Функции и типы нервных волокон. Проведения нервного импульса. Законы проведения возбуждения в нервах

Итак, нейроны воспринимают, проводят и передают электрические сигналы. Этот вопрос подробно рассматривается в руководствах по физиологии. Однако для понимания цитофизиологии нейрона укажем, что в основе передачи им электрических сигналов лежит изменение мембранного потенциала, вызванного перемещением через мембрану ионов Na+и K+благодаря функциони-рованию Na+K+-насоса (Na+, K+-зависимой АТФ-фазы).

Нейроны, передающие возбуждение от точки восприятия раздражения в центральную нервную систему и далее к рабочему органу, связаны между собой с помощью множества межклеточных контактов – синапсов(от греч. synapsis – связь), передающих нервный импульс от одного нейрона к другому. Синапс – место контакта двух нейронов или нейрона и мышцы.
В синапсах происходит преобразование электрических сигналов в химические и обратно. Нервный импульс вызывает, например, в парасимпатическом окончании высвобождение посредника – нейромедиатора, который связывается с рецепторами постсинаптического полюса, что приводит к изменению его потенциала.

В зависимости от того, какие части нейрона соединены между собой, различают синапсы – аксосоматические: окончания аксона одного нейрона образуют контакты с телом другого; аксодендритические: аксоны вступают в контакт с дендритами, а также аксоаксонные: контактируют одноименные отростки. Такое устройство цепочек нейронов создает возможность для проведения возбуждения по одной из множества цепочек нейронов благодаря наличию физиологических контактов в определенных синапсах и физиологическому разъединению в других, в которых передача осуществляется с помощью биологически активных веществ
(они называются химическими), а само вещество, осуществляющее передачу, – нейромедиатором (от лат. mediator – посредник) – биологически активное вещество, обеспечивающее передачу возбуждения в синапсах.

Роль медиаторов выполняют две группы веществ:

1) норадреналин, ацетилхолин, некоторые моноамины (адреналин, серотонин, дофамин) и аминокислоты (глицин, глутаминовая кислота ГАМА);

2) нейропептиды (энкефалины, нейротензин, ангиотензин II, вазоактивный кишечный пептид, соматостатин, вещество Р и др).

В каждом межнейронном синапсе различают пресинаптическую и постсинаптическую части, разделенные синаптической щелью (рис. 6). Участок нейрона, по которому импульсы поступают в синапс, называется пресинаптическим окончанием,а участок, воспринимающий импульсы, – постсинаптическим окончанием. В цитоплазме пресинаптического окончания содержится много митохондрий и синаптических пузырьков, содержащих нейромедиатор. Аксолемма участка аксона, которая вплотную приближается к постсинаптическому нейрону, в синапсе образует так называемую пресинаптическую мембрану – участок плазматической мембраны пресинапти-ческого нейрона.Постсинаптическая мембрана – участок плазматической мембраны постсинап-тического нейрона. Межклеточное пространство между пре- и постсинаптическими мембранами называется синаптической щелью . В цитоплазме пресинаптической части находится большое количество округлых мембранных синаптических пузырьковдиаметром от 4 до 20 нм, содержа-щих медиатор.

Рис. 6. Схема строения синапса:

А – пресинаптическая часть; Б – постсинаптическая часть; 1 – гладкий эндоплазматический ретикулум; 2 – нейротрубочка; 3 – синаптические пузырьки; 4 – пресинаптическая мембрана
с гексагональной сетью; 5 – синаптическая щель; 6 – постсинаптическая мембрана;
7 – зернистый эндоплазматический ретикулум; 8 – нейро­филаменты; 9 – митохондрия

Когда нервный импульс достигает пресинаптической части, открываются кальциевые каналы и Са+проникает в цитоплазму пресинаптической части, в результате чего его концентрация ненадолго возрастает. Только при повышении содержания Са+синаптические пузырьки внедряются в описанные ячейки, сливаются с пресинаптической мембраной и выделяют нейромедиатор через узкие диффузионные канальцы в синаптическую щельшириной 20 - 30 нм, заполненную аморфным веществом умеренной электронной плотности. Чем выше содержание ионов кальция, тем больше синаптических пузырьков выделяют нейромедиаторы.

Поверхность постсинаптической мембраныимеет постсинаптическое уплотнение. Нейромедиатор связывается с рецептором постсинаптической мембраны, что ведет кизменению ее потенциала: возникает постсинаптический потенциал. Таким образом, постсинаптическая мембрана преобразует химический стимул в электрический сигнал. Когда нейромедиатор связывается со специфическим белком, встроенным в постсинаптическую мембрану, – рецептором (ионным каналом или ферментом) происходит изменение его пространственной конфигурации, в результате чего каналы открываются. Это ведет кизменению мембранного потенциала и возникновению электрического сигнала, величина которого прямо пропорциональна количеству нейромедиатора. Как только прекращается выделение медиатора, остатки его удаляются из синаптической щели, после чего рецепторы постсинаптической мембраны возвращаются в исходное состояние.

Однако не все медиаторы действуют подобным образом. Так, дофамин, норадреналин, глицин являются тормозными медиаторами. Они, связываясь с рецептором, вызывают образование вторичного мессенджера из АТФ. Следовательно, в зависимости от осуществляемой функции различают возбуждающие и тормозные синапсы.

Каждый нейрон образует огромное количество синапсов: десятки, сотни тысяч. Исходя из этого становится ясным, что из всех постсинаптических потенциалов складывается суммарный потенциал нейрона, именно он и передается по аксону.

В центральной нервной системе обычно различают три основных типа синапсов: аксо-дендритные, аксо-соматические и аксо-аксонные. Четвертый тип межнейронных контактов –дендро-дендритное соединение. Сравнительно недавно было описано так называемое «плотное соединение».

Аксо-дендритный синапс: терминальные ветви аксона одного нейрона вступают в синаптическую связь с дендритом другого. Этот тип синаптического контакта легко различать на электронных микрофотографиях, так как ему присущи все типичные признаки синапса, описанные выше.

Аксо-соматический синапс : терминальные ветви нейрона оканчиваются на теле другого нейрона. В этом случае также не возникает трудностей в распознавании синаптического контакта. Тело клетки отличается присутствием телец Ниссля, гранул РНК-Б и эндоплазматической сети.

Аксо-аксонный синапс : контакты в спинном мозге, в которых аксон оканчивается на другом аксоне в том месте, где последний образует контакты с несколькими дендритами. Это аксо-аксонный синапс, подобный тем, которые были описаны также в коре мозжечка. Открытие подобного рода синапсов, накладывающихся на пресинаптическое окончание, в значительной степени способствовало объяснению явления пресинаптического торможения. В коре мозжечка аксоны корзинчатых клеток образуют синаптические контакты на аксонах или аксонных холмиках клеток Пуркинье и обеспечивают пресинаптическое торможение аксона в месте его начала.

Дендро-дендритное соединение : при распознавании этого типа межнейронного контакта возникают значительные трудности. Возле области контакта отсутствуют синаптические пузырьки, и количество митохондрий не превышает нормального их числа в данном участке дендрита. Иногда можно видеть межмембранные элементы, диаметр и периодичность которых такие же, как и в аксо-дендритном синапсе. Измерения показали, что площадь дендро-дендритного контакта может варьировать от 5 до 10 мкм. Функциональное значение дендро-дендритных соединений остается неясным.

Плотные соединения ” бывают аксо-дендритными и аксо-соматическими и представляют собой “безмедиаторный” тип синапса, в котором нет синаптических пузырьков. Смыкающиеся мембраны по существу сливаются друг с другом, образуя довольно толстую мембранную структуру, лишенную синаптической щели. Предполагают, что этот тип синапса обеспечивает прямое электрическое раздражение одного нейрона другим и “распространение” возбуждения.

Аксо-дендритные и аксо-соматические синапсы бывают 1-го и 2-го типов. Синапс 1-гo типа отличается от синапса 2-го типа следующим: синаптическая щель его шире (300 А против 200 A); постсинаптическая мембрана плотнее и толще, в межсинаптической щели вблизи субсинаптической мембраны находится зона, содержащая внеклеточное вещество. Синапсы на небольших дендритных шипиках пирамидных клеток коры большого мозга всегда принадлежат к 1-му типу, тогда как синапсы на телах пирамидных клеток – всегда ко 2-му. Было сделано предположение, что синапсы 2-гo типа служат гистологическим субстратом торможения. Многие из описанных выше типов синаптических контактов могут находиться на одном и том же нейроне, как это можно видеть на пирамидных клетках гиппокампа. Отношение отростков клеток глии к синапсам остается неясным. Было установлено, что между двумя отделами синаптической мембраны глиальных отростков нет.

Расстояния между концевым расширением аксона и краем миелиновой оболочки, окружающей аксон, бывают различными. Эти расстояния очень невелики, и, как показали электронно-микроскопические исследования, от края миелиновой оболочки до синаптической мембраны может быть 2 мкм.

Нейроглия

Кроме нейронов, в нервной системе имеются клетки нейроглии – окружающие нервную клетку многочисленные клеточные элементы, выполняющие в нервной ткани опорную, разграничительную, трофическую, секреторную и защитную функции (рис. 7). Среди них различают две группы: макроглию (эпендимоциты, олигодендроциты и астроциты) и микроглию. Представляет интерес классификация, согласно которой нейроглия подразделяется на глию центральной нервной системы (эпендимоциты, астроциты, олигодендроциты, микроглия и эпителиальные клетки, покрывающие сосудистые сплетения) и глию периферической нервной системы (нейролеммоциты, амфициты).

Рис. 7. Нейроглия (по В.Г. Елисееву и др., 1970):

I – эпендимоциты; II – протоплазматические астроциты;
III – волокнистые астроциты; IV – олигодендроглиоциты; V – микрология

Одинслой эпендимоцитовкубической или призматической формы выстилает изнутри желудочки мозга и спинномозговой канал. В эмбриональный период от базальной поверхности эпендимоцита отходит разветвляющийся отросток, который, за редким исключением, у взрослого человека подвергается обратному развитию. Задняя срединная перегородка спинного мозга образована указанными отростками. Апикальная поверхность клеток в эмбриональный период покрыта множеством ресничек, у взрослого человека – микроворсинками, количество ресничек варьирует в разных отделах ЦНС. В некоторых участках ЦНС реснички эпендимоцитов многочисленны (водопровод среднего мозга).

Эпендимоциты соединены между собой запирающими зонами и лентовидными десмосомами. От базальной поверхности некоторых эпендимных клеток – таницитов – отходит отросток, который проходит между подлежащими клетками, разветвляется и контактирует с базальным слоем капилляров. Эпендимоциты участвуют в транспортных процессах, выполняют опорную и разграничительную функции, принимают участие в метаболизме мозга. В эмбриональный период отростки эмбриональных таницитов выполняют роль проводников для мигрирующих нейронов. Между эпендимоцитами залегают особые клетки, снабженные длинным апикальным отростком, от поверхности которого отходит несколько ресничек, так называемые ликворные контактные нейроны. Их функция пока неизвестна. Под слоем эпендимоцитов лежит слой недифференци-рованных глиоцитов.

Среди астроцитов, являющихся основными глиальными элементами ЦНС, различают протоплазматические и волокнистые. Первые имеют звездчатую форму, на их телах образуется множество коротких выпячиваний, служащих как бы опорой для отростков нейронов, отделенных от плазмолеммы астроцита щелью шириной около 20 нм. Многочисленные отростки плазмати-ческих астроцитов заканчиваются на нейронах и на капиллярах. Они образуют сеть, в ячейках которой залегают нейроны. Указанные отростки расширяются на концах, переходя в широкие ножки, которые, контактируя между собой, со всех сторон окружают капилляры, покрывая около 80% их поверхности (вокругсосудистая глиальная пограничная мембрана), и нейроны; не покрыты этой мембраной лишь участки синапсов. Отростки, достигающие своими расширенными окончаниями поверхности мозга, соединяясь между собой нексусами, образуют на ней сплошную поверхностную глиальную пограничную мембрану. Кней прилежит базальная мембрана, отграничивающая ее от мягкой мозговой оболочки. Глиальная мембрана, образованная расширенными концами отростков астроцитов, изолирует нейроны, создавая для них специфическое микроокружение.

Волокнистые астроциты преобладают в белом веществе ЦНС. Это многоотростчатые (20–40 от-ростков) клетки, тела которых имеют размеры около 10 мкм. Отростки располагаются между нервными волокнами, некоторые достигают кровеносных капилляров.

В мозжечке присутствует еще одна разновидность астроцитов – крыловидные астроциты зернистого слоя коры мозжечка. Это клетки звездчатой формы с небольшим количеством крыловидных отростков, напоминающих капустные листья, которые окружают базальный слой капилляров, нервные клетки и клубки, образованные синапсами между моховидными волокнами и дендритами мелких клеток-зерен. Отростки нейронов прободают крыловидные отростки.

Основная функция астроцитов – опорная и изоляция нейронов от внешних влияний, что необходимо для осуществления специфической деятельности нейронов.

Олигодендроциты – мелкие клетки овоидной формы (6–8 мкм) с крупным, богатым хроматином ядром, окруженным тонким ободком цитоплазмы, в которой находятся умеренно развитые органеллы. Располагаются олигодендроциты вблизи нейронов и их отростков. От тел олигодендроцитов отходит небольшое количество коротких конусовидных и широких плоских трапециевидных миелинобразующих отростков. Последние формируют миелиновый слой нервных волокон в ЦНС. Миелинобразующие отростки каким-то образом спирально накручиваются на аксоны. Возможно, аксон вертится, наворачивая на себя миелин. Внутренняя миелиновая пластинка самая короткая, наружная – самая длинная, причем один олигодендроцит образует оболочку нескольких аксонов. По ходу аксона миелиновая оболочка сформирована отростками многих олигодендроцитов, каждый из которых образует один межузловой сегмент. Между сегментами находится узловой перехват нервного волокна (перехват Ранвье) , лишенный миелина. В области перехвата расположены синапсы. Олигодендроциты, образующие оболочки нервных волокон периферической нервной системы, называются леммоцитами или шванновскими клетками. Есть сведения, что олигодендроциты и во взрослом организме способны кмитотическому делению.

Микроглия, составляющая около 5% клеток глин в белом веществе мозга и около 18% в сером, состоит из мелких удлиненных клеток угловатой или неправильной формы, рассеянных в белом и сером веществе ЦНС (клетки Ортега). От тела клетки отходят многочисленные отростки различной формы, напоминающие кустики. Основание некоторых клеток микроглии как бы распластано на капилляре. Вопрос о происхождении микроглии в настоящее время дискутируется. Согласно одной из гипотез, клетки микроглии являются глиальными макрофагами и происходят от промоноцитов костного мозга.

В прошлом считали, что нейроны независимы от окружающих и поддерживающих их клеток глии. В то же время полагали, что в ЦНС существует обширное межклеточное пространство, заполненное водой, электролитами и другими веществами. Следовательно, предполагалось, что питательные вещества способны выходить из капилляров в это “пространство” и затем поступать в нейроны. Электронно-микроскопические исследования, проведенные многими авторами, показали, что такого “обширного межклеточного пространства” не существует. Единственное “свободное” пространство в ткани мозгa – это щели между плазматическими мембранами шириной 100–200 А. Таким образом, на долю межклеточного пространства приходится около 21% объема мозга. Все участки паренхимы мозга заполнены нервными клетками, их отростками, клетками глии и элементами сосудистой системы. Наблюдения свидетельствуют, что астроциты лежат между капиллярами и нейронами, а также между капиллярами и клетками эпендимы. Возможно, что астроциты могут служить коллекторами воды, которая, как думали, находится в межклеточном пространстве. Очевидно, что если эта жидкость содержится внутри клеток, то астроциты играют роль некоего вненейронного пространства, способного накапливать воду и растворенные в ней вещества, которые обычно рассматривались как внеклеточные компоненты.

Электронно-микроскопические исследования выявили тесные структурные взаимоотношения между нейронами и глией, показав, что нейроны редко контактируют с кровеносными сосудами и что между этими структурами находятся клетки глии, которые могут служить связующим звеном между нейроном и капиллярами, обеспечивающими поступление питательных веществ и удаление конечных продуктов обмена, что дополняет обмен, идущий через внеклеточное пространство. Однако использование таких пространств ограничивается, по-видимому, многочисленными “плотными соединениями” между клетками. Кроме того, клетки глии, соединяющие нейроны и капилляры, возможно, способны выполнять несколько более сложные функции, чем пассивный перенос различных веществ.

Известны другие формы нейроно-глиальных взаимоотношений. Так, была показана реакция клеток глии на повреждение мозга (нейронов). Клетки глии, окружающие нейрон, реагируют на повышение функциональной активности этого нейрона, а также на его раздражение. Эти и некоторые другие наблюдения можно рассматривать как свидетельство того, что клетки глии участвуют, по крайней мере, в поддержании активности нервной клетки.

Микрохимические методы выявили еще несколько сторон взаимоотношений нейронов и клеток глии. Вот некоторые из этих наблюдений:

а) на долю глии приходится всего 10% того количества РНК, которое содержится в нейронах (при расчете на сухой вес). Это объясняется, очевидно, менее интенсивным синтезом и диффузным распределением РНК в крупных астроцитах с их многочисленными длинными отростками или возможной передачей РНК соседним нейронам;

б) раздражение нейронов в течение короткого времени ведет к увеличению содержания в них РНК, белка и повышению активности дыхательных ферментов, а также к снижению содержания этих компонентов в окружающих клетках глии. Это свидетельствует о возможности обмена между нейронами и клетками глин. Длительное раздражение ведет к уменьшению содержания РНК как в нейронах, так и в клетках глии;

в) при раздражении нейронов активность дыхательных ферментов в них возрастает, а анаэробный гликолиз подавляется; в окружающих же клетках глии отмечается значительное повышение интенсивности анаэробного гликолиза.

Дальнейшие исследования показали, что общую массу клеток глии можно разделить на клетки, преимущественно локализованные вокруг капилляров (где обычно больше астроцитов), и клетки, расположенные, главным образом, вокруг нейронов. Хотя астроциты, по-видимому, имеют связь и с нейронами, и с капиллярами, олигодендроциты как клетки-сателлиты в большей степени связаны с нейронами. Так, среди клеток глии, окружающих нейроны, обнаружено около
90% олигодендроцитов и 10% астроцитов. Капиллярная глия содержит 70% олигодендроцитов и 30% астроцитов. Эти данные были получены с помощью светового микроскопа. Исследования структурных взаимоотношений глии и нейронов с помощью электронного микроскопа продемонстрировали, что в областях, где преобладают тела олигодендроцитов, находится множество отростков астроцитов, которые в большинстве случаев “вклиниваются” между олигодендроглией и нейронами с механизмами синтеза.

Эти данные и предположения нельзя считать окончательными доказательствами наличия своеобразных метаболических взаимоотношений между нейронами и глией. Вместе с тем вполне возможно, что существуют какие-то важные связи между нейронами и глией, которые освобождают нейрон от необходимости быть полностью самостоятельной метаболической единицей, целиком обеспечивающей поддержание своей структуры. Полученные к настоящему времени данные о метаболических взаимоотношениях нейронов и глии наиболее убедительны в отношении синтеза белка и нуклеиновых кислот.

Нервные волокна

Нервные волокна – отростки нервных клеток, окруженные оболочками, образованными олигодендроцитами периферической нервной системы (нейролеммоциты, или шванновские клетки). Различают безмиелиновые и миелиновые волокна.

У безмиелиновых волокон отростки нейронов прогибают плазматическую мембрану олигодендроцита (нейролеммоцита), смыкающуюся над ним (рис. 8, А ), образуя складки, на дне которых и располагаются отдельные осевые цилиндры. Сближение в области складки участков оболочки олигодендроцита способствует образованию сдвоенной мембраны – мезаксона , на которой как бы подвешен осевой цилиндр. Между плазматическими мембранами нервного волокна и олигодендроцита имеется узкий промежуток. В одну шванновскую клетку погружено множество нервных волокон, большинство из них полностью, так что каждое волокно имеет мезаксон. Однако некоторые волокна не покрыты со всех сторон шванновской клеткой и лишены мезаксона. Группа безмиелиновых нервных волокон, связанных с одним нейролеммоцитом, покрыта эндоневрием, образованным базальной мембраной последнего и тонкой сеточкой, состоящей из переплетающихся коллагеновых и ретикулярных микрофибрилл. Безмиелиновые нервные волокна не сегментированы.

Рис. 8. Схема строения нервных волокон на светооптическом (А , Б )
и ультрамикроскопическом (а , б ) уровнях:

А , а – миелиновое волокно; Б , б – безмиелиновое волокно; 1 – осевой цилиндр;
2 – миелиновый слой; 3 – соединительная ткань; 4 – насечка миелина;
5 – ядро нейролеммоцита; 6 – узловой перехват; 7 – микротрубочки;
8 – нейрофиламенты; 9 – митохондрии; 10 – мезаксон; 11 – базальная мембрана

Миелиновые нервные волокна (рис. 8, Б ) образуются благодаря тому, что нейролеммоцит спирально накручивается на аксон нервной клетки. При этом цитоплазма нейролеммоцита выдавливается из него подобно тому, как это происходит при закручивании периферического конца тюбика с зубной пастой (рис. 9). Каждый нейролеммоцит окутывает только часть осевого цилиндра длиной около 1 мм, формируя межузловой сегмент миелинового волокна. Миелинэто многократно закрученный двойной слой плазматической мембраны нейролеммоцита (олигодендроцита), который образует внутреннюю оболочку осевогo цилиндра. Толстая и плотная миелиновая оболочка, богатая липидами, изолирует нервное волокно и предотвращает утечку тока (нервного импульса) из аксолеммы – мембраны осевого цилиндра.

Рис. 9. Схема развития миелинового волокна:

А – поперечные срезы последовательных стадий развития (по Робертсону);
Б – трехмерное изображение сформированного волокна;
1 – дубликация оболочки нейролеммоцита (мезаксон); 2 – аксон;
3 – насечки миелина; 4 – пальцевидные контакты нейролеммоцита в области перехвата;
5 – цитоплазма нейролеммоцита; 6 – спирально закрученный мезаксон (миелин);
7 – ядро нейролеммоцита

Наружная оболочка осевого цилиндра образована цитоплазмой нейролеммоцита, которая окружена его базальной мембраной и тонкой сеточкой из ретикулярных и коллагеновых фибрилл. На границе между двумя соседними нейролеммоцитами создается сужение нервного волокна – узловой перехват нервного волокна (перехват Ранвье) шириной около 0,5 мкм, где миелиновая оболочка отсутствует. Здесь аксолемма контактирует с переплетающимися между собой отростками нейролеммоцитов и, возможно, с базальной мембраной шванновских клеток.

Уплощенные отростки нейролеммоцита имеют на плоскости форму трапеции, поэтому внутренние пластинки миелина самые короткие, а наружные – самые длинные. Каждая пластинка миелина на концах переходит в конечную пластинчатую манжетку, прикрепляющуюся посредством плотного вещества к аксолемме. Манжетки отделены одна от другой мезаксонами.
В некоторых участках миелиновой оболочки пластинки миелина отделены друг от друга прослойками цитоплазмы шванновской клетки. Это так называемые насечки нейролеммы (Шмидта – Лантермана). Они повышают пластичность нервного волокна. Это тем более вероятно, что насечки отсутствуют в ЦНС, где волокна не подвергаются каким-либо механическим воздействиям. Таким образом, между двумя шванновскими клетками сохраняются узкие участки обнаженной аксолеммы. Именно здесь сконцентрировано большинство натриевых каналов
(3–5 тыс. на 1 мкм), в то время как плазмолемма, покрытая миелином, практически лишена их.

Межузловые сегменты, покрытые миелином, обладают кабельными свойствами, и время проведения по ним импульса, т.е. его потенциал, приближается кнулю. В аксолемме на уровне перехвата Ранвье генерируется нервный импульс, который стремительно проводится кблизлежащему перехвату, в его мембране возбуждается следующий потенциал действия. Такой способ проведения импульса называется сальтаторным (перескакивающим). По существу, в миелиновых нервных волокнах возбуждение происходит лишь в перехватах Ранвье. Миелиновая оболочка обеспечивает изолированное, бездекрементное (без падения амплитуды потенциала) и более быстрое проведение возбуждения вдоль нервного волокна. Имеется прямая зависимость между толщиной этой оболочки и скоростью проведения импульсов. Волокна с толстым слоем миелина проводят импульсы со скоростью 70–140 м/с, в то время как проводники с тонкой миелиновой оболочкой со скоростью около 1 м/с и еще медленнее – «безмякотные» волокна
(0,3–0,5 м/с).

Цитолемма нейронов отделена от цитолеммы глиоцитов заполненными жидкостью межкле-точными щелями, ширина которых колеблется в пределах 15–20 нм. Все межклеточные щели сооб-щаются между собой и образуют межклеточное пространство. Интерстициальное (внеклеточное) пространство занимает около 17–20% общего объема мозга. Оно заполнено основным веществом мукополисахаридной природы, обеспечивающим диффузию кислорода и питательных веществ.

Между кровью и тканью мозга существует гематоэнцефалический барьер (ГЭБ), препят-ствующий прохождению многих макромолекул, токсинов, лекарств из крови в головной мозг. Учение о гематоэнцефалическом барьере разработала академик Л.С. Штерн. Барьер состоит из эндотелия капилляров. В мозге имеются участки, лишенные гематоэнцефалического барьера, в которых фенестрированные капилляры окружены широкими перикапиллярными пространствами (сосудистые сплетения, эпифиз, задняя доля гипофиза, срединное возвышение, воронка среднего мозга).

Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5-10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5-10% длительности высоковольтного потенциала.


Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.

Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.

Через 2-3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.

В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении - от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.

Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.

Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.

В отличие от нервных волокон, в которых информация передается по принципу «все или ничего», т. е. дискретно, в синапсах информация передается по принципу «больше или меньше», т. е. градуально. Чем больше до некоторого предела образуется медиатора ацетилхолина, тем выше частота высоковольтных потенциалов в последующем нейроне. После этого предела возбуждение переходит в торможение. Таким образом, цифровая информация, передаваемая по нервным волокнам, переходит в синапсах в измерительную информацию. Измерительные электронные машины,

в которых имеются определенные соотношения между реально измеряемыми количествами и теми величинами, которые они представляют, называются аналоговыми, работающими по принципу «больше или меньше»; можно считать, что в синапсах происходит аналогичный процесс и совершается его переход в цифровой. Следовательно, нервная система функционирует по смешанному типу: в ней совершаются и цифровые и аналоговые процессы.

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

По особенностям строения и функциям нервные волокна подразделяются на два вида: безмиелиновые и миелиновые. Безмиелиновые нервные волокна не имеют миелиновой оболочки. Их диаметр 5-7 мкм, скорость проведения импульса 1-2 м/с. Миелиновые волокна состоят из осевого цилиндра, покрытого миелиновой оболочкой, образованной шванновскими клетками. Осевой цилиндр имеет мембрану и оксоплазму. Миелиновая оболочка состоит на 80 % из липидов и на 20 % из белка. Миелиновая оболочка не покрывает сплошь осевой цилиндр, а прерывается и оставляет открытыми участки осевого цилиндра, которые называются узловыми перехватами (перехваты Ранвье). Длина участков между перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами.

В зависимости от скорости проведения возбуждения нервные волокна делятся на три типа: А, В, С. Наибольшей скорость проведения возбуждения обладают волокна типа А, скорость проведения возбуждения которых достигает 120 м/с, В имеет скорость от 3 до 14 м/с, С - от 0,5 до 2 м/с.

Выделяют 5 законов проведения возбуждения:

  • 1. Нерв должен сохранять физиологическую и функциональную непрерывность.
  • 2. В естественных условиях распространение импульса от клетки к периферии. Имеется 2-х стороннее проведение импульса.
  • 3. Проведение импульса изолированно, т.е. волокна покрытые миелином не передают возбуждение на соседние нервные волокна, а только вдоль нерва.
  • 4. Относительная неутомимость нерва в отличие от мышц.
  • 5. Скорость проведения возбуждения зависит от наличия или отсутствия миелина и длины волокна.
  • 3. Классификация повреждений периферических нервов

Повреждения бывают:

  • А) огнестрельные: -прямые (пулевые, осколочные)
  • -опосредованные
  • -пневмоповреждения
  • Б) неогнестрельные: резаные, колотые, укушенные, компрессионные, компрессионно-ишемические

Так же в литературе встречается разделение повреждений на открытые(резаные, колотые, рваные, рубленные, ушибленные, размозженные раны) и закрытые(сотрясение, ушиб, сдавленно, растяжение, раз рыв и вывих) травмы периферической нервной системы.

Нейромедиаторы – это вещества, которые характеризуются следующими признаками:

Накапливаются в пресинаптической мембране в достаточной концентрации;

Освобождаются при передаче импульса;

Вызывают после связывания с постсинаптической мембраной изменение скорости метаболических процессов и возникновение электрического импульса;

Имеют систему для инактивации или транспортную систему для удаления из синапса продуктов гидролиза.

Нейромедиаторы играют важную роль в функционировании нервной ткани, обеспечивая синаптическую передачу нервного импульса. Их синтез происходит в теле нейронов, а накопление в особых везикулах, которые постепенно перемещаются с участием систем нейрофиламентов и нейротрубочек к кончикам аксонов.

К нейромедиаторам относятся производные аминокислот: таурин, норадреналин, дофамин, ГАМК, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин), а также нейропетиды.

Холинэргические синапсы

Ацетилхолин синтезируется из холина и ацетил-КоА. Для синтеза холина требуются аминокислоты серин и метионин. Но, как правило, из крови в нервную ткань поступает уже готовый холин. Ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином (рис. 22). Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

Рис. 22. Холинэргический синапс

Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Мембраны в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания, не в состоянии преодолеть возникшее перед ним препятствие - синаптическую щель. После этого электрический сигнал преобразуется в химический.

Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию, и формируют канал. В результате ионы Са 2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са 2+ создается работой Са 2+ -зависимой АТФазы. Повышение концентрации Са 2+ внутри нервного окончания вызывает слияние имеющихся там везикул, заполненных ацетилхолином. Затем ацетилхолин секретируется в синаптическую щель путем экзоцитоза и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц. Плотность расположения белков-рецепторов в постсинаптической мембране очень велика – около 20000 молекул на 1 мкм 2 . Пространственная структура рецептора строго соответствует конформации медиатора. При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективность канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Т.о. повышается проницаемость постсинаптической мембраны для натрия и возникает импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса «ацетилхолин-белок-рецептор», и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы на холин и ацетил-КоА.

Необратимое ингибирование ацетилхолинэстеразы вызывает смерть. Ингибиторами фермента являются фосфорорганические соединения. Смерть наступает в результате остановки дыхания. Обратимые ингибиторы ацетилхолинэстеразы используются как лечебные препараты, например, при лечении глаукомы и атонии кишечника.

Адренэргические синапсы (рис. 23)встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Медиаторами в них служат катехоламины: норадреналин и дофамин. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.

Рис. 23. Адренэргический синапс

Норадреналин – медиатор в постганглионарных волокнах симпатической системы и в различных отделах ЦНС.

Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга. Дофамин отвечает за контроль произвольных движений. Поэтому при нарушении дофаминергической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяются в синаптическую щель при поступлении нервного импульса. Но регуляция в адренергическом рецепторе происходит иначе. В пресинаптической мембране имеется специальный регуляторный белок – ахромогранин, который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренергических синапсах нет. После передачи импульса молекулы медиатора перекачиваются специальной транспортной системой путем активного транспорта с участием АТФ обратно в пресинаптическую мембрану и включаются вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован моноаминооксидазой (МАО), а также катехоламин-О-метилтрансферазой (КОМТ) путем метилирования по оксигруппе.

Передача сигнала в адренергических синапсах протекает с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации цАМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате тормозится генерация нервных импульсов постсинаптической мембраны. В некоторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижение проводимости для натрия (такое состояние приводит к гиперполяризации).

Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в HS-группе (процесс идет в несколько стадий), затем происходит декарбоксилирование. Таурин – это необычная кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты. Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

ГАМК – тормозной медиатор (около 40% нейронов). ГАМК повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала. ГАМК тормозит запрет на проведение «ненужной» информации: внимание, двигательный контроль.

Глицин – вспомогательный тормозной медиатор (менее 1% нейронов). По вызываемым эффектам подобен ГАМК. Его функция - торможение мотонейронов.

Глутаминовая кислота - главный возбуждающий медиатор (около 40% нейронов). Основная функция: проведение основных потоков информации в ЦНС (сенсорные сигналы, двигательные команды, память).

Нормальная деятельность ЦНС обеспечивается тонким балансом глутаминовой кислоты и ГАМК. Нарушение этого баланса (как правило, в сторону уменьшения торможения) негативно влияет на многие нервные процессы. При нарушении баланса развивается синдром дефицита внимания и гиперактивности детей (СДВГ), повышается нервозность и тревожность взрослых, нарушение сна, бессонница, эпилепсия.

Нейропептиды имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы. Эти пептиды выполняют функцию не только нейромедиаторов, но и гормонов. Они передают информацию от клетки к клетке по системе циркуляции. К ним относятся:

Нейрогипофизарные гормоны (вазопрессин, либерины, статины) – они одновременно являются и гормонами и медиторами;

Гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения, а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

Опиатоподобные пептиды (или пептиды обезболивания). Образуются путём реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействует с теми же рецепторами, что и опиаты (например, морфин), тем самым имитируют их действие. Общее название - эндорфины. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

Пептиды сна. Их молекулярная природа не установлена. Они вызывают сон;

Пептиды памяти (скотофобин). Накапливается при тренировке на избегание темноты;

Пептиды-компоненты ренин-ангиотензиновой системы. Стимулируют центр жажды и секрецию антидиуретического гормона.

Образование пептидов происходит в результате реакций ограниченного протеолиза, разрушаются они под действием протеиназ.

Контрольные вопросы

1. Охарактеризуйте химический состав мозга.

2. В чем состоят особенности метаболизма в нервной ткани?

3. Перечислите функции глутамата в нервной ткани.

4. Какова роль медиаторов в передаче нервного импульса? Перечислите основные тормозные и возбуждающие медиаторы.

5. В чем состоят отличия в функционировании адренэргических и холинэргических синапсов?

6. Приведите примеры соединений, влияющих на синаптическую передачу нервных импульсов.

7. Какие биохимические изменения могут наблюдаться в нервной ткани при психических заболеваниях?

8. Каковы особенности действия нейропептидов?

Биохимия мышечной ткани

Мышцы составляют 40-50% массы тела человека.

Различают три типа мышц:

Поперечнополосатые скелетные мышцы (сокращаются произвольно);

Поперечнополосатая сердечная мышца (сокращается непроизвольно);

Гладкие мышцы (сосуды, кишечник, матка) (сокращаются непроизвольно).

Поперечнополосатая мышца состоит из многочисленных удлиненных волокон.

Мышечное волокно - многоядерная клетка, покрытая эластичной оболочной - сарколеммой . В мышечное волокно входят двигательные нервы , передающие ему нервный импульс, вызывающий сокращение. По длине волокна в полужидкой саркоплазме расположены нитевидные образования - миофибриллы . Саркомер - повторяющийся элемент миофибриллы, ограниченный Z-линией (рис. 24). В середине саркомера находится А-диск, темный в фазово-контрастном микроскопе, в центре которого расположена М-линия, видная при электронной микроскопии. Н-зона занимает среднюю часть
А-диска. I-диски светлые в фазово-контрастном микроскопе, и каждый из них делится на равные половины Z-линией. В А-дисках находятся толстые миозиновые и тонкие актиновые нити. Тонкие нити начинаются у Z-линии, проходят через I-диск и прерываются в области Н-зоны. Электронная микроскопия показала, что толстые нити уложены в форме шестиугольника и проходят через весь А-диск. Между толстыми нитями расположены тонкие. При сокращении мышцы I-диски практически исчезают, а область перекрывания между тонкими и толстыми нитями увеличивается.

Саркоплазматический ретикулум - внутриклеточная мембранная система взаимосвязанных уплощенных пузырьков и канальцев, которая окружает саркомеры миофибрилл. На внутренней его мембране расположены белки, способные связывать ионы кальция.

Структура нервного волокна. Проведение нервных импульсов является специализированной функцией нервных волокон, т.е. отростков нервных клеток.

Нервные волокна разделяют намякотные, или миелинизированные, и безмякотные, или немиелинизированные . Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принадлежат в основном симпатической нервной системе.

Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем их соотношение в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах вегетативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80-95%. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.

Как показали электронно-микроскопические исследования, мие- линовая оболочка создается в результате того, что миелоцит (шван- новская клетка) многократно обертывает осевой цилиндр (рис. 2.27"), слои ее сливаются, образуя плотный жировой футляр - миелиновую оболочку. Миелиновая оболочка через промежутки равной длины прерывается, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов Ранвье.

Рис. 2.27. Роль миелоцита (шванновской клетки) в образовании миелиновой оболочки в мякотных нервных волокнах: последовательные стадии спиралеобразного закручивания миелоцита вокруг аксона (I); взаимное расположение миелоцитов и аксонов в безмякотных нервных волокнах (II)

Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах диаметром 10-20 мкм длина промежутка между перехватами составляет 1-2 мм. В наиболее тонких волокнах (диаметром

1-2 мкм) эти участки имеют длину около 0,2 мм.

Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друг только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякот- ное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон.

Миелиновая оболочка выполняет двоякую функцию: функцию электрического изолятора и трофическую функцию. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин как вещество липидной природы препятствует прохождению ионов и потому обладает очень высоким сопротивлением. Благодаря существованию миелиновой оболочки возникновение возбуждения в мякот- ных нервных волокнах возможно не на всем протяжении осевого цилиндра, а только в ограниченных участках - перехватах Ранвье. Это имеет важное значение для распространения нервного импульса вдоль волокна.

Трофическая функция миелиновой оболочки, по-видимому, состоит в том, что она принимает участие в процессах регуляции обмена веществ и роста осевого цилиндра.

Проведение возбуждения в немиелинизированных и миелинизирован- ных нервных волокнах. В безмякотных нервных волокнах возбуждение распространяется непрерывно вдоль всей мембраны, от одного возбужденного участка к другому, расположенному рядом. В отличие от этого в миелинизированных волокнах потенциал действия может распространяться только скачкообразно, «перепрыгивая» через участки волокна, покрытые изолирующей миелиновой оболочкой. Такое проведение называется салыпаторным.

Прямые электрофизиологические исследования, проведенные Като (1924), а затем Тасаки (1953) на одиночных миелинизированных нервных волокнах лягушки, показали, что потенциалы действия в этих волокнах возникают только в перехватах, а участки между перехватами, покрытые миелином, являются практически невозбудимыми.

Плотность натриевых каналов в перехватах очень велика: на 1 мкм 2 мембраны насчитывается около 10 000 натриевых каналов, что в 200 раз превышает плотность их в мембране гигантского аксона кальмара. Высокая плотность натриевых каналов является важнейшим условием сальтаторного проведения возбуждения. На рис. 2.28 показано, каким образом происходит «перепрыгивание» нервного импульса с одного перехвата на другой.

В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов Ранвье заряжена положительно. Разности потенциалов между соседними перехватами не существует. В момент возбуждения поверхность мембраны перехвата С становится заряженной электроотрицательно по отношению к поверхности мембраны соседнего перехвата D. Это приводит к возникновению местного (ло

Рис. 2.28.

А - немиелинизированное волокно; В - миелинизированное волокно. Стрелками показано направление тока

кального) электрического тока, который идет через окружающую волокно межтканевую жидкость, мембрану и аксоплазму в направлении, показанном на рисунке стрелкой. Выходящий через перехват D ток возбуждает его, вызывая перезарядку мембраны. В перехвате С возбуждение еще продолжается, и он на время становится рефрактерным. Поэтому перехват D способен привести в состояние возбуждения только следующий перехват и т.д.

«Перепрыгивание» потенциала действия через межперехватный участок оказывается возможным только потому, что амплитуда потенциала действия в каждом перехвате в 5-6 раз превышает пороговую величину, необходимую для возбуждения соседнего перехвата. При определенных условиях потенциал действия может «перепрыгнуть» не только через один, но и через два межперехватных участка - в частности, в том случае, если возбудимость соседнего перехвата снижена каким-либо фармакологическим агентом, например новокаином, кокаином и др.

Предположение о скачкообразном распространении возбуждения в нервных волокнах впервые было высказано Б.Ф. Вериго (1899). Такой способ проведения имеет ряд преимуществ по сравнению с непрерывным проведением в безмякотных волокнах: во-первых, «перепрыгивая» через сравнительно большие участки волокна, возбуждение может распространяться со значительно большей скоростью, чем при непрерывном проведении по безмякотному волокну того же диаметра; во-вторых скачкообразное распространение является энергетически более экономным, поскольку в состояние активности приходит не вся мембрана, а только ее небольшие участки в области перехватов, имеющие ширину менее 1 мкм. Потери ионов (в расчете на единицу длины волокна), сопровождающие возникновение потенциала действия в таких ограниченных участках мембраны, очень невелики, а следовательно, малы и энергетические затраты на работу натрий-калиевого насоса, необходимые для восстановления измененных ионных соотношений между внутренним содержимым нервного волокна и тканевой жидкостью.

  • См.: Физиология человека / Под ред. А. Косицкого.