Теория нечетких множеств для. Нечеткие множества и их особенности

Современную науку и технику невозможно представить без широкого применения математического моделирования, поскольку далеко не всегда могут быть поставлены натурные эксперименты, зачастую они слишком дороги и требуют значительного времени, во многих случаях они связаны с риском и большими материальными или моральными издержками. Сущность математического моделирования состоит в замене реального объекта его «образом» – математической моделью – и дальнейшим изучением модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Важнейшим требованием, предъявляемым к математической модели, является условие ее адекватность (правильного соответствия) изучаемому реальному объекту относительно выбранной системы его свойств. Под этим, прежде всего, понимается правильное количественное описание рассматриваемых свойств объекта. Построение таких количественных моделей возможно для простых систем.

Иначе дело обстоит со сложными системами. Для получения существенных выводов о поведении сложных систем необходимо отказаться от высокой точности и строгости при построении модели и привлекать при ее построении подходы, которые являются приближенными по своей природе. Один из таких подходов связан с введением лингвистических переменных, описывающих нечеткое отражение человеком окружающего мира. Для того чтобы лингвистическая переменная стала полноправным математическим объектом, было введено понятие нечеткого множества.

В теории четких множеств была рассмотрена характеристическая функция четкого множества в универсальном пространстве
, равная 1, если элемент удовлетворяет свойству и, следовательно, принадлежит множеству , и равная 0 в противном случае. Таким образом, речь шла о четком мире (булевой алгебре), в котором наличие или отсутствие заданного свойства определяется значениями 0 или 1 («нет» или «да»).

Однако в мире нельзя все разделить только на белое и черное, истину и лож. Так, еще Будда видел мир, заполненный противоречиями, вещи могли быть истинны в некоторой степени и, в некоторой степени, ложны в то же самое время. Платон положил основу того, что станет нечеткой логикой, указывая, что имелась третья область (вне Истины и Лжи) где эти противоречия относительны.

Профессор Калифорнийского университета Заде опубликовал в 1965 статью «Нечеткие множества», в которой он расширил двузначную оценку 0 или 1 до неограниченной многозначной оценки выше 0 и ниже 1 в замкнутом интервале и впервые ввел понятие «нечеткого множества». Вместо термина «характеристическая функция» Заде использовал термин «функция принадлежности». Нечеткое множество (оставлено то же обозначение, что и для четкого множества) в универсальном пространстве
через функцию принадлежности
(то же обозначение, что и для характеристической функции) определяется следующим образом

(3.1)

Функция принадлежности чаще всего интерпретируется следующим образом: величина
означает субъективную оценку степени принадлежности элемента нечеткому множеству , например,
означает, что на 80% принадлежит . Следовательно, должны существовать «моя функция принадлежности», «твоя функция принадлежности», «функция принадлежности специалиста» и т. п. Графическое представление нечеткого множества диаграмма Венна представляет собой концентрические окружности рис. 1. Функция принадлежности нечеткого множества имеет колоколообразный график в отличие от прямоугольного характеристической функции четкого множества рис. 1.

Следует обратить внимание на связь четкого и нечеткого множеств. Два значения {0,1} характеристической функции принадлежат замкнутому интервалу значений функции принадлежности. Следовательно, четкое множество является частным случаем нечеткого множества, а понятие нечеткого множества является расширенным понятием, охватывающим и понятие четкого множества. Другими словами четкое множество является и нечетким множеством.

Нечеткое множество строго определяется с помощью функции принадлежности и не содержит какой-либо нечеткости. Дело в том, что нечеткое множество строго определяется с помощью оценочных значений замкнутого интервала , а это и есть функция принадлежности. В случае если универсальное множество
состоит из дискретного конечного набора элементов, то исходя из практических соображений, указывают значение функции принадлежности и соответствующий элемент, используя знаки разделения / и +. Например, пусть универсальное множество состоит из целых чисел меньших 10, тогда нечеткое множество «малые числа» можно представить в виде

A=1/0 + 1/1 + 0,8/2 + 0,5/3 + 0,1/4

Здесь, например, 0,8/2 означает
. Знак + обозначает объединение. При написании нечеткого множества в приведенном выше виде опускаются элементы универсального множества
со значениями функции принадлежности, равными нулю. Обычно записывают все элементы универсального множества с соответствующими значениями функции принадлежности. Используется запись нечеткого множества, как в теории вероятностей,

Определение. В общем случае нечеткое подмножество универсального множества
определяется как множество упорядоченных пар

. (3.2)

При помощи нечетких множеств можно формально определить неточные и многозначные понятия, такие как «высокая температура», «молодой человек», «средний рост» либо «большой город». Перед формулированием определения нечеткого множества необходимо задать так называемую область рассуждений (universe of discourse). В случае неоднозначного понятия «много денег» большой будет признаваться одна сумма, если мы ограничимся диапазоном и совсем другая - в диапазоне . Область рассуждений, называемая в дальнейшем пространством или множеством, будет чаще всего обозначаться символом . Необходимо помнить, что - четкое множество.

Определение 3.1

Нечетким множеством в некотором (непустом) пространстве , что обозначается как , называется множество пар

, (3.1)

Функция принадлежности нечеткого множества . Эта функция приписывает каждому элементу степень его принадлежности к нечеткому множеству , при этом можно выделить три случая:

1) означает полную принадлежность элемента к нечеткому множеству , т.е. ;

2) означает отсутствие принадлежности элемента к нечеткому множеству , т.е.;

3) означает частичную принадлежность элемента к нечеткому множеству .

В литературе применяется символьное описание нечетких множеств. Если - это пространство с конечным количеством элементов, т.е. , то нечеткое множество записывается в виде

Приведенная запись имеет символьный характер. Знак «–» не означает деления, а означает приписывание конкретным элементам степеней принадлежности . Другими словами, запись

означает пару

Точно также знак «+» в выражении (3.3) не означает операцию сложения, а интерпретируется как множественное суммирование элементов (3.5). Следует отметить, что подобным образом можно записывать и четкие множества. Например, множество школьных оценок можно символически представить как

, (3.6)

что равнозначно записи

Если - это пространство с бесконечным количеством элементов, то нечеткое множество символически записывается в виде

. (3.8)

Пример 3.1

Допустим, что - множество натуральных чисел. Определим понятие множества натуральных чисел, «близких числу 7». Это можно сделать определением следующего нечеткого множества :

Пример 3.2

Если , где - множество действительных чисел, то множество действительных чисел, «близких числу 7», можно определить функцией принадлежности вида

. (3.10)

Поэтому нечеткое множество действительных чисел, «близких числу 7», описывается выражением

. (3.11)

Замечание 3.1

Нечеткие множества натуральных или действительных чисел, «близких числу 7», можно записать различными способами. Например, функцию принадлежности (3.10) можно заменить выражением

(3.12)

На рис. 3.1а и 3.1б представлены две функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Рис. 3.1. Иллюстрация к примеру 3.2: функции принадлежности нечеткого множества действительных чисел, «близких числу 7».

Пример 3.3

Формализуем неточное определение «подходящая температура для купания в Балтийском море». Зададим область рассуждений в виде множества . Отдыхающий I, лучше всего чувствующий себя при температуре 21°, определил бы для себя нечеткое множество

Отдыхающий II, предпочитающий температуру 20°, предложил бы другое определение этого множества:

С помощью нечетких множеств и мы формализовали неточное определение понятия «подходящая температура для купания в Балтийском море». В некоторых приложениях используются стандартные формы функций принадлежности. Конкретизируем эти функции и рассмотрим их графические интерпретации.

1. Функция принадлежности класса (рис. 3.2) определяется как

(3.15)

где . Функция принадлежности, относящаяся к этому классу, имеет графическое представление (рис. 3.2), напоминающее букву «», причем ее форма зависит от подбора параметров , и . В точке функция принадлежности класса принимает значение, равное 0,5.

2. Функция принадлежности класса (рис. 3.3) определяется через функцию принадлежности класса :

(3.16)

Рис. 3.2. Функция принадлежности класса .

Рис. 3.3. Функция принадлежности класса .

Функция принадлежности класса принимает нулевые значения для и . В точках ее значение равно 0,5.

3. Функция принадлежности класса (рис. 3.4) задается выражением

(3.17)

Читатель с легкостью заметит аналогию между формами функций принадлежности классов и .

4. Функция принадлежности класса (рис. 3.5) определяется в виде

(3.18)

Рис. 3.4. Функция принадлежности класса .

Рис. 3.5. Функция принадлежности класса .

В некоторых приложениях функция принадлежности класса может быть альтернативной по отношению к функции класса .

5. Функция принадлежности класса (рис. 3.6) определяется выражением

(3.19)

Пример 3.4

Рассмотрим три неточных формулировки:

1) «малая скорость автомобиля»;

2) «средняя скорость автомобиля»;

3) «большая скорость автомобиля».

В качестве области рассуждений примем диапазон , где - это максимальная скорость. На рис. 3.7 представлены нечеткие множества , и , соответствующие приведенным формулировкам. Обратим внимание, что функция принадлежности множества имеет тип , множества - тип , а множества - тип . В фиксированной точке км/час функция принадлежности нечеткого множества «малая скорость автомобиля» принимает значение 0,5, т.е. . Такое же значение принимает функция принадлежности нечеткого множества «средняя скорость автомобиля», т.е. , тогда как .

Пример 3.5

На рис. 3.8 показана функция принадлежности нечеткого множества «большие деньги». Это функция класса , причем , , .

Рис. 3.6. Функция принадлежности класса .

Рис. 3.7. Иллюстрация к примеру 3.4: функции принадлежности нечетких множеств «малая» , «средняя» , «большая» скорость автомобиля.

Рис. 3.8. Иллюстрация к примеру 3.5: Функция принадлежности нечеткого множества «большие деньги».

Следовательно, суммы, превышающие 10000 руб, можно совершенно определенно считать «большими», поскольку значения функции принадлежности при этом становятся равными 1. Суммы, меньшие чем 1000 руб, не относятся к «большим», так как соответствующие им значения функции принадлежности равны 0. Конечно, такое определение нечеткого множества «большие деньги» имеет субъективный характер. Читатель может иметь собственное представление о неоднозначном понятии «большие деньги». Это представление будет отражаться иными значениями параметров и функции класса .

Определение 3.2

Множество элементов пространства , для которых , называется носителем нечеткого множества и обозначается (support). Формальная его запись имеет вид

. (3.20)

Определение 3.3

Высота нечеткого множества обозначается и определяется как

. (3.21)

Пример 3.6

Если и

, (3.22)

то .

, (3.23)

Определение 3.4

Нечеткое множество называется нормальным тогда и только тогда, когда . Если нечеткое множество не является нормальным, то его можно нормализовать при помощи преобразования

, (3.24)

где - высота этого множества.

Пример 3.7

Нечеткое множество

(3.25)

после нормализации принимает вид

. (3.26)

Определение 3.5

Нечеткое множество называется пустым и обозначается тогда и только тогда, когда для каждого .

Определение 3.6

Нечеткое множество содержится в нечетком множестве , что записывается как , тогда и только тогда, когда

(3.27)

для каждого .

Пример включения (содержания) нечеткого множества в нечетком множестве иллюстрируется на рис. 3.9. В литературе встречается также понятие степени включения нечетких множеств. Степень включения нечеткого множества в нечеткое множество на рис. 3.9 равна 1 (полное включение). Нечеткие множества, представленные на рис. 3.10, не удовлетворяют зависимости (3.27), следовательно, включение в смысле определения (3.6) отсутствует. Однако нечеткое множество содержится в нечетком множестве в степени

, (3.28)

, выполняется условие

Рис. 3.12. Нечеткое выпуклое множество.

Рис. 3.13. Нечеткое вогнутое множество.

Рис. 3.13 иллюстрирует нечеткое вогнутое множество. Легко проверить, что нечеткое множество является выпуклым (вогнутым) тогда и только тогда, когда являются выпуклыми (вогнутыми) все его -разрезы.

Нечеткое множество представляет собой совокупность элементов произвольной природы, относительно которых нельзя с полной определенностью утверждать – принадлежит ли тот или иной элемент рассматриваемой совокупности данному множеству или нет. Другими словами, нечеткое множество отличается от обычного множества тем, что для всех, или части его элементов не существует однозначного ответа на вопрос: «Принадлежит или не принадлежит тот или иной элемент рассматриваемому нечеткому множеству»

Для построения нечетких моделей систем само понятие нечеткого множества следует определить строго, чтобы исключить неоднозначность толкования тех или иных его свойств. Наиболее естественным и интуитивно понятным является задание области значений подобной функции как интервал действительных чисел, заключенных между 0 и 1 (включая и сами эти значения).

Математическое определение нечеткого множества. Формально нечеткое множество определяется как множество упорядоченных пар или кортежей вида:
, гдеявляется элементом некоторого универсального множества, или универсума
, а
– функция принадлежности, которая ставит в соответствие каждому из элементов
некоторое действительное число из интервала
, т.е. данная функция определяется в форме отображения:

При этом значение
для некоторого
означает, что элементопределенно принадлежит нечеткому множеству, а значение
означает, что элементопределенно не принадлежит нечеткому множеству.

Формально конечное нечеткое множество в общем случае имеет вид:

Универсум
- это множество, содержащее в рамках некоторого контекста все возможные элементы. Формально удобно считать, что функция принадлежности универсума как нечеткого множества тождественно равна единице для всех без исключения элементов:
.

Пустое нечеткое множество , или множество, которое не содержит ни одного элемента, обозначаетсяи формально определяется как такое нечеткое множество, функция принадлежности которого тождественно равна нулю для всех без исключения элементов:

Формальное определение нечеткого множества не накладывает никаких ограничений на выбор конкретной функции принадлежности для его представления. Однако на практике удобно использовать те из них, которые допускают аналитическое представление в виде некоторой простой математической функции. Это упрощает не только соответствующие численные расчеты, но и сокращает вычислительные ресурсы, необходимые для хранения отдельных значений этих функций принадлежности.

Функция принадлежности – математическая функция, определяющая степень, с которой элементы некоторого множества принадлежат заданному нечеткому множеству. Данная функция ставит в соответствие каждому элементу нечеткого множества действительное число из интервала
Задать конкретное нечеткое множество означает определить соответствующую ему функцию принадлежности.

При построении функций принадлежности для нечетких множеств следует придерживаться некоторых правил, которые предопределяются характером неопределенности, имеющей место при построении конкретных нечетких моделей.

С практической точки зрения с каждым нечетким множеством удобно ассоциировать некоторое свойство, которое характеризует рассматриваемую совокупность объектов универсума. При этом по аналогии с классическими множествами рассматриваемое свойство может порождать некоторый предикат, который вполне естественно назвать нечетким предикатом. Данный нечеткий предикат может принимать не одно из двух значений истинности («истина» или «ложь»), а целый континуум значений истинности, которые для удобства выбираются из интервала
При этом значению «истина» по-прежнему соответствует число 1, а значению «ложь» - число 0.

Содержательно это означает следующее: чем в большей степени элемент
обладает рассматриваемым свойством, тем более близко к 1 должно быть значение истинности соответствующего нечеткого предиката. И наоборот, чем в меньшей степени элемент
обладает рассматриваемым свойством, тем более близко к 0 должно быть значение истинности этого нечеткого предиката. Если элемент
определенно не обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «ложь» (или число 0). Если же элемент
определенно обладает рассматриваемым свойством, то соответствующий нечеткий предикат принимает значение «истина» (или число 1).

Тогда в общем случае задание нечеткого множества с использованием специального свойства эквивалентно заданию такой функции принадлежности, которая содержательно представляет степень истинности соответствующего одноместного нечеткого предиката.

Понятие нечеткого отношения наряду с понятием самого нечеткого множества следует отнести к фундаментальным основам всей теории нечетких множеств. На основе нечетких отношений определяется целый ряд дополнительных понятий, используемых для построения нечетких моделей сложных систем.

В общем случае нечетким отношением, заданном на множествах (универсумах)
, называется некоторое фиксированное нечеткое подмножество декартова произведения этих универсумов. Другими словами, если обозначить произвольное нечеткое отношение через, то по определению, где
- функция принадлежности данного нечеткого отношения, которая определяется как отображение. Через
обозначен кортеж изэлементов, каждый из которых выбирается из своего универсума:

Нечеткая логика, которая служит основой для реализации методов нечеткого управления, более естественно описывает характер человеческого мышления и ход его рассуждений, чем традиционные формально-логические системы. Именно поэтому изучение и использование математических средств, для представления нечеткой исходной информации позволяет строить модели, которые наиболее адекватно отражают различные аспекты неопределенности, постоянно присутствующей в окружающей нас реальности.

Нечеткая логика предназначена для формализации человеческих способностей к неточным или приближенным рассуждениям, которые позволяют более адекватно описывать ситуации с неопределенностью. Классическая логика по своей сути игнорирует проблему неопределенности, поскольку все высказывания и рассуждения в формальных логических системах могут иметь только значение «истина» (И ,1) или значение «ложь» (Л ,0). В отличие от этого в нечеткой логике истинность рассуждений оценивается в некоторой степени, которая может принимать и другие отличные
значения. Нечеткая логика использует основные понятия теории нечетких множеств для формализации неточных знаний и выполнения приближенных рассуждений в той или иной предметной области.

В предложенной Л.Заде варианте нечеткой логики множество истинностных значений высказываний обобщается до интервала действительных значений
, что позволяет высказыванию принимать любое значение истинности из этого интервала. Это численное значение является количественной оценкой степени истинности высказывания, относительно которого нельзя с полной уверенностью заключить о его истинности или ложности. Использование в качестве множества истинностных значений интервала
позволяет построить логическую систему, в рамках которой оказалось возможным выполнять рассуждения с неопределенностью и оценивать истинность высказываний.

Исходным понятием нечеткой логики является понятие элементарного нечеткого высказывания.

Элементарное нечеткое высказывание – это повествовательное предложение, выражающее законченную мысль, относительно которой мы можем судить об ее истинности или ложности только с некоторой степенью уверенности. В нечеткой логикестепень истинности элементарного нечеткого высказывания принимает значение из замкнутого интервала
, причем 0 и 1 являются предельными значениями степени истинности и совпадают со значениями «ложь» и «истина» соответственно.

Нечеткая импликация или импликация нечетких высказываний А и В (читается – «ЕСЛИ А, ТО В») – называется бинарная логическая операция, результат которой является нечетким высказыванием, истинность которого может принимать значение, например, определяемое формулой предложенной Э.Мамдани:

Эту форму нечеткой импликации также называют нечеткой импликацией Мамдани или нечеткой импликациейминимума корреляции.

Нечёткое (или размытое, расплывчатое) множество - понятие, введённое Л. Заде, который расширил классическое (канторовское) понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале , а не только значения 0 или 1.

Определение : нечеткое множество (a fuzzy set)

Пусть C есть некоторое универсальное множество (универсум). Тогда нечеткое множество A в C определяется как упорядоченное множество пар

где называется функцией принадлежности (ФП) элемента х к нечеткому множеству A .

ФП приписывает каждому элементу из C значение из интервала , которое называется степенью принадлежности х к A или нечеткой мерой.

Нечеткая мера может быть рассмотрена как степень истинности того, что элемент х принадлежит A .

Определение : основа нечеткого множества (a support of a fuzzyset)

Основой нечеткого множества A является множество всех точек таких, что .

Таким образом, определение нечеткого множества является расширением определения классического множества, в котором характеристическая функция может принимать непрерывные значения между 0 и 1. Универсум C может быть дискретным или непрерывным множеством.

Для представления ФП обычно используется несколько типов параметрических функций.

Типовые представления ФП

Треугольные ФП (рис. 2.2, а) описываются тремя параметрами {a, b, c }, которые определяют x координаты трех углов треугольника следующим образом:

Трапециидальные ФП (рис. 2.2, в) описываются четырьмя параметрами {a,b,c,d }, которые определяют x координаты четырех углов трапеции следующим образом:

Рис. 2.2. Треугольная и трапецеидальная ФП

Гауссовские ФП (рис. 2.3) специфицируются двумя параметрами и представляют собой следующую функцию: .

Рис. 2.3. Гауссовская ФП

Лингвистические переменные

Одним из фундаментальных понятий, введенных также Л.Заде, является понятие лингвистической переменной.

Определение : лингвистическая переменная (ЛП) представляет собой следующую пятерку , где – имя переменной, – терм-множество, задающее множество значений ЛП, являющихся языковыми выражениями (синтагмами), X – универсум, G – синтаксическое правило, используя которое мы можем формировать синтагмы , M – семантическое правило, используя которое каждой синтагме приписывается ее значение, являющееся нечетким множеством в универсуме X .

Примером ЛП может служить, например, переменная = «возраст». Ее терм-множество может быть, например, следующим:

(возраст) = {очень молодой , молодой , более или менее молодой , средних лет , старый , очень старый }.

Универсумом для данной ЛП может служить некоторое множество действительных чисел, например, интервал . Семантическое правило М приписывает термам из T (возраст) значения, являющиеся различными модификациями нечетких множеств.

Вернемся к нашему примеру управления движением автомобиля и опишем лингвистические значения в выше приведенных правилах с помощью нечетких множеств. Рассмотрим следующие лингвистические переменные:

x расстояние между машинами;

y скорость впереди едущей машины;

z – ускорение управляемого автомобиля.

ФП должны быть определены в соответствии с рассматриваемой ситуацией управления. Так, например, скорость равная 70 км/час является «большой» в ситуации движения по городской дороге и может рассматриваться как «небольшая» в ситуации движения по скоростному шоссе.

Определим для нашего примера следующие универсумы:

[м], [км/час],

[км/час 2 ].

На рис. 2.4 показаны ФП для описания лингвистических значений «небольшая» (slow) и «большая» (fast) для скорости и «близкое» (short) и «большое» (long) для расстояния.

Рис. 2.4. Нечеткие множества для задачи управления простейшим движением автомобиля

Различия между классическим и нечетким представлением множества

Обсудим эти различия с использованием следующего примера. Рассмотрим классическое и нечеткое представления множества для описания лингвистического значения «короткий» (для расстояния).

На рис. 2.5 показаны различия между классическим и нечетким представлением множества A для данного примера.

Рис. 2.5. Классическое и нечеткое представления множества A

Определим классическое представление множества A так, как показано на рис. 2.5 слева. В этом случае характеристическая функция будет:

Нечеткое представление множества A показано на рис. 2.5 справа. В этом случае функция принадлежности ФП выглядит следующим образом:

Зададим теперь следующий вопрос : принадлежит ли точка м или точка м множествуA ?

С точки зрения классического представления ответ «нет». С точки зрения человеческого восприятия ответ скорее «да», чем «нет». С точки зрения нечеткого представления ответ «да».

Таким образом, данный простой пример наглядно показывает, что нечеткий подход более близок к естественному, человеческому, и обладает большей гибкостью, нежели классический подход.

С помощью нечетких множеств мы можем описывать нечеткие границы.

Основные операции в теории нечетких множеств

Определим основные нечеткие операции следующим образом.

Определение : нечеткое подмножество (Fuzzy Containment или Fuzzy Subset). Нечеткое множество A содержится в нечетком множестве B (или, эквивалентно, A является подмножеством B ) тогда и только тогда, когда для всех . В символьной форме:

Определение :эквивалентность нечетких множеств (Equality of Fuzzy Sets). Эквивалентность (равенство) нечетких множеств A и B определяется следующим образом:

Для каждого .

Определение :нечеткое объединение или нечеткая дизъюнкция (Fuzzy Union).Объединение двух нечетких множеств A и B (в символьной форме пишется как или A OR B или A B) есть нечеткое множество , ФП которого определяется следующим образом:

Определение :нечеткое пересечение (Fuzzy Intersection).Пересечение двух нечетких множеств A и B (в символьной форме записывается как , или C = A AND B , или C = A B) есть нечеткое множество , ФП которого определяется следующим образом:

Определение :нечеткое дополнение. Дополнение A (в символьной форме пишется как или ) есть нечеткое, ФП которого определяется следующим образом:

.

На рис 2.6 показаны примеры нечетких операций над нечеткими множествами.

Рис. 2.6. Примеры нечетких операций над нечеткими множествами

Особенности нечетких множеств

Отметим важные особенности теории нечетких множеств.

1) Закон исключенного третьего и закон контрадикции , где - пустое множество верны в классической теории множеств, однако в теории нечетких множеств в общем случае они не выполняются .

Закон исключенного третьего и закон контрадикции в нечеткой теории выглядят следующим образом: и .

2) В классической теории множеств точка из множества A может иметь одну из двух возможностей: or . В нечеткой теории точка может принадлежать множеству A и одновременно не принадлежать A (т.е. принадлежать множеству ) с различными значениями функций принадлежности и , как показано на рис. 2.7.

В. Я. Пивкин, Е. П. Бакулин, Д. И. Кореньков

Нечеткие множества в системах управления

Под редакцией
доктора технических наук, профессора Ю.Н. Золотухина


Предисловие. 3

ВВЕДЕНИЕ.. 4

1. НЕЧЕТКИЕ МНОЖЕСТВА.. 5

Примеры записи нечеткого множества. 5

Основные характеристики нечетких множеств. 5

Примеры нечетких множеств. 6

О методах построения функций принадлежности нечетких множеств. 7

Операции над нечеткими множествами. 8

Наглядное представление операций над нечеткими множествами. 9

Свойства операций È и Ç. 9

Алгебраические операции над нечеткими множествами. 10

Расстояние между нечеткими множествами, индексы нечеткости. 13

Принцип обобщения. 16

2. НЕЧЕТКИЕ ОТНОШЕНИЯ.. 17

Операции над нечеткими отношениями. 18

Композиция двух нечетких отношений. 21

Условные нечеткие подмножества. 23

3. НЕЧЕТКАЯ И ЛИНГВИСТИЧЕСКАЯ ПЕРЕМЕННЫЕ.. 27

Нечеткие числа. 28

Операции над нечеткими числами. 28

Нечеткие числа (L-R)-типа. 29

4. НЕЧЕТКИЕ ВЫСКАЗЫВАНИЯ И НЕЧЕТКИЕ МОДЕЛИ СИСТЕМ... 32

Правила преобразований нечетких высказываний. 33

Способы определения нечеткой импликации. 33

Логико-лингвистическое описание систем, нечеткие модели. 35

Модель управления паровым котлом.. 36

Полнота и непротиворечивость правил управления. 39

Литература. 40

Предисловие

Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа "Fuzzy Sets", появившаяся в 1965 году в журнале Information and Control, ╬ 8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Что же предложил Заде? Во-первых, он расширил классическое канторовское понятие множества , допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале (0;1), а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy ). Л.Заде определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л.Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л.Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

В последние 5-7 лет началось использование новых методов и моделей в промышленности. И хотя первые применения нечетких систем управления состоялись в Европе, наиболее интенсивно внедряются такие системы в Японии. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.

Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л.Заде: "Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными".

Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем таких, как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.

Основная цель предлагаемого вниманию читателей учебного пособия - привлечь внимание студентов, аспирантов и молодых научных сотрудников к нечеткой проблематике и дать доступное введение в одну из интереснейших областей современной науки.

профессор Ю.Н.Золотухин

ВВЕДЕНИЕ

Математическая теория нечетких множеств, предложенная Л.Заде более четверти века назад, позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы. Основанные на этой теории методы построения компьютерных нечетких систем существенно расширяют области применения компьютеров. В последнее время нечеткое управление является одной из самых активных и результативных областей исследований применения теории нечетких множеств. Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов, или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Экспериментально показано, что нечеткое управление дает лучшие результаты, по сравнению с получаемыми при общепринятых алгоритмах управления. Нечеткие методы помогают управлять домной и прокатным станом, автомобилем и поездом, распознавать речь и изображения, проектировать роботов, обладающих осязанием и зрением. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

1. НЕЧЕТКИЕ МНОЖЕСТВА

Пусть E - универсальное множество, x - элемент E , а R - некоторое свойство. Обычное (четкое) подмножество A универсального множества E , элементы которого удовлетворяют свойству R , определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция , принимающая значение 1 , если x удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "да-нет" относительно свойства R . В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченных пар A = { m A (х )/х } , где

m A (х ) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значения в некотором вполне упорядоченном множестве M (например, M = ). Функция принадлежности указывает степень (или уровень) принадлежности элемента x подмножеству A . Множество M называют множеством принадлежностей . Если M = {0,1} , то нечеткое подмножество A может рассматриваться как обычное или четкое множество.