Гибридизация атомных орбиталей: понятие и основные виды

Продолжение. Начало см. в № 15, 16/2004

Урок 5. Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Таблица 4

Ковалентные связи углерода

Число групп,
связанных
с углеродом
Тип
гибридизации
Типы
участвующих
химических связей
Примеры формул соединений
4 sp 3 Четыре - связи
3 sp 2 Три - связи и
одна - связь
2 sp Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.

9. Какие химические связи называют и какие ? Укажите - и -связи в соединениях:

10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.

Ответы на упражнения к теме 1

Урок 5

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами . Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:

2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой . Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием . В возбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:

Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s , 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р -орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x , y и z , их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s -орбиталь – форма сферы, р – симметричная восьмерка, sp -гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E (s ) < E () < E (р ). Таким образом, sp -орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s - и p -орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5 ).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.

sp3-гибридизация

sp 3 -Гибридизация - гибридизация, в которой участвуют атомные орбитали одного s - и трех p -электронов (рис. 1).

Рис. 1. Образование sp 3 -гибридных орбиталей

Четыре sp 3 -гибридные орбитали симметрично ориентированны в пространстве под углом 109°28" (рис. 2).

Модель атома с sp 3 -гибридными орбиталями

Пространственная конфигурация молекулы, центральный атом которой образован sp 3 -гибридными орбиталями - тетраэдр

Тетраэдрическая пространственная конфигурация молекулы, центральный атом которой образован sp 3 -гибридными орбиталями

гибридизация атом орбиталь углерод

Примеры соединений, для которых характерна sp 3 -гибридизация: NH 3 , POCl 3 , SO 2 F 2 , SOBr 2 , NH 4+ , H 3 O + . Также, sp 3 -гибридизация наблюдается во всех предельных углеводородах (алканы, циклоалканы) и других органческих соединениях: CH 4 , C 5 H 12 , C 6 H 14 , C 8 H 18 и др. Общая формула алканов: C n H 2n+2 . Общая формула циклоалканов: C n H 2n . В предельных углеводородах все химические связи одинарные, поэтому между гибридными орбиталями этих соединений возможно только у -перекрывание.

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.

Атомная орбиталь - это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако - это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.

Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С - 1s 2 2s 2 2p 2) большие цифры перед буквами - 1, 2 - обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

Форма и ориентация р-электронных орбиталей

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это - 3 -гибридизация.

Гибридизация - выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Четыре sp 3 -гибридные орбитали атома углерода

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).

Соответственно углы между этими орбиталями - тетраэдрические, равные 109°28".

Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма () - связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Схема перекрывания электронных облаков в молекуле этана

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.

2 -Гибридизация - смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль осиz ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина - под плоскостью.

Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Орбитали (три sp 2 и одна р) атома углерода в sp 2 -гибридизации

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование -связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.

-Гибридизация - это смешивание (выравнивание по форме и энергии) одной s- и одной р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две р -орбитали- вдоль осей х и z .

Атомные орбитали (две sp и две р) углерода в состоянии sp-гибридизации

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании sp -гибридных орбиталей, и двух -связей.

Электронное строение атома углерода

Углерод, входящий в состав органических соединений проявляет постоянную валентность. На последнем энергетическом уровне атома углерода содержится 4 электрона, два из которых занимают 2s- орбиталь, имеющую сферическую форму, а два электрона занимают 2р-орбитали, имеющие гантелеподобную форму. При возбуждении один электрон из 2s-орбитали может переходить на одну из вакантных 2р-орбиталей. Этот переход требует некоторых энергетических затрат (403 кДж/моль). В результате возбужденный атом углерода имеет 4 неспаренных электрона и его электронная конфигурация выражается формулой 2s1 2p3 .

Атом углерода в возбужденном состоянии способен образовывать 4 ковалентных связи за счет 4 собственных неспаренных электронов и 4 электронов других атомов. Так, в случае углеводорода метана (СН4) атом углерода образует 4 связи с s-электронами атомов водорода. При этом должны были бы образовываться 1 связь типа s-s (между s-электроном атома углерода и s-электроном атома водорода) и 3 p-s-связи (между 3 р-электронами атома углерода и 3 s-электронами 3-х атомов водорода). Отсюда вытекает вывод о неравноценности четырех ковалентных связей, образуемых атомом углерода. Однако, практический опыт химии свидетельствует о том, что все 4 связи в молекуле метана абсолютно равноценны, а молекула метана имеет тетраэдрическое строение с валентными углами 109°, чего не могло бы быть при неравноценности связей. Ведь только орбитали р-электронов ориентированы в пространстве по взаимноперпендикулярным осям x, y, z, а орбиталь s-электрона имеет сферическую форму, поэтому направление образования связи с этим электроном было бы произвольным. Объяснить это противоречие смогла теория гибридизации. Л.Поллинг высказал предположение, что в любых молекулах не существует изолированных друг от друга связей. При образовании связей орбитали всех валентных электронов перекрываются. Известно несколько типов гибридизации электронных орбиталей. Предполагается, что в молекуле метана и других алканов в гибридизацию вступает 4 электрона.

Гибридизация орбиталей атома углерода

Гибридизация орбиталей - это изменение формы и энергии некоторых электронов при образовании ковалентной связи, приводящее к более эффективному перекрыванию орбиталей и повышению прочности связей. Гибридизация орбиталей происходит всегда, когда в образовании связей участвуют электроны, принадлежащие к различным типам орбиталей. 1. sp 3 -гибридизация (первое валентное состояние углерода). При sp3 -гибридизации 3 р- орбитали и одна s-орбиталь возбужденного атома углерода взаимодействуют таким образом, что получаются орбитали абсолютно одинаковые по энергии и симметрично расположенные в пространстве. Это преобразование можно записать так:

s + px+ py + pz = 4sp3

При гибридизации общее число орбиталей не изменяется, а изменяется только их энергия и форма. Показано, что sр3 -гибридизация орбитали напоминают объемную восьмерку, одна из лопастей которой значительно больше другой. Четыре гибридных орбитали вытянуты от центра к вершинам правильного тетраэдра под углами 109,50 . Связи образованные гибридными электронами (например связь s-sp 3) более прочные, чем связи, осуществляемые негибридизованными р-электронами (например, связь-s-p). поскольку гибридная sp3 -орбиталь обеспечивает большую площадь перекрывания электронных орбиталей, чем негибридизованная р-орбиталь. Молекулы, в которых осуществляется sp3 - гибридизация имеют тетраэдрическое строение. К ним, кроме метана, относятся гомологи метана, неорганические молекулы типа аммиака. На рисунках показана гибридизованная орбиталь и тетраэдрическая молекула метана. Химические связи, возникающие в метане между атомами углерода и водорода относятся к типу 2 у-связей (sp3 -s-связь). Вообще говоря любая сигма-связь характеризуется тем, что электронная плотность двух связанных между собой атомов, перекрывается по линии, соединяющей центры (ядра) атомов. у-Связи отвечают максимально возможной степени перекрывания атомных орбиталей, поэтому они достаточно прочны. 2. sp2 -гибридизация (второе валентное состояние углерода). Возникает в результате перекрывания одной 2s и двух 2р орбиталей. Образовавшиеся sp2 -гибридные орбитали располагаются в одной плоскости под углом 1200 друг к другу, а негибридизованная р-орбиталь перпендикулярно к ней. Общее число орбиталей не меняется - их четыре.

s + px + py + pz = 3sp2 + pz

Состояние sp2 -гибридизации встречается в молекулах алкенов, в карбонильной и карбоксильной группах, т.е. у соединений, имеющих в своем составе двойную связь. Так, в молекуле этилена гибридизованные электроны атома углерода образуют 3 у-связи (две связи типа sp 2 -s между атомом углерода и атомами водорода и одна связь типа sp 2 -sp 2 между атомами углерода). Оставшийся негибридизованным р-электрон одного атома углерода образует р-связь с негибридизованным р-электроном второго атома углерода. Характерной особенностью р-связи является то, что перекрывание орбиталей электронов идет вне линии, соединяющей два атома. Перекрывание орбиталей идет выше и ниже у-связи, соединющей оба атома углерода. Таким образом двойная связь является комбинацией у- и р-связей. На первых двух рисунках показано, что в молекуле этилена валентные углы между атомами, образующими молекулу этилена, составляют 1200 (соответственно ориентации с пространстве трех sp2 - гибридных орбиталей). На третьем и четвертом рисунках показано образование р-связи. этилен (образование у-связей) этилен (образование пи-связи) Поскольку площадь перекрывания негибридизованных р-орбиталей в р-связях меньше, чем площадь перекрывания орбиталей в у-связях, то р-связь менее прочна, чем у-связь и легче разрывается в химических реакциях. 3. sp-гибридизация (третье валентное состояние углерода). В состоянии sр-гибридизации атом углерода имеет две sр-гибридные орбитали, расположенные линейно под углом 1800 друг к другу и две негибридизованные р-орбитали расположенные в двух взаимно перпендикулярных плоскостях. sр- Гибридизация характерна для алкинов и нитрилов, т.е. для соединений, имеющих в своем составе тройную связь.

s + px + py + pz = 2sp + py + pz

Так, в молекуле ацетилена валентные углы между атомами составляют 1800 . Гибридизованные электроны атома углерода образуют 2 у-связи (одна связь sp-s между атомом углерода и атомом водорода и другая связь типа sp-sp между атомами углерода. Два негибридизованных р-электрона одного атома углерода образуют две р-связи с негибридизованными р-электронами второго атома углерода. Перекрывание орбиталей р-электронов идет не только выше и ниже у-связи, но и спереди и сзади, а суммарное облако р-электронов имеет цилиндрическую форму. Таким образом тройная связь является комбинацией одной у-связи и двух р-связей. Наличие в молекуле ацетилена менее прочных двух р- связей, обеспечивает способность этого вещества вступать в реакции присоединения с разрывом тройной связи.

Вывод: sp3-гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех р-орбиталей образуются четыре гибридные sp3-орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109°.

Общая и БИОорганическая химия

(конспект лекций)

Часть 2. Органическая химия

Для студентов 1 курса медицинского факультета специальности «Стоматология»

Издательство Российского университета дружбы народов,


У т в е р ж д е н о

РИС Ученого совета

Российского университета дружбы народов

Ковальчукова О.В., Авраменко О.В.

Общая и биоорганическая химия (конспект лекций). Часть 2. Органическая химия. Для студентов 1 курса медицинского факультета специальности «Стоматология». М.: Изд-во РУДН, 2010. 108 с.

Конспект лекций, читаемых для студентов 1 курса медицинского факультета специальности «Стоматология». Составлено в соответствии с программой курса "Общая и биоорганическая химия".

Подготовлено на кафедре общей химии.

© Ковальчукова О.В., Авраменко О.В.

© Издательство Российского университета дружбы народов, 2010


ВВЕДЕНИЕ

Биоорганическая химия – раздел химии, который тесно связан с такими специальными дисциплинами медицинских факультетов вузов, как биохимия, фармакология, физиология, молекулярная биология. Она является областью науки, изучающей строение и механизмы функционирования биологически активных молекул с позиций и представлений органической химии, определяющей закономерности во взаимосвязи строения и реакционной способности органических соединений.

Основное внимание в настоящем курсе лекций уделено классифицированию органических соединений по строению углеродного скелета и природе функциональных групп, закономерностям, связывающим химические строение органических молекул с характером их реакционных центров, связи их электронного и пространственного строения с механизмами химических превращений.

ТЕОРИЯ ХИМИЧЕСКОГО СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Органические соединения – это соединения углерода (кроме наиболее простых), в которых он проявляет валентность IV.

Органическая химия – это химия углеводородов и их производных.

Атом углерода в органических соединениях находится в возбужденном состоянии и имеет четыре неспаренных электрона:

6 С 1s 2 2s 2 2p 2 → 6 С* 1s 2 2s 1 2p 3

Атом углерода в возбужденном состоянии способен:

1) образовывать прочные связи с другими атомами углерода, что приводит к формированию цепей и циклов;

2) вследствие различного типа гибридизации орбиталей формировать простые, двойные и тройные связи между атомами углерода и с другими атомами (H, O, N, S, P и др.);

3) соединяться с четырьмя различными атомами, что приводит к образованию разветвленных углеродных цепочек.

Типы гибридизации атома углерода в органических соединениях

sp 3 – гибридизация

Все четыре валентные орбитали участвуют в гибридизации. Валентный угол 109 о 28’ (тетраэдр). Атомы углерода образуют только простые (σ) связи – соединение насыщенное.

sp 2 – гибридизация

Образуются три гибридные и одна негибридная орбиталь. Валентный угол 120 о (плоские структуры, правильный треугольник). Гибридные орбитали образуют σ–связи. Негибридные орбитали образуют p-связи. sp 2 –Гибридизация характерна для непредельных соединений с одной p - связью.

sp – гибридизация

Образуются две гибридные и две негибридные орбитали. Валентный угол 180 о (линейные структуры). Атом углерода в состоянии sp -гибридизации принимает участие в образовании двух двойных связей или одной тройной связи.

Теория строения органических соединений сформулирована в 1861 г А.М. Бутлеровым и включает следующие положения:

1. Все атомы, входящие в состав молекулы, связаны между собой в строго определенной последовательности в соответствии с их валентностями. Порядок соединения атомов в молекулу обусловливает ее химическое строение .

2. Свойства органических соединений зависят не только от качественного и количественного состава веществ, но и от порядка их соединения (химического строения молекулы).

3. Атомы в молекуле оказывают взаимное влияние друг на друга, т.е. свойства групп атомов в молекуле могут изменяться в зависимости от природы других атомов, входящих в состав молекулы. Группа атомов, определяющая химические свойства органических молекул, носит название функциональная группа .

4. Каждое органическое соединение имеет лишь одну химическую формулу. Зная химическую формулу, можно предсказать свойства соединения, а изучая на практике его свойства, установить химическую формулу.

Органическая молекула

Типы углеродного скелета :

Ациклический:

· разветвленный;

· нормальный (линейный).

Циклический:

· карбоциклический (цикл только из атомов углерода);

· гетероциклический (кроме атомов углерода в цикл входят некоторые другие атомы – азота, кислорода, серы).

Типы атомов углерода в углеводородной цепи:

Н 3 С-СН 2 -СН-С- СН 3

Первичные атомы углерода (соединены в цепи только с одним атомом углерода, является концевым);

Вторичный атом углерода (соединен с двумя соседними атомами углерода, находится в середине цепи);

Третичный атом углерода (находится на разветвлении углеродной цепи, соединен с тремя атомами углерода);

Четвертичный атом углерода (не имеет других заместителей, кроме атомов углерода).

Функциональная группа – особая группа атомов, которая определяет химические свойства соединений.

Примеры функциональных групп:

-ОН –гидроксильная группа (спирты, фенолы);

С=О – карбонильная группа (кетоны, альдегиды);

С - карбоксильнаягруппа (карбоновые кислоты);

-NH 2 – аминогруппа (амины);

-SH – тиольная группа (тиоспирты)

органическое соединение

состав свойства химическое строение

Атомы, входящие в состав органического соединения, могут по-разному соединяться в молекулы. Например, соединению состава С 2 Н 6 О может отвечать два химических соединения, имеющих разные физические и химические свойства:

Состав органического соединения – число атомов различных элементов входящих в его молекулу. Изомеры – соединения, имеющие одинаковый состав, но разное химическое строение. Изомеры обладают различными химическими свойствами.

Типы изомерии

СТРУКТУРНАЯ ИЗОМЕРИЯ

Изомерия углеродной цепи:

Изомерия положения кратных связей:

Межклассовая изомерия:

СТЕРЕОИЗОМЕРИЯ

Геометрическая (пространственная, цис-транс -изомерия соединений с двойными связями):

цис -бутен-2 транс -бутен-2

Геометрическая изомерия возможна в том случае, если каждый из атомов углерода, участвующий в образовании двойной связи, имеет разные заместители. Так, для бутена-1 СН 2 =СН–СН 2 –СН 3 геометрическая изомерия невозможна, так как один из атомов углерода при двойной связи имеет два одинаковых заместителя (атомы водорода).

Геометрическая (пространственная, цис-транс -изомерия циклических предельных соединений):

Геометрическая изомерия возможна в том случае, если хотя бы два атома углерода, образующих цикл, имеют разные заместители.

Оптическая :

Оптическая изомерия – вид стереоизомерии, обусловленный хиральностью молекул. В природе имеются соединения, которые соотносятся как две руки одного человека. Одним из свойств этих соединений является их несовместимость со своим зеркальным отражением. Это свойство называется хиральностью (от греч. « сheir» – рука).

Оптическая активность молекул обнаруживается при действии на них поляризованного света. Если через раствор оптически активного вещества пропустить поляризованный луч света, то произойдет вращение плоскости его поляризации. Оптические изомеры обозначают, используя префиксы d-

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная BeF 2 , CO 2 , NO 2 +
sp 2 3 Треугольная BF 3 , NO 3 - , CO 3 2-
sp 3 4 Тетраэдрическая CH 4 , ClO 4 - , SO 4 2- , NH 4 +
dsp 2 4 Плоскоквадратная Ni(CO) 4 , XeF 4
sp 3 d 5 Гексаэдрическая PCl 5 , AsF 5
sp 3 d 2 6 Октаэдрическая SF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. - М.; Л.: Госхимиздат, 1947. - 440 с.
  • Полинг Л. Общая химия. Пер. с англ. - М .: Мир, 1974. - 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. - Ростов-на-Дону: Феникс, 1997. - С. 397-406. - ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. - М .: Мир, 1975. - 278 с.

См. также

Примечания


Wikimedia Foundation . 2010 .

Гибридизация атомных орбиталей – процесс, позволяющий понять, как атомы видоизменяют свои орбитали при образовании соединений. Так, что же такое гибридизация, и какие ее типы существуют?

Общая характеристика гибридизации атомных орбиталей

Гибридизация атомных орбиталей – это процесс, при котором смешиваются различные орбитали центрального атома, в результате чего образуются одинаковые по своим характеристикам орбитали.

Гибридизация происходит в процессе образования ковалентной связи.

Гибридная орбиталь имеет фору знака бесконечности или несимметричной перевернутой восьмерки, вытянутой в сторону от атомного ядра. Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей.

Рис. 1. Гибридная орбиталь внешний вид.

Впервые идею о гибридизации атомных орбиталей выдвинул американский ученый Л. Полинг. Он считал, что у вступающего в химическую связь атома имеются разные атомные орбитали (s-, p-, d-, f-орбитали), то в результате происходит гибридизация этих орбиталей. Суть процесса заключается в том, что из разных орбиталей образуются эквивалентные друг другу атомные орбитали.

Типы гибридизации атомных орбиталей

Существует несколько видов гибридизации:

  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и одна p-орбиталь. В результате образуются две полноценных sp-орбиталей. Эти орбитали расположены к атомному ядру таким образом, что угол между ними составляет 180 градусов.

Рис. 2. sp-гибридизация.

  • sp2-гибридизация . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и две p-орбитали. В результате происходит образование трех гибридных орбиталей, которые расположены в одной плоскости под углом 120 градусов друг к другу.
  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и три p-орбитали. В результате происходит образование четырех полноценных sp3-орбиталей. Эти орбитали направлены к вершине тетраэдра и располагаются друг к другу под углом 109,28 градусов.

sp3-гибридизация характерна для многих элементов, например, атома углерода и других веществ IVА группы (CH 4 , SiH 4 , SiF 4 , GeH 4 и др.)

Рис. 3. sp3-гибридизация.

Возможны также и более сложные виды гибридизации с участием d-орбиталей атомов.

Что мы узнали?

Гибридизация – сложный химический процесс, когда разные орбитали атома образуют одинаковые (эквивалентные) гибридные орбитали. Первым теорию гибридизации озвучил американец Л. Полинг. Выделяют три основных вида гибридизации: sp-гибридизация, sp2-гибридизация, sp3-гибридизация. Существуют также более сложные виды гибридизации, в которых участвуют d-орбитали.