Избыточность системы триз. Теория решения изобретательских задач (триз). Цели, задачи и функции

Долгое время единственным инструментом решения творческих задач - задач, не имеющих эффективных механизмов решения, - был "метод проб и ошибок". В начале века резко возросла потребность в регулярном решении таких творческих задач, что привело к появлению многочисленных модификаций "метода проб и ошибок".

Наиболее известные из них - различные варианты таких методов, как "мозговой штурм", "синектика", "морфологический анализ", "метод контрольных вопросов", "метод каталога". Суть всех этих методов - повышение интенсивности генерации идей и перебора вариантов. Но существует и противоречие - можно сэкономить время на генерацию идей, но затратить его еще больше на анализ полученных вариантов и выбор наилучшего. Как показывают прошедшие годы и проведенные в разных странах исследования количество полученных этими методами идей никак не связанно с качеством решения проблемы.

Еще в сороковых годах Г.С. Альтшуллер поставил задачу иначе: "Как без многочисленного перебора вариантов решения проблемы выходить сразу на сильные решения?".

Справиться с этой задачей позволяют три принципа, лежащие в основе ТРИЗ .

1. Принцип объективности законов развития систем - строение, функционирование и смена поколений систем подчиняются объективным законам.

Отсюда: сильные решения - это решения, соответствующие объективным законам, закономерностям, явлениям, эффектам.

2. Принцип противоречия - под воздействием внешних и внутренних факторов возникают, обостряются и разрешаются противоречия. Проблема трудна потому, что существует система противоречий - скрытых или явных. Системы эволюционируют, преодолевая противоречия на основе объективных законов, закономерностей, явлений и эффектов.

Отсюда: сильные решения - это решения, преодолевающие противоречия.

3. Принцип конкретности - каждый класс систем, как и отдельные представители внутри этого класса, имеет особенности, облегчающие или затрудняющие изменение конкретной системы. Эти особенности определяются ресурсами: внутренними - теми, на которых строится система, и внешними - той средой и ситуацией, в которых находится система.

Отсюда: сильные решения - это решения, учитывающие особенности конкретных проблемных ситуаций.

Методология решения проблем строится на основе изучаемых ТРИЗ общих законов эволюции, общих принципов разрешения противоречий и механизмов приложения этих общих положений к решению конкретных проблем.

— законов, которые определяют начало жизни технических систем.

Любая техническая система возникает в результате синтеза в единое целое отдельных частей. Не всякое объединение частей дает жизнеспособную систему. Существуют по крайней мере три закона, выполнение которых необходимо для того, чтобы система оказалась жизнеспособной.

Необходимым условием принципиальной жизнеспособности технической системы является наличие и минимальная работоспособность основных частей системы.

Каждая техническая система должна включать четыре основные части: двигатель, трансмиссию, рабочий орган и орган управления. Смысл закона 1 заключается в том, что для синтеза технической системы необходимо наличие этих четырех частей и их минимальная пригодность к выполнению функций системы, ибо сама по себе работоспособная часть системы может оказаться неработоспособной в составе той или иной технической системы. Например, двигатель внутреннего сгорания, сам по себе работоспособный, оказывается неработоспособным, если его использовать в качестве подводного двигателя подводной лодки.

Закон 1 можно пояснить так: техническая система жизнеспособна в том случае, если все ее части не имеют «двоек», причем «оценки» ставятся по качеству работы данной части в составе системы. Если хотя бы одна из частей оценена «двойкой», система нежизнеспособна даже при наличии «пятерок» у других частей. Аналогичный закон применительно к биологическим системам был сформулирован Либихом еще в середине прошлого века («закон минимума»).

Из закона 1 вытекает очень важное для практики следствие.

Чтобы техническая система была управляемой, необходимо, чтобы хотя бы одна ее часть была управляемой.

«Быть управляемой» — значит менять свойства так, как это надо тому, кто управляет.

Знание этого следствия позволяет лучше понимать суть многих задач и правильнее оценивать полученные решения. Возьмем, например, задачу 37 (запайка ампул). Дана система из двух неуправляемых частей: ампулы вообще неуправляемы — их характеристики нельзя (невыгодно) менять, а горелки плохо управляемы по условиям задачи. Ясно, что решение задачи будет состоять во введении в систему еще одной части (вепольный анализ сразу подсказывает: это вещество, а не поле, как, например, в задаче 34 об окраске цилиндров). Какое вещество (газ, жидкость, твердое тело) не пустит огонь туда, куда он не должен пройти, и при этом не будет мешать установке ампул? Газ и твердое тело отпадают, остается жидкость, вода. Поставим ампулы в воду так, чтобы над водой поднимались только кончики капилляров (а.с. № 264 619). Система приобретает управляемость: можно менять уровень воды — это обеспечит изменение границы между горячей и холодной зонами. Можно менять температуру воды — это гарантирует устойчивость системы в процессе работы.

Необходимым условием принципиальной жизнеспособности технической системы является сквозной проход энергии по всем частям системы.

Любая техническая система является преобразователем энергии. Отсюда очевидная необходимость передачи энергии от двигателя через трансмиссию к рабочему органу.

Передача энергии от одной части системы к другой может быть вещественной (например, вал, шестерни, рычаги и т.д.), полевой (например, магнитное поле) и вещественно-полевой (например, передача энергии потоком заряженных частиц). Многие изобретательские задачи сводятся к подбору того или иного вида передачи, наиболее эффективного в заданных условиях. Такова задача 53 о нагреве вещества внутри вращающейся центрифуги. Вне центрифуги энергия есть. Имеется и «потребитель», он находится внутри центрифуги. Суть задачи — в создании «энергетического моста». Такого рода «мосты» могут быть однородными и неоднородными. Если вид энергии меняется при переходе от одной части системы к другой — это неоднородный «мост». В изобретательских задачах чаще всего приходится иметь дело именно с такими мостами. Так, в задаче 53 о нагреве вещества в центрифуге выгодно иметь электромагнитную энергию (ее передача не мешает вращению центрифуги), а внутри центрифуги нужна энергия тепловая. Особое значение имеют эффекты и явления, позволяющие управлять энергией на выходе из одной части системы или на входе в другую ее часть. В задаче 53 нагрев может быть обеспечен, если центрифуга находится в магнитном поле, а внутри центрифуги размещен, например, диск из ферромагнетика. Однако по условиям задачи требуется не просто нагревать вещество внутри центрифуги, а поддерживать постоянную температуру около 2500 С. Как бы ни менялся отбор энергии, температура диска должна быть постоянной. Это обеспечивается подачей «избыточного» поля, из которого диск отбирает энергию, достаточную для нагрева до 2500 С, после чего вещество диска «самоотключается» (переход через точку Кюри). При понижении температуры происходит «самовключение» диска.

Важное значение имеет следствие из закона 2..

Чтобы часть технической системы была управляемой, необходимо обеспечить энергетическую проводимость между этой частью и органами управления.

В задачах на измерение и обнаружение можно говорить об информационной проводимости, но она часто сводится к энергетической, только слабой. Примером может служить решение задачи 8 об измерении диаметра шлифовального круга, работающего внутри цилиндра. Решение задачи облегчается, если рассматривать не информационную, а энергетическую проводимость. Тогда для решения задачи нужно прежде всего ответить на два вопроса: в каком виде проще всего подвести энергию к кругу и в каком виде проще всего вывести энергию сквозь стенки круга (или по валу)? Ответ очевиден: в виде электрического тока. Это еще не окончательное решение, но уже сделан шаг к правильному ответу.

Необходимым условием принципиальной жизнеспособности технической системы является согласование ритмики (частоты колебаний, периодичности) всех частей системы.

Примеры к этому закону приведены в гл.1..

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система — это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система — это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т.д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15–20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к.п.д. двигателя и т.д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т.д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности — это надежный критерий для корректировки задачи и оценки полученного ответа.

Развитие частей системы идет неравномерно; чем сложнее система, тем неравномернее развитие ее частей.

Неравномерность развития частей системы является причиной возникновения технических и физических противоречий и, следовательно, изобретательских задач. Например, когда начался быстрый рост тоннажа грузовых судов, мощность двигателей быстро увеличилась, а средства торможения остались без изменения. В результате возникла задача: как тормозить, скажем, танкер водоизмещением 200 тыс. тонн. Задача эта до сих пор не имеет эффективного решения: от начала торможения до полной остановки крупные корабли успевают пройти несколько миль…

Исчерпав возможности развития, система включается в надсистему в качестве одной из частей; при этом дальнейшее развитие идет на уровне надсистемы.
Об этом законе мы уже говорили.

Она включает законы, отражающие развитие современных технических систем под действием конкретных технических и физических факторов. Законы «статики» и «кинематики» универсальны — они справедливы во все времена и не только применительно к техническим системам, но и к любым системам вообще (биологическим и т.д.). «Динамика» отражает главные тенденции развития технических систем именно в наше время.

Развитие рабочих органов системы идет сначала на макро-, а затем на микроуровне.

В большинстве современных технических систем рабочими органами являются «железки», например винты самолета, колеса автомобиля, резцы токарного станка, ковш экскаватора и т.д. Возможно развитие таких рабочих органов в пределах макроуровня: «железки» остаются «железками», но становятся более совершенными. Однако неизбежно наступает момент, когда дальнейшее развитие на макроуровне оказывается невозможным. Система, сохраняя свою функцию, принципиально перестраивается: ее рабочий орган начинает действовать на микроуровне. Вместо «железок» работа осуществляется молекулами, атомами, ионами, электронами и т.д.

Переход с макро- на микроуровень — одна из главных (если не самая главная) тенденций развития современных технических систем. Поэтому при обучении решению изобретательских задач особое внимание приходится обращать на рассмотрение перехода «макро-микро» и физических эффектов, реализующих этот переход.

Развитие технических систем идет в направлении увеличения степени вепольности.

Смысл этого закона заключается в том, что невепольные системы стремятся стать вепольными, а в вепольных системах развитие идет в направлении перехода от механических полей к электромагнитным; увеличения степени дисперсности веществ, числа связей между элементами и отзывчивости системы.

Многочисленные примеры, иллюстрирующие этот закон, уже встречались при решении задач.

В ТРИЗ понятие ресурсов, как одного из важнейших элементов, появилось довольно поздно, но оно имело "предысторию"

1. В классической формулировке ИКР, присутствовавшей во всех вариантах АРИЗ имелась очень сильная посылка - для решения задачи некоторый содержащийся в ней элемент должен действовать САМ. Например, в формулировке ИКР для АРИЗ-71 это выполнялось следующим образом

а) Объект (указать)

б) Что делает (указать)

в) Как делает (На этот вопрос всегда следует ответить словами «САМ», «САМА», «САМО»)

………………………

В формулировке ИКР АРИЗ-77 «Элемент САМ устраняет вредное воздействие, сохраняя способность выполнять полезное воздействие»

В во всех формулировках есть намек на использование ресурсов элемента. Это явление «элемент САМ» часто обсуждалось между специалистами по ТРИЗ, интуитивно мы всегда работали именно с тем, что позднее было названо изобретательскими ресурсами, но ни определений ни техники работы с ним четко сформулировано не было. Это затрудняло обучение и сильно ограничивало возможности использования.

2. В 1982 г на Петрозаводском съезде специалистов ТРИЗ В.Петров выступил с докладом, в котором предложил понятие . Было выдвинуто и обосновано утверждение о том, что любая реальная система всегда имеет возможности большие, чем это необходимо для ее нормального функционирования. В работе предлагалось изучать системы и выявлять такие возможности для повышения идеальности систем. Были также предложены некоторые правила применения избыточности, даны рекомендации по решению практических задач. Из-за трудного стиля изложения и жесткой критики Альтшуллера это понятие не было принято большинством ТРИЗовцев.

3. В 1984 году Г.Алльтшуллер ввел в ТРИЗ очень важное понятие фактически вытекающее из понятия избыточности систем.

4. Дальнейшее развитие идеи использования ресурсов было проведено в работе С. Вишнепольской, Б. Злотина и А. Зусман, доложенной на ТРИЗ съезде в Петрозаводске в 1985 году. Было высказаны два важные предположения:

Изобретательские ресурсы не ограничиваются только веществами и полями. Были предложены для целенаправленного новые виды ресурсов - энергетические, информационные, пространственные. временные, функциональные и т.п.

Система ресурсов может быть использована как прямой инструмент повышения идеальности систем. Для этого были разработаны методические рекомендации и таблица-алгоритм применения ресурсов при решении задач.

Впоследствии эта работа была дополнительно развита и изложена в книге Г.С. Альтшуллер, Б.Л. Злотин, А.В. Зусман, В.И. Филатов . Эти работы по изучению ресурсов оказались очень хорошо совместимыми с работами на разработке новых приложений для ТРИЗ, которую наша группа проводила в это время.

5. В период 1984 – 85 годы в Кишиневе (ZZ) велась активная разработка ТРИЗ прогнозирования (которое впоследствии получило название «Директед Эволюшен»). Применение понятия «ресурс» при прогнозировании основывается на трех важнейших положениях:

Любой шаг в развитии любой системы, в том числе любое изобретение, становится возможным только благодаря наличию или появлению некоторых ресурсов или способов нового применения имеющихся ресурсов

Любой шаг в развитии любой системы, в том числе любое изобретение, порождает некоторые новые ресурсы и тем самым делает возможным следующие шаги развития. В целом это порождает лавинообразное, постоянно нарастающее развитие технологий.

В любой конкретной системы (области техники, устройства, продукта, технологии, функции и т.п.) на базе исследования всех имеющихся или возможных в данной системе ресурсов может быть построено «исчерпанное множество решений». Конечно, такое множество не может быть создано раз и навсегда, развитие науки, открытие новых эффектов и т.п. способно породить новые ресурсы. Но для практических целей такого исследования, как правило, достаточно чтобы обеспечить подавляющее конкурентное преимущество, например, создать в этой области эффективный патентный зонтик и/или обойти за счет « замены ресурсов» патенты конкурентов

Разработка эффективной техники оперирования с ресурсами породило группу новых возможностей прогнозирования:

Прогнозирование развития функций системы и того, какие ресурсы ей понадобятся и как эти ресурсы могут быть найдены и использованы

Пошаговое прогнозирование развития системы на базе имеющихся у нее ресурсов в направлении повышения использования ресурсов

Развитие и расширение любого патента путем

6. В тот же период в Кишиневе было обнаружено что понятие "ресурсы" очень полезно при решении задач поиска объяснения вредных эффектов (брака, аварий, неудач и т.п.) методом " ». В это время также началась разработка на базе понятия «ресурс», основанной на четырех важнейших положениях:

Любые эффекты (полезные или вредные, неважно), происходящие в системе и механизмы их порождающие вызваны имеющимися в системе или способными на нее воздействовать извне ресурсами и чтобы найти причины и механизмы эффектов надо анализировать ресурсы

Катастрофы, аварии, брак и другие нежелательные явления всегда создаются имеющимися в системе ресурсами или теми ресурсами, которые есть вне системы и могут на нее подействовать. Поэтому анализ ресурсов – лучший способ предсказания и выявления опасностей.

Самые опасные аварии и катастрофы – те, в которых возникает цепная реакция «ресурсы, порождающие ресурсы» то есть по типу: «Не было гвоздя – подкова пропала, не было подковы- лошадь захромала, лошадь захромала – командир убит, конница разбита, армия бежит…». Поэтому выявление таких опасостей требует многошагового анализа ресурсов

Для предотвращения спрогнозированных опасностей наиболее предпочтительно использование ресурсов имеющиеся в самой системе, иногда именно тех, которые и порождают опасности. В большинстве случаев, это вполне возможно за счет изобретательских решений.

7. В 1985 году Юлий и Ингрид Мурашковские опубликовали блестящую пионерскую работу по исследованию развития систем в области искусства «Куда течет Кастальский ключ». Кроме других очень важных находок в «Ключе» была изложена идея «айсберговых веполей» - ментальных структур в которых внешнее воздействие каких-то элементов произведения искусства – зрительных образов, текстов или отдельных специфических слов, мелодий и т.п. служит как бы триггером, спусковым крючком который активирует у зрителя, читателя, слушателя воспоминание о тех или иных блоках информации «сидящих» у него в памяти. И воздействие искусства на человека определяется совместным, очень часто сверхсуммарным эффектом от этого «воспоминания» и новой информации. По сути дела, Мурашковские впервые описали «внутренние информационные ресурсы» человека, которые конечно, могут относится не только к искусству и которые сегодня мы рассматриваем как важную часть эволюционных ресурсов.

8. В 1986 г. Б.Злотин и А.Зусман провели курс "Законы развития" объемом более 60 учебных часов. Стенограмма этого курса, сделанная группой Новосибирских ТРИЗовцев под руководством В. Ладошкина была распространена в основных школах ТРИЗ. В частности в этой работе было подробно описано применение ресурсов. Результаты этой работы были частично изложены в книге Злотин, Зусман "Законы развития и прогнозирование технических систем" (весна 1989). После небольшой доработки редакторского плана эти материалы целиком вошли в книгу Г.Альтшуллер, Б. Злотин, А. Зусман, В. Филатов "Поиск новых идей: от озарения к технологии", вышедшую в конце 1989 года.

9. В дальнейшем разными специалистами по ТРИЗ были введены в использования дополнительные типы и виды ресурсов, в частности

Дифференциальные ресурсы - И.Викентьев

Ресурсы изменения - З.Ройзен

«Диверсионные» ресурсы - С.Вишнепольская

Эволюционные ресурсы - Г.Зайниев

10. Со временем также стало понятно, что разные эффекты, с которыми мы имели дело в ТРИЗ – физические, химические, геометрические и т.п. – суть некоторые ресурсы систем. И возникла идея об изменении ранее сформулированного Альтшуллером закона «Перехода на микро-уровень». Оказалось, что в большинстве случаев реального перехода на микроуровень не происходит, а просто система начинает в дополнение к своим основным ресурсам использовать ресурсы своих подсистем, вплоть до микроуровня, в том числе разных физических и других эффектов, например, намагниченности, фазовых переходов, химических реакций и т.п. Поэтому был сформулирован «

Первый урок данного раздела является введением в основы классической Теории решения изобретательских задач . В нем даются ответы на такие главные вопросы: как и когда возникла ТРИЗ, каковы ее цели и какие проблемы она решает, в каких областях применяется?

Система методик ТРИЗ, как и другие , имеет свою базу и функции, и для того, чтобы понять ее и научиться применять, нужно, в первую очередь, детально изучить методы и принципы решения изобретательских задач, предлагаемые данной теорией. Об этом и будет рассказано ниже.

Краткая история ТРИЗ

«Надо учить творчество» - был уверен Генрих Саулович Альтшуллер. Эту идею он сделал основоположной в системе своих научных приоритетов. Сегодня его учение вызывает интерес не только обобщением многолетнего разнопланового опыта изобретательства, но и практикой самого автора, который, будучи, помимо ученого, инженером, уже в 17 лет получил первый патент, а к 25 годам имел их 10.

Именно заинтересованность Г. Альтшуллера всеми аспектами изобретательства, а не деталями конкретных разработок, стала причиной поиска алгоритма, который давал бы практическое руководство к тому, как сделать изобретение более легким. Автор будущей теории вместе со своим другом Рафаилом Шапиро в 1946 г. решили, что должна существовать некая методика изобретательства и постарались ее найти. Но анализ научной литературы того времени показал, что проблемами творчества интересовалась в основном психология , причем большинство работ имели предметом . Изучив сам метод, друзья убедились в его неэффективности и приступили к выработке собственной «методики изобретательства». В 1947 г. Г. Альтшуллер и Р. Шапиро принялись анализировать историю развития техники с целью выявления закономерностей открытий. В отличие от психологов, которые изучали познавательную деятельность человека как основу изобретения, они сосредоточили внимание на технических системах созданных самим человеком. После рассмотрения десятков тысяч авторских свидетельств и патентов, в 1948 г. родилась первоначальная теория решения изобретательских задач.

О разработанной методике Г. Альтшуллер написал в письме на имя Сталина с предложением начать преподавание. Но в некоторой мере резкие оценки ситуации с изобретательством в СССР высшему руководству страны не понравились. В результате - обвинение, следствие, 25 лет ГУЛАГа. В 1954 г., после реабилитации, Альтшуллер снова начал полноценно работать над ТРИЗ. Как итог, в 1956 г. в журнале «Вопросы психологии» была опубликована его первая статья о теории решения изобретательских задач. В 1970-е гг. произошло признание технологии Альтшуллера, появились первые школы. Вышли из печати такие труды как «40 приемов устранения противоречий (принципы изобретательства)», «Таблица основных приемов для устранения типовых технических противоречий», «Алгоритм решения изобретательских задач (АРИЗ)» и другие.

Сегодня снова наблюдается возрастание интереса к теории и практике ТРИЗ не только в России и странах СНГ, но и в США, Канаде, странах Европы, Юго-Восточной Азии и Южной Америки. Во всем мире создаются компании, которые внедряют практику ТРИЗ в различные сферы деятельности. Особенно это касается промышленности, где методика Альтшуллера используется для получения перспективных решений производственных проблем. Теорию решения изобретательских задач изучают студенты многих специальностей и школьники всех возрастов, существуют обучающие ТРИЗ курсы подготовки для педагогов. В 1989 г. в Петрозаводске Г. Альтшуллер создал и возглавил Ассоциацию ТРИЗ, которая в 1997 г. стала международной.

Подробнее о ТРИЗ, в частности, про историю развития теории, вы можете прочитать в книге «Основы ТРИЗ ».

Цели, задачи и функции

Основная цель ТРИЗ (или даже миссия ) - выявление и использование законов, закономерностей и тенденций развития технических систем. ТРИЗ призван организовать творческий потенциал личности так, чтобы способствовать саморазвитию и поиску решений творческих задач в различных областях. Главная задача ТРИЗ - предложение алгоритма, позволяющего без перебора бесконечных вариантов решений проблемы найти наиболее подходящий вариант, отбросив менее качественные. Или, говоря более простыми словами, ТРИЗ позволяет решить изобретательскую задачу так, чтоб на выходе получить наиболее высокий КПД.

Новейший взгляд предлагает Анатолий Гин, специалист в области ТРИЗ, который разработал 5 принципов современной ТРИЗ-педагогики:

  • Принцип свободы выбора. В любом обучающем или управляющем действии предоставлять ученику право выбора.
  • Принцип открытости. Не только давать знания, но еще и показывать их границы. Использовать в обучении открытые задачи - задачи, стимулирующие самостоятельное генерирование идей.
  • Принцип деятельности. Освоение учениками знаний, умений навыков преимущественно в форме деятельности.
  • Принцип обратной связи. Регулярно контролировать процесс обучения с помощью развитой системы приемов обратной связи.
  • Принцип идеальности. Максимально использовать возможности, знания, интересы самих учащихся с целью повышения результативности и уменьшения затрат в процессе образования.

Бизнес и маркетинг. Так или иначе, нашла свое применение ТРИЗ и в этих областях. Все промышленные предприятия в своей деятельности вынуждены обращаться к информационному фонду ТРИЗ . В нем собраны указатели применения физических, химических и геометрических эффектов, банк типовых приемов устранения технических и физических противоречий, который постоянно пополняется.

Многие компании обращаются к услугам ТРИЗ-консультантов с целью развития навыков поиска решений своими сотрудниками, повышения их . В этом призван помочь особый раздел ТРИЗ, посвященный развитию творческого потенциала человека .

Теория решения изобретательских задач будет полезна и многим управленцам - в 90-е гг. разработчики ТРИЗ пришли к выводу, что законы развития технических систем схожим образом проявляют себя и в развитии других организованных систем, в том числе социальных. Прогрессивным в планировании деятельности также является использование инструментов ТРИЗ в SWOT-анализе. В маркетинговых исследованиях всегда применяется принцип характерный для ТРИЗ - дробление целевой аудитории на категории по социальным, демографическим и другим характеристикам. Он же лежит в основе диаграммы Кано, которая отображает, как предпочтения клиента распределяются в зависимости от категорий качества.

Теория находит свое применение и в других областях, таких как юриспруденция, искусство, литература и другие. Чтобы подробнее познакомиться со спектром задач, решаемых при помощи ТРИЗ, вы можете перейти на страницу с заданиями и примерами ТРИЗ (скоро) .

Проверьте свои знания

Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.