Сила тре ния. Сцепление с поверхностью. Каким бывает трение

Уроки 7–8. Всё о силе трения

С трением мы сталкиваемся на каждом шагу, но без трения мы не сделали бы и шага. Невозможно представить себе мир без сил трения. В отсутствие трения многие кратковременные движения продолжались бы бесконечно. Земля сотрясалась бы от непрерывных землетрясений, т.к. тектонические плиты постоянно сталкивались бы между собой. Все ледники сразу же скатились бы с гор, а по поверхности Земли носилась бы пыль от прошлогоднего ветра. Как хорошо, что всё-таки есть на свете сила трения! С другой стороны, трение между деталями машин приводит к их износу и дополнительным расходам. Приблизительные оценки показывают, что научные исследования в трибологии – науки о трении – могли бы сберечь от 2 до 10% национального валового продукта.

Классический закон трения. Два самых главных изобретения человека – колесо и добывание огня – связаны с силой трения. Изобретение колеса позволило значительно уменьшить силу, препятствующую движению, а добывание огня поставило силу трения на службу человеку. Однако до сих пор учёные далеки от полного понимания физических основ силы трения. И вовсе не оттого, что людей с некоторых пор перестало интересовать это явление. Первая формулировка законов трения принадлежит великому Леонардо (1519 г.), который утверждал, что сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна силе прижатия, направлена против направления движения и не зависит от площади контакта. Этот закон был заново открыт через 180 лет Г.Амонтоном, а затем уточнён в работах Ш.Кулона (1781 г.). Амонтон и Кулон ввели понятие коэффициента трения как отношения силы трения к нагрузке, придав ему значение физической константы, полностью определяющей силу трения для любой пары контактирующих материалов. До сих пор именно эта формула:

где Fтр – сила трения, N – составляющая силы прижатия, нормальная к поверхности контакта, а – коэффициент трения, – является единственной формулой, которую можно найти в учебниках по физике.

В течение двух столетий экспериментально доказанный закон (1) никто не смог опровергнуть и до сих пор он звучит так, как и 200 лет назад:

1. Сила трения прямо пропорциональна нормальной составляющей силы, сжимающей поверхности скользящих тел, и всегда действует в направлении, противоположном направлению движения.

2. Сила трения не зависит от величины поверхности соприкосновения.

3. Сила трения не зависит от скорости скольжения.

4. Сила трения покоя всегда больше силы трения скольжения.

5. Сила трения зависит только от свойств двух материалов, которые скользят друг по другу.

Потираем руки и проверяем основной закон трения. Сила трения – одна из диссипативных сил. Другими словами, вся работа, расходуемая на её преодоление, переходит в тепло. Значения m, приводимые в инженерных справочниках, позволяют оценивать этот нагрев в проектируемых приборах и устройствах (см. таблицу). Ну а мы попробуем найти количество выделяющейся тепловой энергии, когда, разогреваясь, потираем руки или разогреваем с их помощью охлаждённые участки тела.

Пусть мы сжимаем ладони с силой 0,5 Н, и для трения кожи о кожу составляет 0,5. Тогда сила трения, которую мы преодолеваем при скольжении одной ладони по поверхности другой, будет равна 0,25 Н. Если считать, что, разогреваясь, мы за одну секунду совершаем четыре движения ладони, и каждое из них по 0,1 м, то мощность, расходуемая на преодоление силы трения, составляет 0,1 Вт. За 10 с такого разогрева в области контакта ладоней выделится 1 Дж тепловой энергии. Пусть всё тепло идёт на разогрев участка поверхности кожи площадью 0,01 м 2 и толщиной 0,001 м, который имеет массу около 10 –5 кг и удельную теплоёмкость, близкую к теплоёмкости воды (4 кДж/(кг. °С). Значит, наш разогрев приведёт к нагреву этого участка на 25 °С. Видно, что оценка нагрева получилась явно завышенной. Большая часть тепла от разогрева, конечно, уходит в ткани, расположенные под кожей и разносится по телу с кровотоком, но и оставшейся части тепловой энергии оказывается достаточно, чтобы поднять температуру кожи на несколько градусов.

Тормозной путь. Две машины столкнулись на перекрёстке. Повреждения небольшие, т.к. каждый успел почти полностью затормозить перед аварией. Поэтому и виноватым себя считать никто не хочет. Приехавший инспектор решил, что виноват тот, у кого длина тормозного пути – чёрного следа от колёс – больше. Почему?

Пусть машина выезжала на перекрёсток со скоростью , и её водитель, увидев другую машину, стал тормозить, оставив на дороге след длиной L. Если считать, что к моменту столкновения вся кинетическая энергия автомобиля перешла в работу по преодолению силы трения (в тепло), то где m – масса автомобиля, а g – ускорение свободного падения. Откуда следует, что длина тормозного пути пропорциональна квадрату скорости автомобиля. Значит, тот, кто подъезжал к перекрёстку с большей скоростью, имеет и большую длину тормозного пути. Так, например, для = 0,7 длина тормозного пути 30 м соответствует скорости движения 73 км/ч, что на 13 км/ч больше разрешённой скорости движения по улицам города.

А почему все шины чёрные? Все изготовители шин используют один и тот же процесс – вулканизацию жидкой резины, при котором одной из добавок служит угольная пудра. В результате длинные молекулы жидкой резины сшиваются между собой, что превращает её в эластичный и прочный материал. Так как частички угля чёрные и их относительно много (около 25% по весу), то и резина становится чёрной. Чем больше добавлять угольной пудры, состоящей практически из одного углерода, тем более жёсткой, прочной и менее прилипчивой будет резина.

Как нажимать на газ и тормоз, чтобы быстрее разогнаться и остановиться? Некоторые водители, увидев, что на светофоре зажёгся зелёный свет, вдавливают педаль газа до самого пола, пытаясь как можно быстрее набрать максимальную скорость. Свидетели такого старта слышат свист проскальзывающих относительно дороги шин. Со стороны это выглядит, действительно, очень впечатляюще. Но как на самом деле? Неужели, для того чтобы машина приобрела наибольшее ускорение, надо заставлять колёса скользить по дорожному покрытию? Конечно, нет.

Известно, что движущей силой автомобиля служит сила трения его колёс о дорожное покрытие. Если резко нажать на педаль газа, вызвав проскальзывание шин относительно асфальта, то максимальное ускорение будет пропорционально силе трения скольжения, которая всегда меньше максимальной силы трения покоя. Поэтому быстрее ускоряются не те, кто сжигает резину покрышек, а те, кто использует силу трения покоя (т.е. не допускает скольжения) в том диапазоне, где она превышает силу трения скольжения.

Резкое торможение, как и ускорение, может привести к скольжению колёс по дорожному покрытию, а значит, к уменьшению силы, тормозящей автомобиль. Ведь тормозящей силой является тоже сила трения. Поэтому, нажав очень резко на педаль газа и допустив проскальзывание, мы увеличиваем тормозной путь. Чтобы минимизировать тормозной путь, в современных автомобилях устанавливают систему ABS (Antilock Brake System), которая, препятствуя скольжению колёс по дорожному покрытию, трансформирует резкое нажатие на тормоз в последовательность нескольких торможений. Эффективность ABS-торможения особенно высока на мокрых дорогах, когда максимальная сила трения покоя может в несколько раз превышать силу трения скольжения.

Зависимость силы трения, действующей на тело, от силы, которая может привести или приводит к движению тела для сухого и мокрого дорожного покрытия

Для чего нужен рисунок на шинах автомобиля? Если машина въезжает в лужу, а вода не успевает выскочить из-под колеса, то сцепление с дорогой теряется, и колесо может вращаться вокруг оси, не испытывая трения. В этом случае машина теряет движущую силу и становится неуправляемой. Вот почему на покрышках автомобильных шин находятся канавки, помогающие воде выбираться из-под колеса, что помогает резине шин даже в лужах быстро находить контакт с покрытием дороги. Зимой большинство водителей «обувают» свои машины в зимнюю резину. Если ездить на летних покрышках зимой, то узкие канавки быстро забьются снегом, а он, превратившись в лёд, сделает из автомобиля прекрасное средство для неуправляемого скольжения по дорогам. Поэтому покрышки, приспособленные для езды по заснеженным и обледенелым дорогам, имеют широкие канавки и гораздо большую поверхность контакта с дорожным покрытием. Ну а если предстоит ехать по бездорожью, то покрышки должны быть глубоко рифлёными, т.к. грязь, имеющая большую вязкость, просто не пролезет через канавки, когда будет двигаться под весом наезжающего колеса.

Покрышки автомобильных шин, предназначенные для летних (слева),
зимних (в середине) дорог и бездорожья (справа)

Гонки «Формулы-1» – война шин. Каждый пилот гоночного болида хочет иметь хорошее сцепление с дорогой, чтобы обеспечить быстрый старт. Но это значит, что шины его автомобиля должны хорошо прилипать к дорожному покрытию. Ведь только тогда максимальная сила трения покоя будет велика. Но такая прилипчивая шина всегда будет оставлять на дороге след из частичек, прилипших навсегда к дорожному покрытию. Другими словами, износ шин с высоким сцеплением тоже высок. Поэтому на гонках «Формулы-1» средний ресурс шины около 200 км, в то время как у обычных шин он может составлять несколько десятков тысяч километров.

Шины гоночных болидов «Формулы-1» очень широкие и совсем «лысые»

Известно, что автомобильные гонки проходят на лысой резине или шинах с несколькими очень неглубокими канавками. Канавки в шинах гоночных машин не нужны, т.к. они увеличивают сцепление с дорогой только тогда, когда она мокрая. А при мокрой дороге гонки отменяют.

Для производства шин гоночных автомобилей используется специальная липкая резина. Поэтому сила трения этих шин на сухой дороге растёт с увеличением площади контакта, таким образом вступая в противоречие с классическим законом, справедливым для трения твёрдых и неэластичных поверхностей. Чтобы обеспечить максимальную силу трения, шины колёс гоночных автомобилей делают очень широкими (до 0,38 м), что также позволяет лучше рассеивать тепло, образующееся при трении о дорожное покрытие.

Чистая резина прилипает к дороге лучше, чем грязная. Поэтому перед самым стартом покрышки с помощью специальных устройств и процедур нагревают до 80°С, очищая их поверхность, обеспечивая хорошее прилипание к дорожному покрытию. Кстати, шины гоночных автомобилей иногда надувают азотом, т.к. влага, содержащаяся в обычном воздухе, при нагревании шин испаряется и увеличивает давление в колёсах, что создаёт дополнительные трудности в управлении.

О чём поют колёса? Шум, издаваемый колёсами автомобилей, – одна из основных проблем больших городов. Огромные средства тратятся ежегодно на борьбу с этим шумом, т.к. стоимость одного километра звукопоглощающего барьера, устанавливаемого вдоль шоссе, близка к миллиону долларов. Есть несколько теорий возникновения этого шума. В одной из них считается, что он возникает из-за колебаний деформированных участков внешней части покрышки, после того как они распрямляются. Другая связывает появление шума с отлипанием резины от дороги. Ну а самая романтичная гипотеза объясняет шум тем, что причиной всему воздух, двигающийся по канавкам автомобильных покрышек, как по трубам органа, и поэтому поющий.

Классики не всегда правы. Уже в XIX в. стало ясно, что закон Амонтона–Кулона не даёт правильного описания силы трения, а коэффициенты трения отнюдь не являются универсальными характеристиками. Прежде всего было отмечено, что коэффициенты трения зависят не только от того, какие материалы контактируют, но и от того, насколько гладко обработаны контактирующие поверхности. Выяснилось, например, что сила трения в вакууме всегда больше, чем при нормальных условиях.

Как отмечает лауреат Нобелевской премии по физике (1965) Р.Фейнман в своих лекциях, «…таблицы, в которых перечислены коэффициенты трения “стали по стали, меди по меди” и прочее, всё это сплошное надувательство, ибо в них этими мелочами пренебрегают, а ведь они-то и определяют значение . Трение “меди о медь” и т.д. – это на самом деле трение “о загрязнения, приставшие к меди”».

Можно, конечно, пойти по другому пути и, изучая трение «меди по меди», измерять силы при движении идеально отполированных и дегазированных поверхностей в вакууме. Но тогда два таких куска меди просто слипнутся, и коэффициент трения покоя начнёт расти со временем, прошедшим с начала контакта поверхностей. По тем же причинам коэффициент трения скольжения будет зависеть от скорости (расти с её уменьшением). Значит, точно определить силу трения для чистых металлов тоже невозможно.

Тем не менее для сухих стандартных поверхностей классический закон трения почти точен, хотя причина такого вида закона до самого последнего времени оставалась непонятной. Ведь теоретически оценить коэффициент трения между двумя поверхностями никто так и не смог.

Как атомы трутся друг о друга? – спрашиваем у учёных. Сложность изучения трения заключается в том, что место, где этот процесс происходит, скрыт от исследователя со всех сторон. Несмотря на это, учёные уже давно пришли к заключению, что сила трения связана с тем, что на микроскопическом уровне (т.е. если посмотреть в микроскоп) соприкасающиеся поверхности очень шероховатые, даже если они отполированы. Поэтому скольжение двух поверхностей друг по другу может напоминать фантастический случай, когда перевёрнутые Кавказские горы трутся, например, о Гималаи.

Прежде думали, что механизм трения несложен: поверхность покрыта неровностями, и трение есть результат следующих друг за другом циклов «подъём–спуск» скользящих частей. Но это неправильно, ведь тогда не было бы потерь энергии, а при трении расходуется энергия. Поэтому более правильной можно считать следующую модель трения. При скольжении трущихся поверхностей микронеровности задевают друг за друга, и в точках соприкосновения противостоящие друг другу атомы сцепляются. При дальнейшем относительном движении тел эти сцепки рвутся, и возникают колебания атомов, подобные тем, какие происходят при отпускании растянутой пружины. Со временем эти колебания затухают, а их энергия превращается в тепло, растекающееся по обоим телам. В случае скольжения мягких тел возможно также разрушение микронеровностей, так называемое «пропахивание», в этом случае механическая энергия расходуется на разрушение атомарных связей.

Таким образом, если мы хотим изучать трение, нам надо ухитриться двигать песчинку, состоящую из несколько атомов, вдоль поверхности на очень маленьком расстоянии от неё, измеряя при этом силы, действующие на эту песчинку со стороны поверхности. Это стало возможным после изобретения атомно-силового микроскопа (АСМ) Г.Биннингом и Г.Рорером, которым в 1986 г. была присуждена Нобелевская премия по физике. Создание такого микроскопа, способного чувствовать силы притяжения и отталкивания между отдельными атомами, дало возможность наконец «пощупать», что такое силы трения, открыв новую область науки о трении – нанотрибологию.

Основой АСМ служит микрозонд, обычно сделанный из кремния и представляющий собой тонкую пластинку-консоль (её называют кантилевером, от англ. cantilever – консоль, балка). На конце кантилевера (длина 500 мкм, ширина 50 мкм, толщина 1 мкм) делается очень острый шип (высота 10 мкм, радиус закругления 1–10 нм), оканчивающийся группой из одного или нескольких атомов. При перемещении микрозонда вдоль поверхности образца остриё шипа приподнимается и опускается, очерчивая микрорельеф поверхности, подобно скользящей по грампластинке игле. На выступающем конце кантилевера (над шипом) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда шип опускается и поднимается на неровностях поверхности, отражённый луч отклоняется, и это отклонение регистрируется фотодетектором. Данные фотодетектора используются в системе обратной связи, которая может обеспечивать либо постоянное удаление шипа от поверхности образца, либо постоянную силу давления острия на образец.

В первом случае пьезоэлектрический преобразователь может регистрировать движение кантилевера, прыгающего от одного атома исследуемой поверхности к другому, строя таким образом объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность таких микроскопов составляет примерно 0,1–1 нм по горизонтали и 0,01 нм по вертикали. Смещая зонд по горизонтали, можно получить серию рельефов и с помощью компьютера построить трёхмерное изображение.

С помощью АСМ с начала 1990-х гг. проводятся систематические исследования силы трения микрозондов при их скольжения вдоль различных поверхностей и зависимости этих сил от силы прижатия. Оказалось, что для обычно используемых зондов, сделанных из кремния, микроскопическая сила трения скольжения составляет около 60–80% от прижимающей силы, которая составляет не более 10 нН. Как и следовало ожидать, сила трения скольжения растёт с размером микрозонда, т.к. количество атомов, одновременно его притягивающих, увеличивается. Таким образом, сила трения скольжения микрозонда зависит от площади его контакта с поверхностью, что противоречит классическому закону трения. Оказалось также, что сила трения скольжения не становится нулевой при отсутствии силы, прижимающей микрозонд к поверхности. Да это и понятно, т.к. окружающие микрозонд атомы поверхности так близко к нему расположены, что притягивают его даже в отсутствие внешней силы сжатия. Поэтому и основное предположение классического закона – о прямой пропорциональной зависимости силы трения от силы сжатия – тоже не соблюдается в нанотрибологии.

Однако все эти расхождения между основным законом и данными нанотрибологии, полученными с помощью АСМ, легко устраняются. При увеличении силы, прижимающей скользящее тело, увеличивается количество микроконтактов, а значит, увеличивается и суммарная сила трения скольжения. Поэтому никаких противоречий между только что полученными данными и старым законом нет.

Зависимость силы трения скольжения микрозонда от внешней силы N, прижимающей его к графитовой поверхности. Радиус кривизны зонда 17 нм (вверху) и 58 нм (внизу). При малых N зависимость нелинейная, а при больших приближается к линейной (пунктир). Данные взяты из статьи Х.Холшера и А.Шварца (2002)

Долгое время было принято считать, что, принуждая одно тело скользить по другому, мы ломаем малые неоднородности одного тела, которые цепляются за неоднородности поверхности другого, и для того, чтобы ломать эти неоднородности, и нужна сила трения. Поэтому старые представления часто связывают силу возникновение силы трения с повреждением микровыступов трущихся поверхностей, их так называемым износом. Нанотрибологические исследования с помощью АСМ и других современных методик показали, что сила трения между поверхностями может существовать даже тогда, когда они не повреждаются. Причиной такой силы трения служат постоянно возникающие и рвущиеся адгезионные связи между трущимися атомами.

Почему лёд скользкий? Узнать, почему можно скользить по льду, удалось учёным только сейчас. А началось всё давным-давно, в 1849 г. Братья Джеймс и Вильям Томсоны (последнему впоследствии за большие заслуги было присвоен титул лорда Кельвина) выдвинули гипотезу, согласно которой лёд под нами плавится оттого, что мы на него давим. И поэтому мы скользим уже не по льду, а по образовавшейся плёнке воды на его поверхности.

Действительно, если увеличить давление, то температура плавления льда понизится. Происходит это вот почему. Известно, что плотность льда меньше плотности воды, и поэтому, когда лёд сжимают, он, «пытаясь» уменьшить деформацию, вызванную ростом давления, «понижает» температуру плавления. Это одно из проявления так называемого принципа Ле Шателье: внешнее воздействие, выводящее систему из термодинамического равновесия, вызывает в ней процессы, стремящиеся ослабить результаты этого воздействия. Расчёты и эксперименты показали, что для того, чтобы понизить температуру плавления льда на один градус, необходимо давление увеличить до 121 атм (1,22 МПа). Попробуем посчитать, какое давление оказывает спортсмен на лёд, когда скользит по нему на одном коньке длиной 20 см и толщиной 0,3 см. Если считать, что масса спортсмена 75 кг, то его давление на лёд составит около 12 атм. Таким образом, стоя на коньках, мы едва ли сможем понизить температуру плавления льда больше, чем на 1 °С. Значит, объяснить скольжение по льду в коньках и тем более в обычной обуви, опираясь на принцип Ле Шателье, невозможно, если за окном, например, –10 °С.

В 1939 г., когда стало ясно, что понижением температуры плавления скользкость льда не объяснить, Ф.Бауден и Т.Хьюз предположили, что тепло, необходимое для плавления льда под коньком, даёт сила трения. Однако эта теория не могла объяснить, почему так тяжело бывает даже стоять на льду, не двигаясь. С начала 1950-х гг. учёные стали считать, что лёд скользкий из-за тонкой плёнки воды, образующейся на его поверхности в силу каких-то неизвестных причин. Только в конце 1990-х гг. изучение того, как рассеивает лёд рентгеновские лучи, действительно показало, что его поверхность не является упорядоченной кристаллической структурой, а скорее похожа на жидкость.

Учёные объяснили это тем, что расположенные на поверхности льда молекулы воды находятся в особых условиях. Силы, заставляющие их находиться в узлах гексагональной решётки, действуют на них только снизу. Поэтому поверхностным молекулам ничего не стоит «уклониться от советов» молекул, находящихся в решётке, и если это происходит, то к такому же решению приходят сразу несколько поверхностных слоёв молекул воды. В результате на поверхности льда образуется плёнка жидкости, служащая хорошей смазкой при скольжении.

Кстати, тонкие плёнки жидкости образуются не только на поверхности льда, но и многих других кристаллов. Толщина жидкой плёнки увеличивается с ростом температуры, т.к. более высокая тепловая энергия молекул вырывает из гексагональных решёток больше поверхностных слоёв. Наличие примесей (молекул, отличных от воды) тоже мешает поверхностным слоям образовывать кристаллические решётки. Поэтому увеличить толщину жидкой плёнки можно, растворив в ней какие-либо примеси, например, обычную соль. Этим и пользуются коммунальные службы, когда борются зимой с обледенением дорог и тротуаров.

Схематическое изображение поперечного среза льда. Беспорядочное расположение молекул воды на поверхности соответствует плёнке жидкости, а гексагональная структура в толще – кристаллическому льду. Серые кружки – атомы кислорода, белые – водорода

Трение качения – это совсем другое. В идеальном случае, когда колесо, сделанное из несжимаемого материала, по инерции катится по гладкой недеформируемой поверхности, никакие силы трения на это колесо не действуют. Колесо, касаясь поверхности в одной точке, вращается вокруг этой точки, потом точкой касания и центром вращения становится другая точка и т.д. Так как точка касания не движется относительно поверхности, то и сила трения скольжения отсутствует.

Однако в реальных условиях дорожное покрытие, и материал, из которого сделан диск колеса, не являются абсолютно жёсткими. Рассмотрим сначала первый случай. Если поставить колесо на мягкую поверхность, надавить сверху с силой P и пытаться, вращая его, продвинуть вперёд со скоростью v, то мы столкнёмся с силой сопротивления качению Fк. Колесо деформирует поверхность под собой так, что впереди появляется бугорок, который всё время приходится преодолевать. Горизонтальная составляющая сил реакции этого бугорка и представляет собой силу трения качения Fк. Вертикальные составляющие сил сопротивления бугорка компенсируются силой тяжести автомобиля. Так как высота бугорка пропорциональна весу колеса (или укреплённого на нём автомобиля), то и сила трения качения Fк тоже пропорциональна весу автомобиля и силе реакции со стороны дороги N: Fк = кN.

Качение несжимаемого колеса радиуса R по несжимаемой поверхности. K – точка касания и мгновенный центр вращения колеса с угловой скоростью , результатом которого является движение центра колеса О со скоростью

При качении мягкого колеса по твёрдой дороге на переднюю часть соприкасающейся с дорогой поверхности колеса всё время «наезжают». Поэтому она сжимается больше, чем задняя, и сила реакции от передней части колеса, направленная противоположно движению, тоже больше. Сила трения качения равна разности горизонтальных составляющих сил реакции от передней и задней частей колеса. Так как сжатие колеса пропорционально весу машины (или силе реакции опоры), то Fк = кN.

Возникновение силы трения при качении твёрдого колеса по мягкой дороге

Силы трения качения определяются жёсткостью материалов колеса и дорожного покрытия. Чем больше жёсткость, тем меньше величина трения качения. Поэтому, чтобы сократить расходы на топливо, необходимо как можно сильнее накачивать автомобильные колеса, делая их более жёсткими. Достаточно пощупать колёса грузовика, чтобы убедиться в этом. У пассажирского автомобиля давление в колёсах гораздо меньше, т.к. с жёсткими колёсами пассажиры будут ощущать все неровности дороги. В результате его шины больше деформируются, и соответственно растёт сила трения качения.

Возникновение силы трения при качении мягкого колеса по жёсткой дороге. При качении мягкого колеса деформация его передних участков больше, что приводит к появлению горизонтальной составляющей силы, действующей со стороны дороги, и силы, тормозящей движение, – силы трения качения

Сила, необходимая для преодоления трения качения, пропорциональна весу автомобиля и, вообще говоря, не зависит от скорости его движения. Чтобы измерить эту силу, поместите машину на горизонтальный участок дороги, поставьте рычаг переключения скоростей в нейтральное положение (отсоедините колёса от двигателя) и выключите зажигание. После этого привяжите к автомобилю трос, а к нему – пружинные весы. Прикладывая к тросу силу, постарайтесь сдвинуть машину с места и равномерно тянуть её. Одновременно с этим ваш помощник должен смотреть на показания весов и записывать их. Если нет пружинных весов, можно использовать бытовые весы для взвешивания человека. Такими весами можно толкать машину, используя их в качестве прокладки. Сила трения качения для автомобиля массой 1000 кг в среднем составляет около 100 Н.

Для очень дальних перевозок построили железные дороги, где железное колесо катится по железному рельсу с очень малым коэффициентом трения качения. Тормозят поезда медленно, но эксплуатация их очень выгодна.

В окружающем нас мире существует множество физических явлений: гром и молния, дождь и град, электрический ток, трение… Именно трению и посвящён наш сегодняшний доклад. Почему возникает трение, на что влияет, от чего зависит сила трения? И, наконец, трение - это друг или враг?

Что такое сила трения?

Немного разбежавшись, можно лихо прокатиться по ледяной дорожке. Но попробуйте сделать это на обычном асфальте. Впрочем, и пробовать не стоит. Ничего не получится. Виновницей вашей неудачи станет очень большая сила трения. По этой же причине сложно сдвинуть с места массивный стол или, скажем, пианино.

В месте соприкосновения двух тел всегда возникает взаимодействие, которое препятствует движению одного тела по поверхности другого. Его и называют трением. А величину этого взаимодействия - силой трения.

Виды сил трения

Представим себе, что вам надо передвинуть тяжелый шкаф. Вашей силы явно не хватает. Увеличим «сдвигающую» силу. Одновременно увеличивается и сила трения покоя. И направлена она в сторону противоположную движения шкафа. Наконец, «сдвигающая» сила «побеждает» и шкаф трогается с места. Теперь в свои права вступает сила трения скольжения. Но она меньше силы трения покоя и дальше шкаф передвигать значительно легче.

Вам, конечно, приходилось наблюдать, как 2-3 человека откатывают в сторону тяжелый автомобиль с внезапно заглохшим двигателем. Люди, толкающие автомобиль, никакие не силачи, просто на колеса автомобиля действует сила трения качения. Этот вид трения возникает при перекатывании одного тела по поверхности другого. Может катиться шарик, круглый или гранёный карандаш, колеса железнодорожного состава и т. д. Этот вид трения гораздо меньше силы трения скольжения. Поэтому совсем легко передвигать тяжелую мебель, если она снабжена колёсиками.

Но, и в этом случае сила трения направлена против движения тела, следовательно, уменьшает скорость тела. Если бы не её «вредный характер», разогнавшись на велосипеде или роликах, можно было бы наслаждаться ездой бесконечно долго. По этой же причине автомобиль с выключенным двигателем ещё какое-то время будет двигаться по инерции, а затем остановится.

Итак, запоминаем, различают 3 вида сил трения:

  • трение скольжения;
  • трение качения;
  • трение покоя.

Быстрота изменения скорости называется ускорением. Но, поскольку, сила трения замедляет движение, то это ускорение будет со знаком «минус». Правильно будет сказать, под действием трения тело движется с замедлением.

Какова природа трения

Если рассмотреть гладкую поверхность полированного стола или льда через лупу (увеличительное стекло), то вы увидите крохотные шероховатости, за которые и цепляется тело, скользящее или катящееся по его поверхности. Ведь подобные выступы есть и у тела, движущегося по этим поверхностям.

В точках соприкосновения молекулы настолько сближаются, что начинают притягиваться друг к другу. Но тело продолжает движение, атомы удаляются друг от друга, сцепки между ними рвутся. Это приводит в колебание освободившиеся от притяжения атомы. Примерно так, как колеблется освобожденная от растяжения пружина. Мы же воспринимаем эти колебания молекул как нагревание. Вот почему трение всегда сопровождается повышением температуры соприкасающихся поверхностей.

Значит, существуют две причины, вызывающие это явление:

  • неровности на поверхности соприкасающихся тел;
  • силы межмолекулярного притяжения.

От чего зависит сила трения

Вероятно, вам приходилось замечать, резкое торможение санок, если они съезжают на участок, посыпанный песком. И ещё одно интересное наблюдение, когда на санках находится один человек, они проделают, съехав с горки, один путь. А если двое друзей будут съезжать вместе, санки остановятся быстрее. Следовательно, сила трения:

  • зависит от материала соприкасающихся поверхностей;
  • кроме того, трение возрастает с увеличением веса тела;
  • действует в сторону противоположную движению.

Замечательная наука физика еще и тем хороша, что многие зависимости можно выразить не только словами, но и в виде специальных знаков (формул). Для силы трения это выглядит так:

Fтр = kN где:

Fтр - сила трения.

k - коэффициент трения, который отражает зависимость силы трения от материала и чистоты его обработки. Скажем, если металл катится по металлу k=0,18, если вы мчитесь на коньках по льду k= 0,02 (коэффициент трения всегда меньше единицы);

N - это сила, действующая на опору. Если тело находится на горизонтальной поверхности, эта сила равна весу тела. Для наклонной плоскости она меньше веса и зависит от угла наклона. Чем круче горка, тем легче с нее скатиться и дольше можно проехать.

А, высчитав по этой формуле силу трения покоя шкафа, мы узнаем какую силу нужно приложить, чтобы сдвинуть его с места.

Работа силы трения

Если на тело действует сила, под действием которой тело перемещается, то всегда совершается работа. У работы силы трения свои особенности: ведь она не вызывает движение, а препятствует ему. Поэтому, совершаемая ею работа, всегда будет отрицательной, т.е. со знаком «минус», в какую бы сторону не двигалось тело.

Трение - это друг или враг

Силы трения сопровождают нас повсюду, принося ощутимый вред и… огромную пользу. Вообразим, что исчезло трение. Изумленный наблюдатель увидел бы: как рушатся горы, сами по себе выкорчевываются из земли деревья, ураганные ветры и морские волны бесконечно властвуют над землей. Все тела сползают куда-то вниз, транспорт разваливается на отдельные детали, поскольку болты без трения не выполняют свою роль, невидимый безобразник развязал бы все шнурки и узлы, мебель, не удерживаемая силами трения, сползла в самый низкий угол комнаты.

Попытаемся убежать, спастись от этого хаоса, но без трения не сможем сделать, ни шагу. Ведь именно трение помогает нам при ходьбе отталкиваться от земли. Теперь понятно, почему зимой скользкие дороги посыпают песком….

И в то же время иногда трение наносит значительный вред. Люди научились уменьшать и увеличивать трение, извлекая из него огромную пользу. Например, для перетаскивания тяжелых грузов придумали колеса, заменив трение скольжение - качением, которое, значительно меньше трения скольжения.

Потому, что катящемуся телу не приходится цеплять множество мелких неровностей поверхности, как при скольжении тел. Затем снабдили колёса шинами с глубоким рисунком (протекторами).

А вы заметили, что все шины резиновые и чёрные?

Оказывается, резина хорошо удерживает колеса на дороге, а уголь, добавляемый в резину, придает ей чёрный цвет, нужную жёсткость и прочность. Кроме того, позволяет при авариях на дороге, измерить тормозной путь. Ведь при торможении резина оставляет четкий чёрный след.

При необходимости уменьшить трение, используют смазочные масла и сухую графитовую смазку. Замечательным изобретением явилось создание разного вида шарикоподшипников. Их применяют в самых различных механизмах от велосипеда до новейшего самолёта.

Бывает ли трение в жидкостях

Когда тело в воде неподвижно, то трение о воду не происходит. Но стоит ему начать движение, возникает трение, т. е. вода оказывает сопротивление движению в ней любых тел.

Значит, и берег, создавая трение, «тормозит» воду. А, так как трение воды о берег уменьшает её скорость, то на средину реки заплывать не стоит, ведь там течение гораздо сильнее. Рыбы и морские животные имеют такую форму, чтобы трение их тел о воду было минимальным.

Такую же обтекаемость конструкторы придают и подводным лодкам.

Наше знакомство с другими природными явлениями будет продолжаться. До новых встреч, друзья!

Если это сообщение тебе пригодилось, буда рада видеть тебя

Инструкция

Пример задачи 3: брусок массой 1 кг соскользнул с вершины наклонной плоскости за 5 секунд, путь 10 метров. Определите силу трения, если угол наклона плоскости 45о. Рассмотрите также случай, когда на брусок воздействовала дополнительная сила 2 Н, приложенная вдоль угла наклона по направлению движения.

Найдите ускорение тела аналогично примерам 1 и 2: а = 2*10/5^2 = 0,8 м/с2. Вычислите силу трения в первом случае: Fтр = 1*9,8*sin(45о)-1*0,8 = 7,53 Н. Определите силу трения во втором случае: Fтр = 1*9,8*sin(45о)+2-1*0,8= 9,53 Н.

Случай 6. Тело двигается по наклонной поверхности равномерно. Значит, по второму закону Ньютона система находится в равновесии. Если скольжение самопроизвольное, движение тела подчиняется уравнению: mg*sinα = Fтр.

Если же к телу приложена дополнительная сила (F), препятствующая равноускоренному перемещению, выражение для движения имеет вид: mg*sinα–Fтр-F = 0. Отсюда найдите силу трения: Fтр = mg*sinα-F.

Источники:

  • скольжение формула

При относительном движении двух тел между ними возникает трение. Оно также может возникнуть при движении в газообразной или жидкой среде. Трение может как мешать, так и способствовать нормальному движению. В результате этого явления на взаимодействующие тела действует сила .

Инструкция

Наиболее общий случай рассматривает силу , когда одно из тел закреплено и покоится, а другое скользит по его поверхности. Со стороны тела, по которому скользит движущееся тело, на последнее действует сила реакции опоры, направленная перпендикулярно плоскости скольжения. Эта сила буквой N.Тело может также и покоится относительно закрепленного тела. Тогда сила трения , действующая на него Fтртрения . Он зависит от материалов трущихся поверхностей, степени их отшлифовки и ряда других факторов.

В случае движения тела относительно поверхности закрепленного тела сила трения скольжения становится равна произведения коэффициента трения на силу реакции опоры: Fтр = ?N.

Пусть теперь на тело действует постоянная сила F>Fтр = ?N, параллельная поверхности соприкасающихся тел. При скольжении тела, результирующая составляющая силы в горизонтальном направлении будет равна F-Fтр. Тогда по второму закону Ньютона, ускорение тела будет связано с результирующей силой по формуле: a = (F-Fтр)/m. Отсюда, Fтр = F-ma. Ускорение тела можно найти из кинематических соображений.

Часто рассматриваемый частный случай силы трения при соскальзывании тела с закрепленной плоскости. Пусть? - угол наклона плоскости и пусть тело соскальзывает равномерно, то есть без . Тогда уравнения движения тела будут выглядеть так: N = mg*cos?, mg*sin? = Fтр = ?N. Тогда из первого уравнения движения силу трения можно выразить как Fтр = ?mg*cos?.Если тело движется по наклонной плоскости с a, то второе уравнение будет иметь вид: mg*sin?-Fтр = ma. Тогда Fтр = mg*sin?-ma.

Видео по теме

Если сила, направленная параллельно поверхности, на которой стоит тело, превышает силу трения покоя, то начнется движение. Оно будет продолжаться до тех пор, пока движущая сила будет превышать силу трения скольжения, зависящую от коэффициента трения. Рассчитать этот коэффициент можно самостоятельно.

Вам понадобится

  • Динамометр, весы, транспортир или угломер

Инструкция

Найдите массу тела в килограммах и установите его на ровную поверхность. Присоедините к нему динамометр, и начинайте двигать тело. Делайте это таким образом, чтобы показатели динамометра стабилизировались, поддерживая постоянную скорость . В этом случае сила тяги, измеренная динамометром, будет равна с одной стороны силе тяги, которую показывает динамометр, а с другой стороны силе , умноженной на скольжения.

Сделанные измерения позволят найти данный коэффициент из уравнения. Для этого поделите силу тяги на массу тела и число 9,81 (ускорение свободного падения) μ=F/(m g). Полученный коэффициент будет один и тот же для всех поверхностей такого же типа, как и те на которых производилось измерение. Например, если тело из двигалось по деревянной доске, то этот результат будет справедлив для всех деревянных тел, двигающихся скольжением по дереву, с учетом качества его обработки (если поверхности шершавые, значение коэффициента трения скольжения измениться).

Можно измерить коэффициент трения скольжения и другим способом. Для этого установите тело на плоскости, которая может менять свой угол относительно горизонта. Это может быть обыкновенная дощечка. Затем начинайте аккуратно ее за один край. В тот момент, когда тело придет в движение, скатываясь в плоскости как сани с горки, найдите угол ее уклона относительно горизонта. Важно, чтобы тело при этом не двигалось с ускорением. В этом случае, измеренный угол будет предельно малым, при котором тело начнет двигаться под . Коэффициент трения скольжения будет равен тангенсу этого угла μ=tg(α).

Видео по теме

Сила реакции опоры относится к силам упругости, и всегда направлена перпендикулярно поверхности. Она противостоит любой силе, которая заставляет тело двигаться перпендикулярно опоре. Для того чтобы рассчитать ее нужно выявить и узнать числовое значение всех сил, которые действуют на тело, стоящее на опоре.

Вам понадобится

  • - весы;
  • - спидометр или радар;
  • - угломер.

Инструкция

Определите массу тела с помощью весов или любым другим способом. Если тело находится на горизонтальной поверхности (причем неважно, движется оно или пребывает в состоянии покоя), то сила опоры равна силе тяжести на тело. Для того чтобы рассчитать ее умножьте массу тела на ускорение свободного падения, которое равно 9,81 м/с² N=m g.

Когда тело движется по наклонной плоскости, направленной под углом к горизонту, сила реакции опоры находится под углом в силе тяжести. При этом она компенсирует только ту составляющую силы тяжести, которая действует перпендикулярно наклонной плоскости. Для расчета силы реакции опоры, с помощью угломера измерьте угол, под которым плоскость располагается к горизонту. Рассчитайте силу реакции опоры, перемножив массу тела на ускорение свободного падения и косинус угла, под которым плоскость находится к горизонту N=m g Cos(α).

В том случае, если тело движется по поверхности, которая представляет собой часть окружности с радиусом R, например, мост, то сила реакции опоры учитывает силу, по направлению из центра окружности, с ускорением, равным центростремительному, действующую на тело. Чтобы рассчитать силу реакции опоры в верхней точке, от ускорения свободного падения отнимите квадрата скорости к радиусу .

Получившееся число умножьте на массу движущегося тела N=m (g-v²/R). Скорость должна быть измерена в метрах в секунду, а радиус в метрах. При определенной скорости значение ускорения, направленного от центра окружности, может сравняться, и даже ускорение свободного падения, в этот момент сцепление тела с поверхностью пропадет, поэтому, например, автомобилистам, нужно четко контролировать скорость на таких участках дороги.

Если же направлена вниз, и траектория тела вогнутая, то рассчитайте силу реакции опоры, прибавив к ускорению свободного падения отношение квадрата скорости и радиуса кривизны траектории, а получившийся результат умножьте на массу тела N=m (g+v²/R).

Источники:

  • сила опору

Движение в реальных условиях не может продолжаться до бесконечности. Причина этому – трения . Она возникает при контакте тела с другими телами и всегда направлена противоположно направлению движения. Это означает, что сила трения всегда выполняет отрицательную работу , что нужно учитывать при расчетах.

Вам понадобится

  • - рулетка или дальномер;
  • - таблица ля определения коэффициента трения;
  • - понятие о кинетической энергии;
  • - весы;
  • - калькулятор.

Инструкция

Если тело движется равномерно и прямолинейно, найдите силу, которая его в движение. Она компенсирует силу трения , поэтому численно равна ей, но в сторону . Измерьте рулеткой или дальномером расстояние S, на которое сила F передвинула тело. Тогда работа силы трения будет равна произведению силы на расстояние со знаком «минус» A=-F∙S.

Пример. Автомобиль движется по дороге равномерно и прямолинейно. Какую работу сила трения на дистанции 200 м, если сила тяги двигателя равна 800 Н? При равномерном прямолинейном сила тяги двигателя равна по модулю силе трения . Тогда ее работа будет равна A=-F∙S =-800∙200=-160000 Дж или -160 кДж.

ОПРЕДЕЛЕНИЕ

Из второго уравнения:

Сила трения:

Подставив выражение для силы трения в первое уравнение, получим:

При торможении до полной остановки скорость автобуса падает от значения до нуля, поэтому автобуса:

Приравнивая правые части соотношений для ускорения автобуса при аварийном торможении, получим:

откуда время до полной остановки автобуса:

Ускорение свободного падения м/с

Подставив в формулу численные значения физических величин, вычислим:

Ответ Автобус остановится через c.

ПРИМЕР 2

Задание Небольшое тело положили на наклонную плоскость, составляющую угол с горизонтом, и отпустили. Какое расстояние пройдет тело за 3 с, если коэффициент трения между ним и поверхностью 0,2?
Решение Выполним рисунок и укажем все силы, действующие на тело.

На тело действуют сила тяжести , сила реакции опоры и сила трения

Выберем систему координат, как показано на рисунке, и спроектируем это векторное равенство на оси координат:

Из второго уравнения:

Сила трения

Виды

При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:

  • Трение скольжения - сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения.
  • Трение качения - момент сил , возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.
  • Трение покоя - сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при микроперемещениях (например, при деформации) контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.

В физике взаимодействия трение принято разделять на:

  • сухое , когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками (в том числе и твердыми смазочными материалами) - очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения - наличие значительной силы трения покоя;
  • граничное , когда в области контакта могут содержаться слои и участки различной природы (окисные плёнки, жидкость и так далее) - наиболее распространённый случай при трении скольжения.
  • смешанное , когда область контакта содержит участки сухого и жидкостного трения;
  • жидкостное (вязкое) , при взаимодействии тел, разделённых слоем твёрдого тела (порошком графита), жидкости или газа (смазки) различной толщины - как правило, встречается при трении качения, когда твёрдые тела погружены в жидкость, величина вязкого трения характеризуется вязкостью среды;
  • эластогидродинамическое , когда решающее значение имеет внутреннее трение в смазывающем материале. Возникает при увеличении относительных скоростей перемещения.

В связи со сложностью физико-химических процессов, протекающих в зоне фрикционного взаимодействия, процессы трения принципиально не поддаются описанию с помощью методов классической механики .

Закон Амонтона - Кулона

Основной характеристикой трения является коэффициент трения , который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

В простейших случаях сила трения и нормальная нагрузка (или сила нормальной реакции) связаны неравенством

обращающимся в равенство только при наличии относительного движения. Это соотношение называется законом Амонтона - Кулона .

Закон Амонтона - Кулона с учетом адгезии

Для большинства пар материалов значение коэффициента трения не превышает 1 и находится в диапазоне 0,1 - 0,5. Если коэффициент трения превышает 1 , это означает, что между контактирующими телами имеется сила адгезии и формула расчета коэффициента трения меняется на

.

Прикладное значение

Трение в механизмах и машинах

В большинстве традиционных механизмов (ДВС , автомобили, зубчатые шестерни и пр.) трение играет отрицательную роль, уменьшая КПД механизма. Для уменьшения силы трения используются различные натуральные и синтетические масла и смазки. В современных механизмах для этой цели используется также напыление покрытий (тонких плёнок) на детали. С миниатюризацией механизмов и созданием микроэлектромеханических систем (МЭМС) и наноэлектромеханических систем (НЭМС) величина трения по сравнению с действующими в механизме силами увеличивается и становится весьма значительной , и при этом не может быть уменьшена с помощью обычных смазок, что вызывает значительный теоретический и практический интерес инженеров и учёных к данной области. Для решения проблемы трения создаются новые методы его снижения в рамках трибологии и науки о поверхности (англ. ).

Сцепление с поверхностью

Наличие трения обеспечивает возможность перемещаться по поверхности. Так, при ходьбе именно за счёт трения происходит сцепление подошвы с полом, в результате чего происходит отталкивание от пола и движение вперёд. Точно так же обеспечивается сцепление колёс автомобиля (мотоцикла) с поверхностью дороги. В частности, для увеличения улучшения этого сцепления разрабатываются новые формы и специальные типы резины для покрышек, а на гоночные болиды устанавливаются антикрылья , сильнее прижимающие машину к трассе.

См. также

Журналы

  • Трение, Износ, Смазка , журнал о трении.
  • Трение и Износ , журнал о трении издаётся Национальной Академией Наук Беларуси с 1980 г.
  • Journal of Tribology , международный журнал о трении.
  • Wear , международный журнал о трении и износе.
  • Таблицы коэффициентов трения , численные значения коэффициентов трения.

Литература

  • Дерягин Б. В. Что такое трение? М.: Изд. АН СССР, 1963.
  • Крагельский И. В., Щедров В. С. Развитие науки о трении. Сухое трение. М.: Изд. АН СССР, 1956.
  • Фролов, К. В. (ред.) Современная трибология: Итоги и перспективы . ЛКИ, 2008.
  • Bowden F. P., Tabor D. The Friction and Lubrication of Solids. Oxford University Press, 2001.
  • Persson Bo N. J.: Sliding Friction. Physical Principles and Applications. Springer, 2002.
  • Popov V. L. Kontaktmechanik und Reibung. Ein Lehr- und Anwendungsbuch von der Nanotribologie bis zur numerischen Simulation , Springer, 2009.
  • Rabinowicz E. Friction and Wear of Materials. Wiley-Interscience, 1995.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Трение" в других словарях:

    Трение - – процесс, возникающий на поверхности соприкосновения тел, как находящихся в состоянии покоя, так и взаимного перемещения. … … Энциклопедия терминов, определений и пояснений строительных материалов

    Современная энциклопедия

    Трение - внешнее, механическое сопротивление, возникающее при относительном перемещении двух соприкасающихся тел в плоскости их касания. Сила сопротивления направлена противоположно относительному перемещению тел и называется силой трения. Трение… … Иллюстрированный энциклопедический словарь

    ТРЕНИЕ, противодействие перемещению соприкасающихся тел, направленное вдоль плоскости соприкосновения, а также противодействие жидкостям или газам, текущим по поверхности. Трение прямо пропорционально силе, сдавливающей поверхности, и зависит от… … Научно-технический энциклопедический словарь

    ТРЕНИЕ, трения, ср. 1. только ед. Состояние трущихся один о другой предметов, движение одного предмета по тесно соприкасающейся с ним поверхности другого. Машины изнашиваются от трения одних частей о другие. || Сопротивление движению, возникающее … Толковый словарь Ушакова

    ТРЕНИЕ, см. тереть. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    ТРЕНИЕ, я, ср. 1. Сила, препятствующая движению одного тела по поверхности другого (спец.). Коэффициент трения. Кинематическое т. (между движущимися телами). Т. покоя (между неподвижными телами). 2. Движение предмета по тесно соприкасающейся с… … Толковый словарь Ожегова

    В аэро и гидродинамике касательные составляющие вектора поверхностных сил. Если в аэро и гидродинамических задачах движение жидкости или газа исследуется на основе Навье Стокса уравнений, то действие сил трения учитывается во всём поле течения, и … Энциклопедия техники

    Сопротивление движению, возникающее при перемещении соприкасающихся тел одно относительно другого. Различают Т. скольжения (Т. 1 го рода), появляющееся в результате скольжения одного тела по другому, и Т. качения (Т. 2 го рода), появляющееся в… … Морской словарь