Строение и типы хромосом кратко. Интересные факты о хромосомах человека. Диплоидный набор хромосом

Как хромосомы, строение и функции которых изучаются отраслью биологии, называемой цитология.

История открытия

Являющиеся основными компонентами ядра клетки, хромосомы были обнаружены в 19 веке сразу несколькими учеными. Российский биолог И. Д Чистяков изучал их процессе митоза немецкий анатом Вальдейер обнаружил их во время приготовления гистологических препаратов и назвал хромосомами, то есть окрашивающимися тельцами за быструю реакцию этих структур при взаимодействии с органическим красителем фуксином.

Флеминг обобщил научные факты о том, какую функцию выполняют хромосомы в клетках, имеющих оформленное ядро.

Внешнее строение хромосом

Эти микроскопические образования находятся в ядрах — важнейших органеллах клетки, и служат местом хранения и передачи данного организма. Хромосомы содержат особое вещество — хроматин. Оно представляет собой конгломерат из тонких нитей — фибрилл и гранул. С химической точки зрения, это соединение линейных (их около 40 %) со специфическими белками-гистонами.

Комплексы, в состав которых входит 8 молекул пептидов и нити ДНК, закрученные на белковых глобулах, как на катушках, называются нуклеосомами. Участок дезоксирибонуклеиновой кислоты образует 1,75 оборотов вокруг стержневой части и имеет вид эллипсоида приблизительно 10 нанометров в длину и 5—6 в ширину. Присутствие этих структур (хромосом) в ядре служит систематическим признаком клеток эукариотических организмов. Именно в виде нуклеосом хромосомы выполняют функцию сохранения и передачи всех генетических признаков.

Зависимость строения хромосомы от фазы клеточного цикла

Если клетка находится в состоянии интерфазы, которая характеризуется ее ростом и интенсивным обменом веществ, но отсутствием деления, то хромосомы в ядре имеют вид тонких деспирализованных нитей — хромонем. Обычно они переплетены между собой, и визуально разделить их на отдельные структуры невозможно. В момент наступления клеточного деления, которое у соматических клеток называется митозом, а у половых — мейозом, хромосомы начинают спирализоваться и утолщаться, становясь хорошо различимыми в микроскопе.

Уровни организации хромосом

Единицы наследственности — хромосомы, детально изучает наука генетика. Ученые установили, что нуклеосомная нить, содержащая ДНК и белки-гистоны образуют спираль первого порядка. Плотная упаковка хроматина происходит вследствие образования структуры более высокого порядка — соленоида. Он самоорганизуется и уплотняется в еще более сложную суперспираль. Все вышеперечисленные уровни организации хромосомы проходят в период подготовки клетки к делению.

Именно в митотическом цикле структурные единицы наследственности, состоящие из генов, содержащих ДНК, укорачиваются и утолщаются по сравнению с нитевидными хромонемами периода интерфазы приблизительно в 19 тыс. раз. В таком компактном виде хромосомы которых заключаются в передаче наследственных признаков организма, становятся готовыми к делению соматических или половых клеток.

Морфология хромосом

Функции хромосом можно объяснить, изучив их морфологические особенности, которые наилучшим образом прослеживаются в митотическом цикле. Доказано, что еще в синтетической стадии интерфазы масса ДНК в клетке удваивается, так как каждая из дочерних клеток, образовавшихся в результате деления, должна иметь такой же объем наследственной информации, как и исходная материнская. Это достигается в результате процесса редупликации — самоудвоения ДНК, происходящего при участии фермента ДНК-полимеразы.

В цитологических препаратах, приготовленных в момент метафазы митоза, в растительных или животных клетках под микроскопом хорошо заметно, что каждая хромосома состоит из двух частей, называемых хроматидами. В дальнейших фазах митоза — анафазе и, особенно, телофазе — происходит их полное разделение, в результате чего каждая хроматида становится отдельной хромосомой. Она содержит непрерывно уплотненную молекулу ДНК, а также липиды, кислые белки и РНК. Из минеральных веществ в ней присутствуют ионы магния и кальция.

Вспомогательные структурные элементы хромосомы

Чтобы функции хромосом в клетке осуществлялись в полной мере, эти единицы наследственности имеют специальное приспособление — первичную перетяжку (центромеру), которая никогда не спирализуется. Именно она разделяет хромосому на две части, называемые плечами. В зависимости от расположения центромеры, генетики классифицируют хромосомы на равноплечие (метацентричные), неравноплечие (субметацентричные) и акроцентричные. На первичных перетяжках формируются особые образования — кинетохоры, представляющие собой дискообразные белковые глобулы, расположенные по обоим бокам центромеры. Сами кинетохоры состоят из двух участков: внешние контактируют с микрофиламентами (нитями веретена деления), прикрепляясь к ним.

Благодаря сокращению нитей (микрофиламентов), осуществляется строго упорядоченное распределение хроматид, входящих в состав хромосомы, между дочерними клетками. Некоторые хромосомы имеют одну или несколько вторичных перетяжек, которые не участвуют в митозе, так как к ним не могут присоединяться нити веретена деления, но именно эти участки (вторичные перетяжки) обеспечивают контроль над синтезом ядрышек — органелл, которые отвечают за формирование рибосом.

Что такое кариотип

Известные ученые-генетики Морган, Н. Кольцов, Сэттон в начале 20-го столетия скрупулёзно изучили хромосомы, строение и функции их в соматических и половых клетках — гаметах. Ими было установлено, что каждой клетке всех биологических видов свойственно определенное количество хромосом, имеющих специфическую форму и размеры. Было предложено всю совокупность хромосом в ядре соматической клетки назвать кариотипом.

В популярной литературе кариотип часто отождествляют с хромосомным набором. На самом деле это не идентичные понятия. Например, у человека кариотип составляет 46 хромосом в ядрах соматических клеток и обозначается общей формулой 2n. Но такие клетки, как например гепатоциты (клетки печени) имеют несколько ядер, их хромосомный набор обозначается как 2n*2=4n или 2n*4=8n. То есть количество хромосом в таких клетках будет больше чем 46, хотя кариотип гепатоцитов составляет 2n, то есть 46 хромосом.

Число хромосом в половых клетках всегда в два раза меньше, чем в соматических (в клетках тела), такой набор называется гаплоидным и обозначается как n. Все остальные клетки тела имеют набор 2n, который называется диплоидным.

Хромосомная теория наследственности Моргана

Американский генетик Морган открыл закон сцепленного наследования генов, проводя опыты по гибридизации плодовых мушек-дрозофил. Благодаря его исследованиям, были изучены функции хромосом половых клеток. Морган доказал, что гены, расположенные в соседних локусах одной и той же хромосомы, наследуются преимущественно вместе, то есть сцепленно. Если же гены находятся в хромосоме далеко друг от друга, то между сестринскими хромосомами возможен кроссинговер — обмен участками.

Благодаря исследованиям Моргана, были созданы генетические карты, с помощью которых изучают функции хромосом и широко используют их в генетических консультациях для решения вопросов о возможных патологиях хромосом или генов, приводящих к наследственным заболеваниям у человека. Важность выводов, сделанных ученым, сложно переоценить.

В данной статье нами были рассмотрены строение и функции хромосом, которые они выполняют в клетке.

Популярный факт гласит, что каждая хромосома состоит из 25 тысяч генов. Это действительно так, однако гены – далеко не все, из чего состоит хромосома.

Новое высокотехнологичное компьютерное моделирование показало, что почти половина хромосомы (47%) – таинственная субстанция, работающая в качестве футляра. Ученые называют ее «хромосомной периферией», и известно о ней, как и о темной материи во вселенной, совсем немного. А все потому, что подробно и детально рассмотреть хромосомы в микроскоп практически невозможно.

Наблюдение за хромосомами

Хромосомы были обнаружены в 1882 году и до сих пор окружены тайной. Их невозможно разглядеть в ядре клетки в ее обычном состоянии. Наблюдать за хромосомами через микроскоп можно только в процессе деления клеток, будь то митоз или мейоз, когда происходит сверхспирализация ДНК.

Наблюдения за хромосомой в состоянии деления показывают, что она состоит из ДНК и хроматиды. Раньше ученым также удавалось заметить хромосомную периферию, однако выяснить, что это за субстанция, какова ее роль и состав, так и не удалось.

Подробная 3D-модель хромосомы

Сегодня ученые Университета Эдинбурга в Шотландии пользуются новой технологией моделирования, позволяющей воссоздать детальную 3D-конструкцию хромосомы. Эта технология называется 3D-CLEM, и она использует микроскопические частицы света и электроны, чтобы собрать данные из источника и максимально точно его воспроизвести.

Судя по построенным моделям, хроматида составляет от 53% до 70% хромосомы, остальное – таинственная субстанция, о которой ничего не известно. Одной из теорий является разделительная функция хромосомной периферии. Предположительно она состоит из белка Ki-67 и не позволяет хромосомам слипаться. Если это действительно так, то именно ей мы обязаны правильным делением клеток.

Энциклопедичный YouTube

    1 / 5

    Хромосомы, хроматиды, хроматин и т.п.

    Гены, ДНК и хромосомы

    Тайны X-хромосомы

    Биология в картинках: Строение хромосомы (Вып. 70)

    Является ли Y-хромосома исчезающей | Озвучка DeeAFilm

    Субтитры

    Перед погружением в механизм деления клеток, я думаю, будет полезно поговорить о лексике, связанной с ДНК. Есть много слов, и некоторые из них сходны по звучанию друг с другом. Они могут сбивать с толку. Для начала я бы хотел поговорить о том, как ДНК генерирует больше ДНК, создаёт свои копии, или о том, как она вообще делает белки. Мы уже говорили об этом в ролике о ДНК. Давайте я нарисую небольшой участок ДНК. У меня есть A, Г, T, пусть у меня Есть два Т и потом два Ц. Такой небольшой участок. Он продолжается вот так. Конечно, это двойная спираль. Каждой букве соответствует своя. Я нарисую их этим цветом. Итак, A соответствует T, Г соответствует Ц, (точнее Г образует водородные связи с Ц), T - с A, T - с A, Ц - с Г, Ц - с Г. Вся эта спираль тянется, допустим, в этом направлении. Итак, есть пара различных процессов, которые эта ДНК должна осуществить. Один из них связан с клетками вашего тела - необходимо произвести больше клеток вашей кожи. Ваша ДНК должна скопировать себя. Этот процесс называется репликацией. Вы реплицируете ДНК. Я покажу вам репликацию. Как эта ДНК может скопировать себя? Это одна из самых замечательных особенностей структуры ДНК. Репликация. Я делаю общее упрощение, но идея заключается в том, что две цепи ДНК разделяются, и это происходит не само по себе. Этому способствует масса белков и ферментов, но в деталях я буду рассказывать о микробиологии в другом ролике. Итак, эти цепи отделяются друг от друга. Я перенесу цепь сюда. Они отделяются друг от друга. Я возьму другую цепь. Эта слишком большая. Эта цепь будет выглядеть как-то так. Они отделяются друг от друга. Что же может произойти после этого? Я удалю лишние фрагменты здесь и здесь. Итак, вот наша двойная спираль. Они все были связаны. Это пары оснований. Теперь они отделяются друг от друга. Что может делать каждая из них после разделения? Они теперь могут стать матрицей друг для друга. Смотрите… Если эта цепь находится сама по себе, сейчас, неожиданно может прийти тиминовое основание и присоединится здесь, и эти нуклеотиды начнут выстраиваться в линию. Тимин и цитозин, и потом аденин, аденин, гуанин, гуанин. И так продолжаться. И тогда, в этой другой части, на зелёной цепи, которая была до этого прикреплена к этой голубой, будет происходить то же самое. Будет аденин, гуанин, тимин, тимин, цитозин, цитозин. Что произошло только что? Разделением и привлечением комплементарных оснований, мы создали копию этой молекулы. Мы займёмся микробиологией этого в будущем, это только для общего представления о том, как ДНК копирует себя. Особенно, когда мы рассматриваем митоз и мейоз, я могу сказать: «Это стадия, где происходит репликация». Теперь, другой процесс, о котором вы ещё много услышите. Я говорил о нём в ролике о ДНК. Это транскрипция. В ролике о ДНК я не уделял много внимания тому, как ДНК удваивает сама себя, но одна из великолепных особенностей устройства двойной цепи - это лёгкая возможность самоудвоения. Вы просто разделяете 2 полоски, 2 спирали, а потом они становятся матрицей для другой цепи, и тогда появляется копия. Теперь транскрипция. Это то, что должно произойти с ДНК для того, чтобы образовались белки, но транскрипция - это промежуточная стадия. Это стадия, когда вы переходите от ДНК к мРНК. Тогда эта мРНК покидает ядро клетки и направляется к рибосомам. Я буду говорить об этом через несколько секунд. Итак, мы можем сделать то же самое. Эти цепи опять в ходе транскрипции разделяются. Одна отделяется сюда, а другая отделяется... а другая будет отделятся вот сюда. Прекрасно. Может быть имеет смысл использовать только одну половину цепи - я удалю одну. Вот таким образом. Мы собираемся транскрибировать зелёную часть. Вот она. Всё это я удалю. Не тот цвет. Итак, я удаляю всё это. Что произойдёт, если вместо нуклеотидов дезоксирибонуклеиновой кислоты, которые образуют пары с этой цепью ДНК, у вас есть рибонуклеиновая кислота, или РНК, образующая пары. Изображу РНК пурпурным цветом. РНК будет образовывать пары с ДНК. Тимин, находящийся в ДНК, будет образовывать пару с аденином. Гуанин, теперь, когда мы говорим о РНК, вместо тимина у нас будет урацил, урацил, цитозин, цитозин. И это будет продолжаться. Это мРНК. Информационная РНК. Теперь она отделяется. Эта мРНК отделяется и покидает ядро. Она покидает ядро, и тогда происходит трансляция. Трансляция. Запишем этот термин. Трансляция. Это идёт от мРНК... В ролике о ДНК у меня была маленькая тРНК. Транспортная РНК была как бы грузовиком, перевозящим аминокислоты к мРНК. Всё это происходит в части клетки, называемой рибосомой. Трансляция происходит от мРНК к белку. Мы видели, как это происходит. Итак, от мРНК к белку. У вас есть эта цепь - я сделаю копию. Скопирую всю цепь сразу. Эта цепь отделяется, покидает ядро, и тогда у вас есть эти маленькие грузовики тРНК, которые, собственно, и, так сказать, подъезжают. Итак, допустим, у меня есть тРНК. Давайте посмотрим, аденин, аденин, гуанин и гуанин. Это РНК. Это кодон. Кодон имеет 3 пары оснований и прикреплённую к нему аминокислоту. У вас есть некоторые другие части тРНК. Скажем, урацил, цитозин, аденин. И прикреплённая к нему другая аминокислота. Тогда аминокислоты соединяются и образуют длинную цепь аминокислот, которая является белком. Белки образуют эти странные сложные формы. Чтобы убедиться, что вы поняли. Мы начнём с ДНК. Если мы производим копии ДНК - это репликация. Вы реплицируете ДНК. Итак, если мы производим копии ДНК - это репликация. Если вы начинаете с ДНК и создаёте мРНК с матрицы ДНК, то это транскрипция. Запишем. "Транскрипция" . То есть вы транскрибируете информацию с одной формы на другую - транскрипция. Теперь, когда мРНК покидает ядро клетки… Я нарисую клетку, чтобы обратить на это внимание. Мы займёмся структурой клетки в будущем. Если это целая клетка, ядро - это центр. Это место, где находятся все ДНК, все репликации и транскрипции происходят здесь. Затем мРНК покидает ядро, и тогда в рибосомах, которые мы более подробно обсудим в будущем, происходит трансляция и формируется белок. Итак, от мРНК к белку - это трансляция. Вы транслируете с генетического кода, в так называемый белковый код. Итак, это и есть трансляция. Это именно те слова, которые обычно используются для описания этих процессов. Убедитесь, что вы правильно их используете, называя различные процессы. Теперь другая часть терминологии ДНК. Когда я впервые встретился с ней, я решил, что она чрезвычайно сбивает с толку. Это слово «хромосома». Запишу слова здесь - вы сами можете оценить, как они сбивают с толку: хромосома, хроматин и хроматида. Хроматида. Итак, хромосома, мы уже говорили о ней. У вас может быть цепь ДНК. Это двойная спираль. Эта цепь, если я увеличу её, - на самом деле две разных цепи. Они имеют соединённые пары оснований. Я только что нарисовал пары оснований, соединённые вместе. Я хочу, чтобы было ясно: я нарисовал эту небольшую зелёную линию здесь. Это двойная спираль. Она оборачивается вокруг белков, которые называются гистонами. Гистоны. Пусть она оборачивается вот так и как-то так, а потом как-нибудь так. Здесь у вас есть вещества, называемые гистонами, которые являются белками. Нарисуем их вот таким образом. Вот так. Это структура, то есть ДНК в комбинации с белками, которые её структурируют, заставляя оборачиваться вокруг дальше и дальше. В конечном счёте, в зависимости от стадии жизни клетки, будут образовываться различные структуры. И когда вы говорите о нуклеиновой кислоте, которая является ДНК, и объединяете её с белками, то вы говорите о хроматине. Значит, хроматин - это ДНК плюс структурные белки, которые придают ДНК форму. Структурные белки. Идея хроматина была впервые использована из-за того, что люди видели, когда смотрели на клетку… Помните? Каждый раз я рисовал клеточное ядро определённым образом. Скажем, так. Это ядро клетки. Я рисовал очень хорошо различимые структуры. Это одна, это другая. Может быть, она короче, и у неё есть гомологичная хромосома. Я нарисовал хромосомы, так? И каждая из этих хромосом, как я уже показывал в прошлом видео, - по существу - длинные структуры ДНК, длинные цепи ДНК, плотно обёрнутые друг вокруг друга. Я рисовал это как-то так. Если мы увеличим, то увидим одну цепь, и она действительно обёрнута вокруг себя подобно этому. Это её гомологичная хромосома. Вспомните, в ролике, посвящённом изменчивости, я говорил о гомологичной хромосоме, которая кодирует те же гены, но другую их версию. Синий - от папы, а красный - от мамы, но они по существу кодируют те же гены. Итак, это одна цепь, которую я получил от папы с ДНК этой структуры, мы называем её хромосомой. Итак, хромосома. Я хочу, чтобы это было ясно, ДНК принимает эту форму только на определённых жизненных стадиях, когда она воспроизводит сама себя, т.е. реплицируется. Точнее не так… Когда клетка делится. Перед тем как клетка становится способной к делению, ДНК принимает эту хорошо определённую форму. Большую часть жизни клетки, когда ДНК делает свою работу, когда она создаёт белки, то есть белки транскрибируются и транслируются с ДНК, она не сворачивается таким образом. Если бы она была свёрнута, для репликационной и транскрипционной системы было бы затруднительно проникнуть к ДНК, произвести белки и делать что-то ещё. Обычно ДНК… Давайте я ещё раз нарисую ядро. Чаще всего вы даже не можете увидеть её в обычный световой микроскоп. Она настолько тонкая, что вся спираль ДНК полностью распределена в ядре. Я рисую это здесь, другая может быть здесь. А потом у вас есть более короткая цепь, типа этой. Вы даже не можете её увидеть. Она не находится в этой, хорошо определённой структуре. Обычно это выглядит таким образом. Пусть будет ещё такая короткая цепь. Вы можете увидеть только подобный беспорядок, состоящий из путаницы комбинаций ДНК и белков. Это то, что люди в общем-то и называют хроматином. Это нужно записать. "Хроматин" Таким образом, слова могут быть очень неоднозначны и очень запутанны, но общее использование, когда вы говорите о хорошо определённой одной цепи ДНК, вот таким образом хорошо определённой структуры, то это хромосома. Понятие "хроматин" может относиться либо к структуре типа хромосомы, комбинации ДНК и белков, структурирующих ее, либо к беспорядку множества хромосом, в которых есть ДНК. То есть из множества хромосом и белков, перемешанных вместе. Я хочу, чтобы это было понятно. Теперь следующее слово. Что такое хроматида? На всякий случай, если я ещё не сделал этого… Я не помню, помечал ли я это. Эти белки, которые обеспечивают структуру хроматина или составляют хроматин, а также обеспечивают структуру называются "гистонами". Есть различные типы, которые обеспечивают структуру на различных уровнях, мы ещё рассмотрим их детально. Итак, что такое хроматида? Когда ДНК реплицируется… Скажем, это была моя ДНК, она находится в нормальном состоянии. Одна версия - от папы, одна версия - от мамы. Теперь она реплицируется. Версия от папы сначала выглядит так. Это большая цепь ДНК. Она создаёт другую версию себя, идентичную, если система работает правильно, и эта идентичная часть выглядит так. Они изначально прикреплены друг к другу. Они прикреплены друг к другу в месте, называемом центромерой. Теперь, несмотря на то что у меня здесь 2 цепи, скрепленные вместе. Две одинаковые цепи. Одна цепь здесь, одна тут… Хотя давайте я изображу иначе. В принципе это можно изобразить множеством разных способов. Это одна цепь здесь, и вот другая цепь тут. То есть у нас имеются 2 копии. Они кодируют абсолютно одинаковую ДНК. Так вот. Они идентичны, поэтому я всё ещё называю это хромосомой. Запишем это тоже. Всё это вместе называется хромосомой, но теперь каждая отдельная копия называется хроматидой. Итак, это одна хроматида и это другая. Иногда их называют сестринскими хроматидами. Также их можно назвать хроматидами-близнецами, потому что у них одна и та же генетическая информация. Итак, эта хромосома имеет 2 хроматиды. Теперь перед репликацией или перед удвоением ДНК вы можете сказать, что эта хромосома вот здесь имеет одну хроматиду. Вы можете называть это хроматидой, но это не обязательно. Люди начинают говорить о хроматидах тогда, когда две из них присутствуют в хромосоме. Мы узнаем, что в митозе и мейозе эти 2 хроматиды разделяются. Когда они разделяются, тут же цепь ДНК, которую вы однажды называли хроматидой, теперь вы будете называть отдельной хромосомой. Итак, это одна из них, и вот другая, которая могла отделиться в этом направлении. Обведу эту зелёным. Итак, эта может отойти в эту сторону, а эта, которую я обвёл оранжевым, например, в эту … Теперь, когда они отделены и больше не связаны центромерой, то, что мы изначально называли одной хромосомой с двумя хроматидами, теперь вы называете двумя отдельными хромосомами. Или можно сказать, что теперь у вас есть две отдельные хромосомы, каждая из которых состоит из одной хроматиды. Я надеюсь, что это немного проясняет значение терминов, связанных с ДНК. Я всегда находил их довольно запутанными, но они будут полезным инструментом, когда мы начнём митоз и мейоз и я буду говорить о том, что хромосома становится хроматидой. Вы будете спрашивать, как одна хромосома стала двумя хромосомами, и как хроматида стала хромосомой. Всё это вращается вокруг лексики. Я бы выбрал другую, вместо того чтобы называть это хромосомой и каждую из этих отдельными хромосомами, но так решили называть за нас. Возможно, вам интересно узнать, откуда это слово - «хромо». Может быть, вы знаете старую плёнку «Кодак», которая называлась «хромо цвет». В принципе «хромо» означает «цвет». Я думаю, оно происходит от греческого слова «цвет». Когда люди первый раз стали рассматривать ядро клетки, они использовали краситель, и то, что мы называем хромосомами, окрашивалось красителем. И мы могли видеть это в световой микроскоп. Часть «сома» происходит от слова «сома», обозначающего «тело», то есть мы получаем окрашенное тело. Так появилось слово «хромосома». Хроматин также окрашивается… Надеюсь, это немного проясняет понятия «хроматида», «хромосома», «хроматин», и теперь мы подготовлены к изучению митоза и мейоза.

История открытия хромосом

Первые описания хромосом появились в статьях и книгах разных авторов в 70-х годах XIX века, и приоритет открытия хромосом отдают разным людям. Среди них такие имена, как И. Д. Чистяков (1873), А. Шнейдер (1873), Э. Страсбургер (1875), О. Бючли (1876) и другие . Чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем - немецкого анатома В. Флеминга , который в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году. «Хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами .

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы при мейозе и оплодотворении ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902-1903 годах У. Сеттон (Walter Sutton ) независимо друг от друга выдвинули гипотезу о генетической роли хромосом .

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине .

Морфология метафазных хромосом

На стадии метафазы митоза хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации . У метафазных хромосом сестринские хроматиды соединены в районе первичной перетяжки , называемой центромерой . Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора - сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления - движителям хромосомы в митозе . Центромера делит хромосомы на две части, называемые плечами . У большинства видов короткое плечо хромосомы обозначают буквой p , длинное плечо - буквой q . Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.

В зависимости от расположения центромеры различают три типа строения хромосом:

Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин . Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом. Однако по современным представлениям истинно телоцентрических хромосом не бывает. Второе плечо, пусть даже очень короткое и невидимое в обычный микроскоп, всегда присутствует .

Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка , которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают различной длины и могут располагаться в различных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы , содержащие многократные повторы генов, кодирующих рибосомные РНК . У человека вторичные перетяжки, содержащие рибосомные гены, находятся в коротких плечах акроцентрических хромосом, они отделяют от основного тела хромосомы небольшие хромосомные сегменты, называемые спутниками . Хромосомы, обладающие спутником, принято называть SAT-хромосомами (лат. SAT (Sine Acid Thymonucleinico) - без ДНК).

Дифференциальная окраска метафазных хромосом

При монохромном окрашивании хромосом (ацето-кармином, ацето-орсеином, окрашиванием по Фёльгену или Романовскому-Гимзе) можно идентифицировать число и размеры хромосом; их форму, определяемую прежде всего положением центромер, наличием вторичных перетяжек, спутников. В подавляющем числе случаев для идентификации индивидуальных хромосом в хромосомном наборе этих признаков недостаточно. Кроме того, монохромно окрашенные хромосомы часто очень похожи у представителей разных видов. Дифференциальное окрашивание хромосом, различные методики которого были разработаны в начале 70-х годов XX века, снабдило цитогенетиков мощнейшим инструментом для идентификации как индивидуальных хромосом в целом, так и их частей, облегчив тем самым процедуру анализа генома .

Методы дифференциального окрашивания делятся на две основные группы:

Уровни компактизации хромосомной ДНК

Основу хромосомы составляет линейная макромолекула ДНК значительной длины. В молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований . Суммарная длина ДНК из одной клетки человека составляет величину порядка двух метров. При этом типичное ядро клетки человека, которое можно увидеть только при помощи микроскопа, занимает объём около 110 мкм³, а митотическая хромосома человека в среднем не превышает 5 - 6 мкм. Подобная компактизация генетического материала возможна благодаря наличию у эукариот высокоорганизованной системы укладки молекул ДНК как в интерфазном ядре, так и в митотической хромосоме. Надо отметить, что у эукариот в пролиферирующих клетках осуществляется постоянное закономерное изменение степени компактизации хромосом. Перед митозом хромосомная ДНК компактизуется в 10 5 раз по сравнению с линейной длиной ДНК, что необходимо для успешной сегрегации хромосом в дочерние клетки, в то время как в интерфазном ядре для успешного протекания процессов транскрипции и репликации хромосоме необходимо декомпактизоваться . При этом ДНК в ядре никогда не бывает полностью вытянутой и всегда в той или иной степени упакована. Так, расчётное уменьшение размера между хромосомой в интерфазе и хромосомой в митозе составляет всего примерно 2 раза у дрожжей и 4 - 50 раз у человека .

Одним из самых последних уровней упаковки в митотическую хромосому некоторые исследователи считают уровень так называемой хромонемы , толщина которой составляет около 0,1 - 0,3 мкм . В результате дальнейшей компактизации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

Хромосомные аномалии

Анеуплоидия

При анеуплоидии происходит изменение числа хромосом в кариотипе, при котором общее число хромосом не кратно гаплоидному хромосомному набору n . В случае утраты одной хромосомы из пары гомологичных хромосом мутантов называют моносомиками , в случае одной дополнительной хромосомы мутантов с тремя гомологичными хромосомами называют трисомиками , в случае утраты одной пары гомологов - нуллисомиками . Анеуплоидия по аутосомным хромосомам всегда вызывает значительные нарушения развития, являясь основной причиной спонтанных абортов у человека . Одной из самых известных анеуплоидий у человека является трисомия по хромосоме 21, которая приводит к развитию синдрома Дауна . Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей .

Полиплоидия

Изменение числа хромосом, кратное гаплоидному набору хромосом (n ), называется полиплоидией. Полиплоидия широко и неравномерно распространена в природе. Известны полиплоидные эукариотические микроорганизмы - грибы и водоросли , часто встречаются полиплоиды среди цветковых, но не среди голосемянных растений. Полиплоидия клеток всего организма у многоклеточных животных редка, хотя у них часто встречается эндополиплоидия некоторых дифференцированных тканей, например, печени у млекопитающих, а также тканей кишечника, слюнных желёз, мальпигиевых сосудов ряда насекомых .

Хромосомные перестройки

Хромосомные перестройки (хромосомные аберрации) - это мутации, нарушающие структуру хромосом. Они могут возникнуть в соматических и зародышевых клетках спонтанно или в результате внешних воздействий (ионизирующее излучение, химические мутагены, вирусная инфекция и др.). В результате хромосомной перестройки может быть утрачен или, наоборот, удвоен фрагмент хромосомы (делеция и дупликация , соответственно); участок хромосомы может быть перенесён на другую хромосому (транслокация) или он может изменить свою ориентацию в составе хромосомы на 180° (инверсия). Существуют и другие хромосомные перестройки.

Необычные типы хромосом

Микрохромосомы

B-хромосомы

B-хромосомы - это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений , описаны у грибов , насекомых и животных . Некоторые В-хромосомы содержат гены, часто это гены рРНК , однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования .

Голоцентрические хромосомы

Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены .

Голоцентрические хромосомы встречаются у протист , растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans .

Гигантские формы хромосом

Политенные хромосомы

Политенные хромосомы - это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Е.Бальбиани (Edouard-Gerard Balbiani ) в году в клетках слюнных желёз мотыля (Chironomus ), однако их цитогенетическая роль была выявлена позднее в 30-х годах XX века Костовым, Т. Пэйнтером, Э. Хайцем и Г. Бауером (Hans Bauer ). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щёток

Хромосомы типа ламповых щёток - это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц . Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК , приводящие к образованию желтка , наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих .

Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году . Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J.Rϋckert ) в 1892 году .

По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Хромосомы человека

В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК . В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Всего оснований Количество генов Количество белок-кодирующих генов
249250621 3511 2076
243199373 2368 1329
198022430 1926 1077
191154276 1444 767
180915260 1633 896
171115067 2057 1051
159138663 1882 979
146364022 1315 702
141213431 1534 823
135534747 1391 774
135006516 2168 1914
133851895 1714 1068
115169878 720 331
107349540 1532 862
102531392 1249 615
90354753 1326 883
81195210 1773 1209
78077248 557 289
59128983 2066 1492
63025520 891 561
48129895 450 246
51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76
Всего 3 079 843 747 36463

См. также

Примечания

  1. Тарантул В. З. Толковый биотехнологический словарь. - М. : Языки славянских культур, 2009. - 936 с. - 400 экз. - ISBN 978-5-9551-0342-6 .
  2. Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. - М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. - Т. I. - С. 309-336. - 808 с. -