чисел (единиц): ;

б) . Для неё

г) .

Для последовательностей содержащееся в общем определении предела переменной высказывание "начиная с некоторого момента в изменении " должно означать - "начиная с некоторого номера", так как члены с большими номерами следуют (по определению последовательности) за членом с меньшим номером. Итак, мы получаем следующее определение предела последовательности:

Определение. Число а называется пределом последовательности , если для любого числа найдётся число , что все числа , у которых , удовлетворяют неравенству .

Соответствующее обозначение

Неравенство можно также записывать в виде или . В этих записях подчеркнуто, что величина х п становится сколь угодно мало отличимой от a , когда номер члена неограниченно возрастает. Геометрически определение предела последовательности означает следующее: для сколь угодно малой -окрестности числа а найдется такой номер N, что все члены последовательности с большими, чем N , номерами попадают в эту окрестность, вне окрестности оказывается лишь конечное число начальных членов последовательности (рис. 2). Это все или некоторые из членов .


x 1 x 2 x N +1 a x N +2 x N x 3

Число в нашем определении зависит от : N = N() . Как говорилось ранее, определение предела следует понимать в развитии, вдинамике, в движении: если мы возьмем другое, меньшее значение для , например то найдется, вообще говоря, другой номер N x > N, такой, что неравенство , выполняется при всех .

Будем записывать определение предела с помощью логических символов (кванторов). Определение предела последовательности с помощью кванторов выглядит так.

Переменные и постоянные величины – это не совсем просто

Школьная математика всегда убеждала и продолжает убеждать нас в том, что вопрос о переменных и постоянных величинах решается очень просто. Переменными считаются величины, которые в условиях данной задачи могут принимать различные значения. Постоянными считаются величины, которые в условиях данной задачи свои значения не меняют.

При этом дополнительно сообщается, что деление величин на переменные и постоянные достаточно условно и зависит от обстоятельств, сопровождающих процесс решения задачи . Одна и та же величина, которая в одних условиях считалась постоянной, в других условиях должна рассматриваться как переменная. Классический пример: сопротивление проводника считается постоянным, пока мы не оказываемся вынужденными учитывать зависимость величины его сопротивления от температуры окружающей среды.

Но, как показывает практика, всего вышеуказанного для корректного решения той или иной задачи бывает недостаточно.

Что такое величина, каждому ясно интуитивно. Уточним это понятие.

В общем случае содержанием процесса решения задачи есть преобразование величин. При этом следует понимать, что в общефилософском смысле величина, представляющая результат решения задачи, уже содержится в её формулировке в неявном виде. Нужно только правильно построить процесс преобразования величин задачи, чтобы этот результат представить явно.

Определение

Будем называть величиной любой математический объект, который несет (или может нести) информацию о том или ином значении.

Форма представления величин может быть различной. Например, величина с числовым значением, равным действительной единице, может быть представлена десятичной констант ой 1,0, функцией Cos(0), а также арифметическим выражением 25,0 – 15,0 – 9,0.

Значения величин можно менять. Так, в результате выполнения действия x = 1,0 величина в форме переменной x оказывается носителем значения действительной единицы. При этом предыдущее значение переменной x теряется. Приведённые примеры уже несколько с иных позиций показывают, что величины могут быть переменными и постоянными.

Определение

Переменные величины обладают тем свойством, что их значения могут быть изменены в результате выполнения тех или иных действий. И это значит, что понятие “переменная величина” отражает возможность, но не факт изменения.

Постоянной величиной (константой) следует считать ту, значение которой, в отличие от переменной, изменить принципиально невозможно.

Например, значение постоянной величины в виде выражения 12+3 равно 15, и изменить его нельзя. При этом необходимо фиксировать смысл знаков, с помощью которых представляется величина. В противном случае, если считать, например, знаки этого выражения цифрами в системе счисления с основанием 5, то тогда его значение окажется равным 10.

Определение

Итак, в математических текстах носителями значений, то есть величинами, являются переменные, константы, обращения к функциям (или просто функции), а также выражения.

Особенности переменных

Обозначения, с которыми связываются определённые значения, в математике называют переменными (термин употребляется как имя существительное).

Например, значение переменной величины x+1 зависит от значения, связанного с обозначением x. Здесь обозначение x используется в качестве переменной. Изменив значение переменной x, мы тем самым изменим и значение переменной величины x+1.

Таким образом, значения переменных величин зависят от значений переменных, которые входят в их состав. Отличительным свойством переменной является то, что конкретное её значение должно быть ей просто приписано (назначено).

Математический подход, определяющий возможность вычисления значений переменных, в данном контексте оказывается неправильным. В математике можно вычислять только значения выражений.

Основное условие использования переменной в математических текстах в окончательном виде таково: для обращения к переменной достаточно указать её обозначение.

Особенности констант

В математических текстах могут быть использованы две разновидности констант: константы-лексемы и именованные константы.

Кстати, программисты на языках высокого уровня, пользуются этим на вполне формальных (законных) основаниях.

С помощью констант-лексем значения постоянных величин указываются непосредственно без выполнения каких-либо операций. Например, для получения значения постоянной величины 12+3, которая является выражением, необходимо выполнить сложение двух констант-лексем 12 и 3.

Определение

Именованная константа представляет собой обозначение, сопоставленное конкретному значению, указанному в виде константы-лексемы.

Такой приём широко используется в естественных науках из соображений удобства записи физических, химических, математических и иных формул. Например: g = 9,81523 – ускорение свободного падения на широте Москвы; π = 3,1415926 – число $π$.

Помимо компактной записи выражений, именованные константы обеспечивают наглядность и значительные удобства в работе с математическими текстами.

Своё значение именованная константа приобретает как результат предварительной договорённости.

Важное свойство любой именованной константы состоит в том, что её значение не рекомендуется менять в пределах некоторого математического текста.

Выражения

Выражения являются составными частями подавляющего большинства математических текстов. С помощью выражений задают порядок вычисления новых значений на основании других заранее известных значений.

В общем случае в составе выражений используют операнды, знаки операций и регулирующие круглые (квадратные, фигурные) скобки.

Определение

Операнды – это общее название объектов, значения которых используют при выполнении операций. Операндами могут быть переменные, константы и функции. Кстати, этот термин весьма популярен в среде программистов. Фрагмент выражения, заключённый в регулирующие скобки, рассматривается как отдельный составной операнд.

Знак операции символизирует вполне определённую совокупность действий, которые должны быть выполнены над соответствующими операндами. Регулирующие скобки устанавливают нужный порядок выполнения операций, который может отличаться от предусмотренного приоритетом операций.

Простейшим случаем выражения является отдельный операнд. В таком выражении нет знаков операций.

Операнд-функция имеет свои особенности. Как правило, такой операнд представляет собой наименование (или знак) функции с последующим указанием в круглых скобках перечня её аргументов. В данном случае круглые скобки являются неотъемлемой принадлежностью функций и к регулирующим не относятся. Отметим, что во многих случаях в операндах-функциях обходятся без скобок (например, 5! – вычисление факториала целого числа 5).

Математические операции

Основные особенности математических операций таковы:

  • знаки операций могут быть указаны с помощью специальных символов, а также с помощью специально оговоренных слов;
  • операции могут быть унарными (выполняемыми над одним операндом) и бинарными (выполняемыми над двумя операндами);
  • для операций установлены четыре уровня приоритетов, определяющих порядок вычисления выражения.

Правила вычисления сложного выражения, содержащего цепочку операций при отсутствии регулирующих скобок, следующие:

  1. cначала вычисляются значения всех функций;
  2. затем поочерёдно выполняются операции в порядке убывания их приоритета;
  3. операции равного приоритета выполняются по порядку слева направо.

При наличии регулирующих скобок выражение содержит составные операнды, значения которых должны быть вычислены в первую очередь.

Некоторые особенности записи математических выражений:

  • не рекомендуется пропускать знаки операций, хотя во многих случаях можно пропустить знак умножения;
  • аргументы функций желательно указываться в круглых скобках;
  • указание подряд двух и более знаков бинарных операций недопустимо; формально допустимо использование нескольких знаков унарных операций подряд, в том числе и вместе с бинарной.

То избавьтесь и от него, возведя обе части тождества в , равную показателю корня. Для примера, приведенного выше, это действие должно выразиться в преобразовании к такому виду: 36*Y² = X. Иногда операцию этого шага удобнее произвести до действия из шага предыдущего.

Преобразуйте выражение таким образом, чтобы все члены тождества, содержащие нужную переменную , оказались в левой части равенства. Например, если формула имеет вид 36*Y-X*Y+5=X и вас интересует переменная X, достаточно будет поменять местами левую и правую половины тождества. А если выразить нужно Y, то формула в результате этого действия должна приобрести вид 36*Y-X*Y=X-5.

Упростите выражение в левой части формулы так, чтобы искомая переменная стала одним из . Например, для формулы из предыдущего шага это можно сделать так: Y*(36-X)=X-5.

Разделите выражения по обе знака равенства на сомножители интересующей вас переменной. В результате в левой части тождества должна остаться только эта переменная. Использованный выше после этого шага приобрел бы такой вид: Y = (X-5)/(36-X).

Если искомая переменная в результате всех преобразований будет возведена в какую в степень, то избавьтесь от степени извлечением корня из обеих частей формулы . Например, формула из второго шага к этому этапу преобразований должна прибрести вид Y²=X/36. А ее окончательный вид должен стать таким: Y=√X/6.

Переменные

Основным показателем переменной является то, что она записывается , а буквой. Под условным обозначением чаще всего скрывается определенное значение. Переменная получила свое название благодаря тому, что ее значение меняется в зависимости от уравнения. Как правило, любая может быть использована в качестве обозначения для такого элемента. Например, если вы знаете, что у вас есть 5 рублей и вы хотите купить яблоки, которые стоят 35 копеек, конечное количество яблок, которые можно купить, (например «С»).

Пример использования

Если есть переменная, которая была выбрана по вашему усмотрению, необходимо составить алгебраическое уравнение. Оно будет связывать между собой известные и неизвестные величины, а также показывать связь между ними. Это выражение будет включать в себя цифры, переменные и одну алгебраическую операцию. Важно отметить, что выражение будет содержать знак равенства.

Полное уравнение содержит значение выражения в целом. Оно отделено от остального уравнения знаком равенства. В предыдущем примере с яблоками 0.35 или 35 копеек, умноженные на «С», является выражением. Для того чтобы создать полное уравнение, необходимо записать следующее:

Мономиальные выражения

Существуют две основные классификации выражений: одночлены . Мономы являются единичной переменной, числом или произведением переменной и числа. Кроме того, выражение из нескольких переменных или выражений с показателями также является мономом. Например, число 7, переменная х, и произведение 7*x - это моном. Выражения с показателями, в том числе x^2 или 3x^2y^3 также одночлены.

Полиномы

Полиномы являются выражениями, которые включают комбинацию из сложения или вычитания двух или более . Любой тип одночленов, в том числе цифр, отдельных переменных или выражений с числами и неизвестными, могут быть включены в полином. Например, выражение х+7 является многочленом, который складывают вместе моном х и моном 7. 3x^2 - также многочлен. 10x+3xy-2y^2 – многочлена, который сочетает три одночлена с использованием сложения и вычитания.

Зависимые и независимые переменные

В независимыми переменными являются неизвестные, которые определяют другие части уравнения. Они стоят отдельно в выражениях и не изменяются вместе с другими переменными.

Значения зависимых переменных определяются с помощью независимых. Их значения зачастую определяются эмпирически.

Значение переменных в математике велико, ведь за время ее существования ученые успели совершить множество открытий в данной области, и, чтобы кратко и ясно изложить ту или иную теорему, мы пользуемся переменными для записи соответствующих формул. Например, теорема Пифагора о прямоугольном треугольнике: a 2 = b 2 + c 2 . Чем каждый раз при решении задачи писать: по теореме Пифагора - мы записываем это формулой, и все сразу становится понятно.

Итак, в этой статье пойдет речь о том, что такое переменные, об их видах и свойствах. Также будут рассмотрены разные неравенства, формулы, системы и алгоритмы их решения.

Понятие переменной

Для начала узнаем, что такое переменная? Это численная величина, которая может принимать множество значений. Она не может быть постоянной, так как в разных задачах и уравнениях для удобства решения мы принимаем за переменную разные числа, то есть, например, z - это общее обозначение для каждой из величин, за которые ее принимают. Обычно их обозначают буквами латинского или греческого алфавита (x, y, a, b и так далее).

Есть разные виды переменных. Ими задаются как некоторые физические величины - путь (S), время (t), так и просто неизвестные значения в уравнениях, функциях и других выражениях.

Например, есть формула: S = Vt. Здесь переменными обозначаются определенные величины, имеющие отношение к реальному миру - путь, скорость и время.

А есть уравнение вида: 3x - 16 = 12x. Здесь уже за x принимается абстрактное число, которое имеет смысл в данной записи.

Виды величин

Под величиной имеется в виду то, что выражает свойства определенного предмета, вещества или явления. К примеру, температура воздуха, масса животного, процентное содержание витаминов в таблетке - это все величины, числовые значения которых можно вычислить.

Для каждой величины есть свои единицы измерения, которые все вместе образуют систему. Ее называют системой исчисления (СИ).

Что такое переменные и постоянные величины? Рассмотрим их на конкретных примерах.

Возьмем прямолинейное равномерное движение. Точка в пространстве движется с одинаковой скоростью на каждом промежутке времени. То есть изменяются время и расстояние, а скорость остается одинаковой. В данном примере время и расстояние - переменные величины, а скорость - постоянная.

Или, например, “пи”. Это иррациональное число, которое продолжается без повторяющейся последовательности цифр и не может быть записано полностью, поэтому в математике оно выражается общепринятым символом, который принимает только значение данной бесконечной дроби. То есть “пи” - это постоянная величина.

История

История обозначения переменных начинается в семнадцатом веке с ученого Рене Декарта.

Известные величины он обозначил первыми буквами алфавита: a, b и так далее, а для неизвестных предложил использовать последние буквы: x, y, z. Примечательным является то, что такие переменные Декарт считал неотрицательными числами, а при столкновении с отрицательными параметрами ставил знак минус перед переменной или, если было неизвестно, каким по знаку является число, многоточие. Но со временем наименованиями переменных стали обозначать числа любого знака, и началось это с математика Иоганна Худде.

С переменными вычисления в математике решаются проще, ведь как, например, сейчас мы решаем биквадратные уравнения? Вводим переменную. Например:

x 4 + 15x 2 + 7 = 0

За x 2 принимаем некое k, и уравнение приобретает понятный вид:

x 2 = k, при k ≥ 0

k 2 + 15k + 7 = 0

Вот какую пользу в математику несет введение переменных.

Неравенства, примеры решения

Неравенство представляет собой запись, в которой два математических выражения или два числа связаны знаками сравнения: <, >, ≤, ≥. Они бывают строгими и обозначаются знаками < и > или нестрогими со знаками ≤, ≥.

Впервые эти знаки ввел Томас Гарриот. После смерти Томаса вышла его книга с этими обозначениями, математикам они понравились, и со временем их стали повсеместно употреблять в математических вычислениях.

Существует несколько правил, которые нужно соблюдать при решении неравенств с одной переменной:

  1. При переносе числа из одной части неравенства в другую меняем его знак на противоположный.
  2. При умножении или делении частей неравенства на отрицательное число их знаки меняются на противоположные.
  3. Если умножить или разделить обе части неравенства на положительное число, то получится неравенство, равное исходному.

Решить неравенство - значит найти все допустимые значения переменной.

Пример с одной переменной:

10x - 50 > 150

Решаем, как обычное линейное уравнение - переносим слагаемые с переменной влево, без переменной - вправо и приводим подобные члены:

Делим обе части неравенства на 10 и получаем:

Для наглядности в примере решения неравенства с одной переменной изображаем числовую прямую, отмечаем на ней проколотую точку 20, так как неравенство строгое, и данное число не входит в множество его решений.

Решением этого неравенства будет промежуток (20; +∞).

Решение нестрогого неравенства осуществляется так же, как и строгого:

Но есть одно исключение. Запись вида x ≥ 5 нужно понимать так: икс больше или равно пяти, значит число пять входит во множество всех решений неравенства, то есть, записывая ответ, мы ставим квадратную скобку перед числом пять.

Квадратные неравенства

Если взять квадратное уравнение вида ax 2 + bx +c = 0 и изменить в нем знак равно на знак неравенства, то соответственно получим квадратное неравенство.

Чтобы решить квадратное неравенство, надо уметь решать квадратные уравнения.

y = ax 2 + bx + c - это квадратичная функция. Ее мы можем решить с помощью дискриминанта, либо используя теорему Виета. Вспомним, как решаются подобные уравнения:

1) y = x 2 + 12x + 11 - функция является параболой. Ее ветви направлены вверх, так как знак коэффициента "a" положительный.

2) x 2 + 12x + 11 = 0 - приравниваем к нулю и решаем с помощью дискриминанта.

a = 1, b = 12, c = 11

D = b 2 - 4ac= 144 - 44 = 100 > 0, 2 корня

По уравнения получаем:

x 1 = -1, x 2 = -11

Или можно было решить это уравнение по теореме Виета:

x 1 + x 2 = -b/a, x 1 + x 2 = -12

x 1 x 2 = c/a, x 1 x 2 = 11

Методом подбора получаем такие же корни уравнения.

Парабола

Итак, первый способ решения квадратного неравенства - это парабола. Алгоритм ее решения таков:

1. Определяем, куда направлены ветви параболы.

2. Приравниваем функцию к нулю и находим корни уравнения.

3. Строим числовую прямую, отмечаем на ней корни, проводим параболу и находим нужный нам промежуток в зависимости от того, какой у неравенства знак.

Решим неравенство x 2 + x - 12 > 0

Выписываем в виде функции:

1) y = x 2 + x - 12 - парабола, ветви вверх.

Приравниваем к нулю.

x 1 = 3, x 2 = -4

3) Изображаем числовую прямую и на ней точки 3 и -4. Парабола пройдет через них, ветвями вверх и ответом к неравенству будет множество положительных значений, то есть (-∞; -4), (3; +∞).

Метод интервалов

Второй способ - это метод интервалов. Алгоритм его решения:

1. Находим корни уравнения, при которых неравенство равно нулю.

2. Отмечаем их на числовой прямой. Таким образом она делится на несколько интервалов.

3. Определяем знак любого интервала.

4. Расставляем знаки у остальных интервалов, меняя их через один.

Решим неравенство (x - 4)(x - 5)(x + 7) ≤ 0

1) Нули неравенства: 4, 5 и -7.

2) Изображаем их на числовой прямой.

3) Определяем знаки интервалов.

Ответ: (-∞; -7]; .

Решим еще одно неравенство: x 2 (3x - 6)(x + 2)(x - 1) > 0

1. Нули неравенства: 0, 2, -2 и 1.

2. Отмечаем их на числовой прямой.

3. Определяем знаки интервалов.

Прямая делится на промежутки - от -2 до 0, от 0 до 1, от 1 до 2.

Возьмем значение на первом промежутке - (-1). Подставляем в неравенство. При данном значении неравенство становится положительным, значит и знак на этом промежутке будет +.

Неравенство больше нуля, то есть надо найти множество положительных значений на прямой.

Ответ: (-2; 0), (1; 2).

Системы уравнений

Системой уравнений с двумя переменными называют два уравнения, объединенных фигурной скобкой, для которых необходимо найти общее решение.

Системы могут являться равносильными, если общее решение одной из них является решением другой, или они обе не имеют решений.

Мы изучим решение систем уравнений с двумя переменными. Есть два способа их решения - метод подстановки или алгебраический метод.

Алгебраический метод

Чтобы решить систему, изображенную на картинке, данным методом, необходимо сначала помножить одну из ее частей на такое число, чтобы потом иметь возможность взаимно уничтожить одну переменную из обеих частей уравнения. Здесь мы умножаем на три, подводим черту под системой и складываем ее части. В итоге иксы становятся одинаковы по модулю, но противоположны по знаку, и мы их сокращаем. Далее получаем линейное уравнение с одной переменной и решаем его.

Игрек мы нашли, но на этом мы не можем остановиться, ведь мы еще не нашли икс. Подставляем игрек в ту часть, из которой удобно будет вывести икс, например:

X + 5y = 8 , при y = 1

Решаем получившееся уравнение и находим икс.

Главное в решении системы - правильно записать ответ. Многие школьники делают ошибку и пишут:

Ответ: -3, 1.

Но это неверная запись. Ведь, как уже писалось выше, решая систему уравнений, мы ищем общее решение для его частей. Правильным будет ответ:

Метод подстановки

Это, пожалуй, самый простой метод, в котором трудно совершить ошибку. Возьмем систему уравнений номер 1 с этой картинки.

В первой ее части икс уже приведен к нужному нам виду, поэтому нам остается только подставить его в другое уравнение:

5y + 3y - 25 = 47

Переносим число без переменной вправо, приводим подобные слагаемые к общему значению и находим игрек:

Затем, как и в алгебраическом методе, подставляем значение игрека в любое из уравнений и находим икс:

x = 3y - 25, при y = 9