Морфофункциональная характеристика эфферентных проводящих путей. Спинной мозг, морфофункциональная характеристика. Что такое восходящие и нисходящие проводящие пути спинного мозга

Спинной мозг - наиболее древнее образование центральной нервной системы; он впервые появляется у ланцетника

Характерной чертой организации спинного мозга является периодичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков.

Спинной мозг человека имеет 31-33 сегмента: 8 шейных, 12 грудных, 5 поясничных,5 крестцовых 1-3 копчиковых.

Морфологических границ между сегментами спинного мозга не существует. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.

Задние корешки являются афферентными, чувствительными, центростремительными, а передние - эфферентными, двигательными, центробежными (закон Белла-Мажанди).

Афферентные входы в спинной мозг организованы аксонами спинальных ганглиев, лежащих вне спинного мозга, и аксонами симпатического и парасимпатического отделов вегетативной нервной системы.

Первая группа афферентных входов спинного мозга образована чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов. Эта группа рецепторов образует начало так называемой проприоцептивной чувствительности.

Вторая группа афферентных входов спинного мозга начинается от кожных рецепторов: болевых, температурных, тактильных, давления.

Третья группа афферентных входов спинного мозга представлена волокнами от висцеральных органов, это висцеро-рецептивная система.

Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру.

Особенности нейронной организации спинного мозга

Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов. ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога.

Задние рога выполняют главным образом сенсорные функции, от них передаются сигналы в вышележащие центры, в структуры противоположной стороны, либо к передним рогам спинного мозга.

В передних рогах находятся нейроны, дающие свои аксоны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».

В боковых рогах, начиная с I грудного сегмента спинного мозга и до первых поясничных сегментов, располагаются нейроны симпатического, а в крестцовых - парасимпатического отдела вегетативной нервной системы.

Спинной мозг человека содержит около 13 млн. нейронов, из них 3% - мотонейроны, а 97% - вставочные. Функционально нейроны спинного мозга можно разделить на 4 основные группы:

1) мотонейроны, или двигательные, - клетки передних рогов, аксоны которых образуют передние корешки;

2) интернейроны - нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;

3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;

4) ассоциативные клетки - нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами.

В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1-2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга - эта сеть образует так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.Средняя часть серого вещества спинного мозга содержит преимущественно короткоаксонные веретенообразные клетки они выполняют связующую функцию между симметричными отделами сегмента, между клетками его передних и задних рогов.

Мотонейроны. Аксон мотонейрона своими терминалями иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздражения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение. Мотонейроны могут генерировать импульсы с частотой до 200 в секунду.

Интернейроны. Эти промежуточные нейроны, генерирующие импульсы с частотой до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функцией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения. Возбуждение интернейронов, связанных с моторными клетками, оказывает тормозящее влияние на мышцы-антагонисты.

Нейроны симпатического отдела вегетативной нервной системы расположены в боковых рогах грудного отдела спинного мозга, имеют редкую частоту импульсации (3-5 в секунду), парасимпатические нейроны локализуются в сакральном отделе спинного мозга.

При раздражении или поражениях задних корешков наблюдаются опоясывающие боли на уровне метамера пораженного сегмента, снижается чувствительность, исчезают или ослабляются рефлексы. Если происходит изолированное поражение заднего рога, утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняются, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной - прямо в задний столб и по проводящим путям поднимаются вверх.

Поражение переднего рога и переднего корешка спинного мозга приводит к параличу мышц, которые теряют тонус, атрофируются, при этом исчезают рефлексы, связанные с пораженным сегментом.

Поражение боковых рогов спинного мозга сопровождается исчезновением кожных сосудистых рефлексов, нарушением потоотделения, трофическими изменениями кожи, ногтей. Двустороннее поражение парасимпатического отдела на уровне крестцов приводит к нарушению дефекации и мочеиспускания.

Морфофункциональная организация спинного мозга

Спинной мозг – наиболее древний отдел ЦНС позвоночных. Он уже есть у ланцетника, наиболее примитивного представителя хордовых.

Спинной мозг – каудальный отдел ЦНС. Он помещается в позвоночном канале и имеет неодинаковую длину у разных представителей позвоночных.

У человека в каудальном отделе позвоночного канала собираются корешки каудальных отделов спинного мозга, образуя так называемый конский хвост.

Спинной мозг характеризуется сегментарным строением. В спинном мозге выделяют шейный, грудной, поясничный, крестцовый и копчиковый отделы. Каждый отдел состоит из нескольких сегментов. Шейный отдел включает 8 сегментов (С 1 – С 8), грудной – 12 (Th 1 – Th 12), поясничный – 5 (L 1 – L 5), крестцовый – 5 (S 1 – S 5) и копчиковый – 1-3 (Со 1 – Co 3). От каждого сегмента отходят две пары корешков, которые соответствуют одному из позвонков и покидают позвоночный канал через отверстие между ними.

Различают дорсальные (задние) и вентральные (передние) корешки. Дорсальные корешки образованы центральными аксонами первичных афферентных нейронов, тела которых лежат в спинномозговых ганглиях.

Вентральные корешки сформированы аксонами α- и γ-мотонейронов и немиелинизированными волокнами нейронов вегетативной нервной системы. Такое распределение афферентных и эфферентных волокон было установлено независимо друг от друга в начале XIX века Ч. Беллом (1811) и Ф. Мажанди (1822). Различное распределение функций в передних и задних корешках спинного мозга получило название закона Белла-Мажанди. Сегменты спинного мозга и позвонки соответствуют одному метамеру. Нервные волокна пары задних корешков идут не только к своему метамеру, но также выше и ниже – в соседние метамеры. Кожная область, в которой распределяются эти чувствительные волокна, называется дерматомом.

Количество волокон в дорсальном корешке гораздо больше, чем в вентральном.

Нейронные структуры спинного мозга. Центральную часть поперечного среза спинного мозга занимает серое вещество. Вокруг серого вещества располагается белое вещество. В сером веществе выделяют передние, задние и боковые рога, а в белом – столбы (вентральные, дорсальные, латеральные и т.д.).

Нейрональный состав спинного мозга достаточно разнообразен. Выделяют несколько видов нейронов. Тела нейронов спинномозговых ганглиев находятся вне спинного мозга. В спинной мозг входят аксоны этих нейронов. Нейроны спинномозговых ганглиев – это униполярные или псевдоуниполярные нейроны. В спинномозговых ганглиях лежат тела соматических афферентов, иннервирующих в основном скелетные мышцы. Тела других чувствительных нейронов находятся в ткани и в интрамуральных ганглиях автономной нервной системы и обеспечивают чувствительность только внутренних органов. Они бывают двух типов: крупные – диаметром 60-120 мкм и мелкие – диаметром 14-30 мкм. Крупные дают миелинизированные волокна, а мелкие – миелинизированные и немиелинизированные. Нервные волокна чувствительных клеток по скорости проведения и диаметру классифицируются на А-, В- и С-волокна. Толстые миелинизированные А-волокна диаметром от 3 до 22 мкм и скоростью проведения от 12 до 120 м/с подразделяются на подгруппы: альфа-волокна – от мышечных рецепторов, бета-волокна – от тактильных и барорецепторов, дельта-волокна – от терморецепторов, механорецепторов и болевых рецепторов. К волокнам группы В относят миелинизированные волокна средней толщины со скоростью проведения возбуждения 3-14 м/с. По ним в основном передается ощущение боли. К афферентам типа С относят большинство безмиелиновых волокон толщиной не более 2 мкм и скоростью проведения до 2 м/с. Это волокна, которые идут от болевых, хемо- и некоторых механорецепторов.

В сером веществе спинного мозга выделяют следующие элементы:

1) эфферентные нейроны (мотонейроны);

2) вставочные нейроны;

3) нейроны восходящих трактов;

4) интраспинальные волокна чувствительных афферентных нейронов.

Моторные нейроны сосредоточены в передних рогах, где они образуют специфические ядра, все клетки которых посылают свои аксоны к определенной мышце. Каждое двигательное ядро тянется обычно на протяжении нескольких сегментов, поэтому и их аксоны, которые иннервируют одну и ту же мышцу, покидают спинной мозг в составе нескольких вентральных корешков.

В промежуточной зоне серого вещества локализуются вставочные нейроны. Их аксоны распространяются как внутри сегмента, так и в ближайшие соседние сегменты. Вставочные нейроны – разнородная группа, дендриты и аксоны которой не покидают пределов спинного мозга. Вставочные нейроны образуют синаптические контакты только с другими нейронами, и их большинство. На долю вставочных нейронов приходится около 97% от всех нейронов. По размерам они меньше α-мотонейронов, способны к высокочастотной импульсации (выше 1000 в сек.). Для проприоспинальных вставочных нейронов характерно свойство посылать длинные аксоны через несколько сегментов и оканчиваться на мотонейронах. Вместе с тем на эти клетки конвергируют волокна различных нисходящих трактов. Поэтому они являются релейными станциями на пути от вышележащих нейронов к мотонейронам. Особую группу вставочных нейронов образуют тормозные нейроны. К ним относятся, например, клетки Реншоу.

Нейроны восходящих трактов также целиком находятся в пределах ЦНС. Тела этих нейронов расположены в сером веществе спинного мозга.

Центральные окончания первичных афферентов имеют свои особенности. После вступления в спинной мозг афферентное волокно, как правило, дает начало восходящей и нисходящей ветвям, которые могут идти на значительные расстояния по спинному мозгу. Концевые разветвления одного нервного афферентного волокна имеют многочисленные синапсы на одном мотонейроне. Кроме того, установлено, что одно волокно, идущее от рецептора растяжения, образует синапсы почти со всеми мотонейронами данной мышцы.

В дорсальной части дорсального рога располагается желатинозная субстанция Роланда.

Наиболее точное представление о топографии нервных клеток серого вещества спинного мозга дает разделение его на последовательные слои или пластины, в каждой из которых группируются, как правило, однотипные нейроны.

Согласно этим данным, все серое вещество спинного мозга было разделено на 10 пластин (Рексед) (рис. 2.2).

I – краевые нейроны – дают начало спиноталамическому тракту;

II-III – желатинозная субстанция;

I-IV – в целом первичная сенсорная область спинного мозга (афферентация от экстерорецепторов, афферентация от рецепторов кожной и болевой чувствительности);

Рис. 2.2. Деление серого вещества спинного мозга на пластины (по Рекседу)

V-VI – локализуются вставочные нейроны, которые получают входы от задних корешков и нисходящих путей (кортико-спинальный, рубро-спинальный);

VII-VIII – располагаются проприоспинальные вставочные нейроны (от проприорецепторов, волокон вестибуло-спинального и ретикуло-спи-
нального трактов), аксоны проприоспинальных нейронов;

IX – содержит тела α- и γ-мотонейронов, пресинаптические волокна первичных афферентов от мышечных рецепторов растяжения, окончания волокон нисходящих трактов;

X – окружает спинномозговой канал и содержит наряду с нейронами значительное количество глиальных клеток и комиссуральных волокон.

Свойства нервных элементов спинного мозга. Спинной мозг человека содержит примерно 13 миллионов нейронов.

α-мотонейроны – крупные клетки с длинными дендритами, имеющие до 20 000 синапсов, большая часть которых образована окончаниями интраспинальных вставочных нейронов. Скорость проведения по их аксону составляет 70-120 м/с. Характерны ритмические разряды с частотой не выше 10-20 имп/с, что связано с выраженной следовой гиперполяризацией. Это выходные нейроны. Они осуществляют передачу сигналов скелетным мышечным волокнам, выработанных в спинном мозге.

γ-мотонейроны – более мелкие клетки. Диаметр их не более 30-40 мкм, они не имеют непосредственного контакта с первичными афферентами.
γ-мотонейроны иннервируют интрафузальные (внутриверетенные) мышечные волокна.

Они моносинаптически активируются волокнами нисходящих трактов, что играет важную роль в α-, γ-взаимодействии. Скорость проведения по их аксону ниже – 10-40 м/с. Частота импульсов выше, чем у α-мото-
нейронов, – 300-500 имп/с.

В боковых и передних рогах находятся преганглионарные нейроны вегетативной нервной системы – аксоны их направляются к клеткам ганглиев симпатической нервной цепочки и к интрамуральным ганглиям внутренних органов.

Тела симпатических нейронов, аксоны которых образуют преганглионарные волокна, располагаются в интермедиолатеральном ядре спинного мозга. Их аксоны относятся к группе В-волокон. Им свойственна постоянная тоническая импульсация. Одни из этих волокон участвуют в поддержании сосудистого тонуса, а другие обеспечивают регуляцию висцеральных эффекторных структур (гладкой мускулатуры пищеварительной системы, железистых клеток).

Тела парасимпатических нейронов образуют крестцовые парасимпатические ядра. Они располагаются в сером веществе крестцового отдела спинного мозга. Для многих из них характерна фоновая импульсная активность, частота которой возрастает, например, по мере повышения давления в мочевом пузыре.


^ Нервная система: общая морфофункциональная характеристика; источники развития, классификация.

Нервная система обеспечивает регуляцию всех жизненных процессов в организме и его взаимодействие с внешней средой. Анатомически нервную систему делят на центральную и периферическую. К первой относят головной и спинной мозг, вторая объединяет периферические нервные узлы, стволы и окончания.

С физиологической точки зрения нервная система делится на соматическую, иннервирующую все тело, кроме внутренних органов, сосудов и желез, и автономную, или вегетативную, регулирующую деятельность перечисленных органов.

Нервная система развивается из нервной трубки и ганглиозной пластинки. Из краниальной части нервной трубки дифференцируются головной мозг и органы чувств. Из туловищного отдела нервной трубки и ганглиозной пластинки формируются спинной мозг, спинномозговые и вегетативные узлы и хромаффинная ткань организма.

Особенно быстро возрастает масса клеток в боковых отделах нервной трубки, тогда как дорсальная и вентральная ее части не увеличиваются в объеме и сохраняют эпендимный характер. Утолщенные боковые стенки нервной трубки делятся продольной бороздой на дорсальную - крыльную и вентральную - основную пластинку. В этой стадии развития в боковых стенках нервной трубки можно различить три зоны: эпендиму, выстилающую канал, плащевой слой и краевую вуаль. Из плащевого слоя в дальнейшем развивается серое вещество спинного мозга, а из краевой вуали - его белое вещество.

Одновременно с развитием спинного мозга закладываются спинномозговые и периферические вегетативные узлы. Исходным материалом для них служат клеточные элементы ганглиозной пластинки, дифференцирующиеся в нейробласты и глиобласты, из которых образуются нейроны и майтийные глиоциты спинномозговых ганглиев. Часть клеток ганглиозной пластинки мигрирует на периферию в места локализации вегетативных нервных ганглиев и хромаффинной ткани.


  1. ^ Спинной мозг: морфофункциональная характеристика; строение серого и белого вещества.
Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой серединной щелью, а сзади - соединительнотканной перегородкой. Внутренняя часть органа темнее - это его серое вещество. На периферии спинного мозга располагается более светлое белое вещество.

Серое вещество на поперечном сечении мозга представлено в виде буквы «Н» или бабочки. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога.

Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны.

Белое вещество спинного мозга представляет собой совокупность продольно ориентированных преимущественно миелиновых волокон. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.

Среди нейронов спинного мозга можно выделить: нейриты, корешковые клетки, внутренние, пучковые.

В задних рогах различают: губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро. Задние рога богаты диффузно расположенными вставочными клетками. В середине заднего рога располагается собственное ядро заднего рога.

Грудное ядро (ядро Кларка) состоит из крупных вставочных нейронов с сильно разветвленными дендритами.

Из структур заднего рога особый интерес представляют студневидное вещество, которое тянется непрерывно вдоль спинного мозга в I-IV пластинах. Нейроны продуцируют энкефалин - пептид опиоидного типа, ингибирующий болевые эффекты. Студневидное вещество оказывает тормозное действие на функции спинного мозга.

В передних рогах расположены самые крупные нейроны спинного мозга, которые имеют диаметр тела 100-150 мкм и образуют значительные по объему ядра. Это так же, как и нейроны ядер боковых рогов, корешковые клетки. Эти ядра представляют собой моторные соматические центры. В передних рогах наиболее выражены медиальная и латеральная группы моторных клеток. Первая иннервирует мышцы туловища и развита хорошо на всем протяжении спинного мозга. Вторая находится в области шейного и поясничного утолщений и иннервирует мышцы конечностей.


  1. ^ Головной мозг: морфофункциональная характеристика.
Головной мозг – орган ЦНС. Он состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма.

Головной мозг заключен в надежную оболочку черепа. Кроме того, он покрыт оболочками из соединительной ткани – твердой, паутинной и мягкой.

В головном мозге различают серое и белое вещество, но распределение этих двух составных частей здесь значительно сложнее, чем в спинном мозге. Большая часть серого вещества головного мозга располагается на поверхности большого мозга и в мозжечке, образуя их кору. Меньшая часть образует многочисленные ядра ствола мозга.

В состав ствола мозга входят продолговатый мозг, мост, мозжечок и структуры среднего и промежуточного мозга. Все ядра серого вещества ствола мозга состоят из мультиполярных нейронов. Различают ядра черепных нервов и переключательные ядра.

Продолговатый мозг характеризуется присутствием ядер подъязычного, добавочного, блуждающего, языкоглоточного, преддверно-улиткового нервов. В центральной области продолговатого мозга располагается важный координационный аппарат головного мозга - ретикулярная формация.

Мост делится на дорсальную (покрышковую) и вентральную части. Дорсальная часть содержит волокна проводящих путей продолговатого мозга, ядра V-VIII черепных нервов, ретикулярную формацию моста.

Средний мозг состоит из крыши среднего мозга (четверохолмия), покрышки среднего мозга, черного вещества и ножек мозга. Черное вещество получило свое название в связи с тем, что в его мелких веретенообразных нейронах содержится меланин.

В промежуточном мозге преобладает по объему зрительный бугор. Вентрально от него располагается богатая мелкими ядрами гипоталамическая (подбугорная) область. Нервные импульсы к зрительному бугру из головного мозга идут по экстрапирамидному двигательному пути.


  1. ^ Мозжечок: строение и морфофункциональная характеристика.
Мозжечок представляет собой центральный орган равновесия и координации движений. Он связан со стволом мозга афферентными и эфферентными проводящими пучками, образующими в совокупности три пары ножек мозжечка. На поверхности мозжечка много извилин и бороздок, которые значительно увеличивают ее площадь.

Основная масса серого вещества в мозжечке располагается на поверхности и образует его кору. Меньшая часть серого вещества лежит глубоко в белом веществе в виде центральных ядер. В коре мозжечка различают три слоя: наружный - молекулярный, средний - ганглионарный слой, и внутренний - зернистый.

Ганглиозный слой содержит грушевидные нейроны. Они имеют нейриты, которые, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей.

Молекулярный слой содержит два основных вида нейронов: корзинчатые и звездчатые. Корзинчатые нейроны находятся в нижней трети молекулярного слоя. Это неправильной формы мелкие клетки размером около 10-20 мкм. Их тонкие длинные дендриты ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными нейронами. Активность нейритов корзинчатых нейронов вызывает торможение грушевидных нейронов.

Звездчатые нейроны лежат выше корзинчатых и бывают двух типов. Мелкие звездчатые нейроны снабжены тонкими короткими дендритами и слаборазветвленными нейритами, образующими синапсы на дендритах грушевидных клеток. Крупные звездчатые нейроны в отличие от мелких имеют длинные и сильно разветвленные дендриты и нейриты.

Корзинчатые и звездчатые нейроны молекулярного слоя представляют собой единую систему вставочных нейронов, передающую тормозные нервные импульсы на дендриты и тела грушевидных клеток в плоскости, поперечной извилинам. Очень богат нейронами зернистый слой. Первым типом клеток этого слоя можно считать зерновидные нейроны, или клетки-зерна. У них небольшой объем. Клетка имеет 3-4 коротких дендрита. Дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка.

Вторым типом клеток зернистого слоя мозжечка являются тормозные большие звездчатые нейроны. Различают два вида таких клеток: с короткими и длинными нейритами.

Третий тип клеток составляют веретеновидные горизонтальные клетки. Они встречаются преимущественно между зернистым и ганглионарным слоями. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами - моховидными и так называемыми лазящими волокнами. Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей. Они заканчиваются в клубочках зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зерен.

Лазящие волокна поступают в кору мозжечка, по-видимому, по спинно-мозжечковому и вестибуломозжечковому путям. Лазящие волокна передают возбуждение непосредственно грушевидным нейронам.

Кора мозжечка содержит различные глиальные элементы. В зернистом слое имеются волокнистые и протоплазматические астроциты. Во всех слоях в мозжечке имеются олигодендроциты. Особенно богаты этими клетками зернистый слой и белое вещество мозжечка. В ганглионарном слое между грушевидными нейронами лежат глиальные клетки с темными ядрами. Микроглия в большом количестве содержится в молекулярном и ганглионарном слоях.


  1. ^ Предмет и задачи эмбриологии человека.

В эмбриогенезе различают 3 раздела: предзародышевый, зародышевый и ранний послезародышевый.

Актуальными задачами эмбриологии является изучение влияния различных эндогенных и экзогенных факторов микроокружения на развитие, строение половых клеток, тканей, органов и систем.


  1. ^ Медицинская эмбриология.
Эмбриология (от греч. embryon - зародыш, logos - учение) - наука о закономерностях развития зародышей.

Медицинская эмбриология изучает закономерности развития зародыша человека. Особое внимание в курсе гистологии с эмбриологией обращается на источники и механизмы развития тканей, метаболические и функциональные особенности системы мать - плацента - плод, позволяющие устанавливать причины отклонений от нормы, что имеет большое значение для медицинской практики.

Знание эмбриологии человека необходимо всем врачам, особенно работающим в области акушерства. Это помогает в постановке диагноза при нарушениях в системе мать - плод, выявлении причин уродств и заболеваний детей после рождения.

В настоящее время знания по эмбриологии человека используются для раскрытия и ликвидации причин бесплодия, рождения «пробирочных» детей, трансплантации фетальных органов, разработки и применения противозачаточных средств. В частности, актуальность приобрели проблемы культивирования яйцеклеток, экстракорпорального оплодотворения и имплантации зародышей в матку.

Процесс эмбрионального развития человека является результатом длительной эволюции и в определенной степени отражает черты развития других представителей животного мира. Поэтому некоторые ранние стадии развития человека очень сходны с аналогичными стадиями эмбриогенеза более низко организованных хордовых животных.

Эмбриогенез человека - часть его онтогенеза, включающая следующие основные стадии: I - оплодотворение, и образование зиготы; II - дробление и образование бластулы (бластоцисты); III - гаструляцию - образование зародышевых листков и комплекса осевых органов; IV - гистогенез и органогенез зародышевых и внезародышевых органов; V - системогенез.

Эмбриогенез тесно связан с прогенезом (развитие и созревание половых клеток) и ранним постэмбриональным периодом. Так, формирование тканей начинается в эмбриональном периоде и продолжается после рождения ребенка.


  1. ^ Половые клетки: строение и функции мужских и женских половых клеток, основные стадии их развития.
Мужские половые клетки человека - сперматозоиды, или спермии, длиной около 70 мкм, имеют головку и хвост.

Сперматозоид покрыт цитолеммой, которая в переднем отделе содержит рецептор - гликозилтрансферазу, обеспечивающую узнавание рецепторов яйцеклетки.

Головка сперматозоида включает небольшое плотное ядро с гаплоидным набором хромосом, содержащее нуклеопротамины и нуклеогистоны. Передняя половина ядра покрыта плоским мешочком, составляющим чехлик сперматозоида. В нем располагается акросома (от греч. асгоп - верхушка, soma - тело). Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам. В ядре сперматозоида человека содержится 23 хромосомы, одна из которых является половой (X или Y), остальные - аутосомами. Хвостовой отдел сперматозоида состоит из промежуточной, главной и терминальной частей.

Промежуточная часть содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенной по спирали митохондрией. От микротрубочек отходят парные выступы, или «ручки», состоящие из другого белка - динеина. Динеин расщепляет АТФ.

Главная часть (pars principalis) хвоста по строению напоминает ресничку с характерным набором микротрубочек в аксонеме (9*2)+2, окруженных циркулярно ориентированными фибриллами, придающими упругость, и плазмолеммой.

Терминальная, или конечная, часть сперматозоида содержит единичные сократительные филаменты. Движения хвоста бичеобразные, что обусловлено последовательным сокращением микротрубочек от первой до девятой пары.

При исследовании спермы в клинической практике проводят подсчет различных форм сперматозоидов в окрашенных мазках, подсчитывая их процентное содержание (спермиограмма).

По данным Всемирной организации здравоохранения (ВОЗ), нормальными характеристиками спермы человека являются следующие показатели: концентрация 20-200 млн/мл, содержание более 60 % нормальных форм. Наряду с нормальными формами в сперме человека всегда присутствуют аномальные - двужгутиковые, с дефектными размерами головки (макро и микроформы), с аморфной головкой, со сросшимися головками, незрелые формы (с остатками цитоплазмы в области шейки и хвоста), с дефектами жгутика.

Яйцеклетки, или овоциты (от лат. ovum - яйцо), созревают в неизмеримо меньшем количестве, чем сперматозоиды. У женщины в течение полового цикла B4-28 дней) созревает, как правило, одна яйцеклетка. Таким образом, за детородный период образуются около 400 зрелых яйцеклеток.

Выход овоцита из яичника называется овуляцией. Вышедший из яичника овоцит окружен венцом фолликулярных клеток, число которых достигает 3-4 тыс. Он подхватывается бахромками маточной трубы (яйцевода) и продвигается по ней. Здесь заканчивается созревание половой клетки. Яйцеклетка имеет шаровидную форму, больший, чем у спермия, объем цитоплазмы, не обладает способностью самостоятельно передвигаться.

Классификация яйцеклеток основывается на признаках наличия, количества и распределения желтка (lecithos), представляющего собой белково-липидное включение в цитоплазме, используемое для питания зародыша.

Различают безжелтковые (алецитальные), маложелтковые (олиголецитальные), среднежелтковые (мезолецитальные), многожелтковые (полилецитальные) яйцеклетки.

У человека наличие малого количества желтка в яйцеклетке обусловлено развитием зародыша в организме матери.

Строение. Яйцеклетка человека имеет диаметр около 130 мкм. К цитолемме прилежат блестящая, или прозрачная, зона (zona pellucida - Zp) и далее слой фолликулярных клеток. Ядро женской половой клетки имеет гаплоидный набор хромосом с X-половой хромосомой, хорошо выраженное ядрышко, в кариолемме много поровых комплексов. В период роста ооцита в ядре происходят интенсивные процессы синтеза иРНК, рРНК.

В цитоплазме развиты аппарат синтеза белка (эндоплазматическая сеть, рибосомы) и аппарат Гольджи. Количество митохондрий умеренно, они расположены около желточного ядра, где идет интенсивный синтез желтка, клеточный центр отсутствует. Аппарат Гольджи на ранних стадиях развития располагается около ядра, а в процессе созревания яйцеклетки смещается на периферию цитоплазмы. Здесь располагаются производные этого комплекса - кортикальные гранулы, число которых достигает около 4000, а размеры 1 мкм. Они содержат гликозаминогликаны и различные ферменты (в том числе протеолитические), участвуют в кортикальной реакции, защищая яйцеклетку от полиспермии.

Прозрачная, или блестящая, зона (zona pellucida - Zp) состоит из гликопротеинов и гликозаминогликанов. В блестящей зоне содержатся десятки миллионов молекул гликопротеина Zp3, каждая из которых имеет более 400 аминокислотных остатков, соединенных с многими олигосахаридными ветвями. В образовании этой зоны принимают участие фолликулярные клетки: отростки фолликулярных клеток проникают через прозрачную зону, направляясь к цитолемме яйцеклетки. Цитолемма яйцеклетки имеет микроворсинки, располагающиеся между отростками фолликулярных клеток. Фолликулярные клетки выполняют трофическую и защитную функции.



Для контроля над работой внутренних органов, двигательных функций, своевременного получения и передачи симпатических и рефлекторных импульсов, используются проводящие пути спинного мозга. Нарушения в передачи импульсов приводит к серьезным сбоям в работе всего организма.

В чём заключается проводящая функция спинного мозга

Под термином «проводящие пути», подразумевается совокупность нервных волокон, обеспечивающих передачу сигналов в различные центры серого вещества. Восходящие и нисходящие пути спинного мозга выполняют основную функцию – передачу импульсов. Принято различать три группы нервных волокон:
  1. Ассоциативные проводящие пути.
  2. Комиссуральные связи.
  3. Проекционные нервные волокна.
Помимо такого разделения, в зависимости от основной функции, принято различать:

Чувствительные и двигательные пути обеспечивают прочную взаимосвязь между спинным и головным мозгом, внутренними органами, мышечной системой и опорно-двигательным аппаратом. Благодаря быстрой передаче импульсов, все движения тела осуществляются согласованным образом, без ощутимых усилий со стороны человека.

Чем образованы проводящие спинномозговые пути

Основные проводящие пути образованы связками клеток - нейронов. Такое строение обеспечивает необходимую скорость передачи импульсов.

Классификация проводящих путей зависит от функциональных особенностей нервных волокон:

  • Восходящие проводящие пути спинного мозга – считывают и передают сигналы: с кожи и слизистых человека, органов жизнеобеспечения. Обеспечивают выполнение функций опорно-двигательного аппарата.
  • Нисходящие проводящие пути спинного мозга – передают импульсы непосредственно рабочим органам тела человека – мышечным тканям, железам и т.д. Соединены непосредственно с корковой частью серого вещества. Передача импульсов происходит через спинномозговую нейронную связь, к внутренним органам.

Спинной мозг имеет двойное направление проводящих путей, что обеспечивает быструю импульсную передачу информации от контролируемых органов. Проводниковая функция спинного мозга осуществляется благодаря наличию эффективной передачи импульсов по нервной ткани.

В медицинской и анатомической практике принято использовать следующие термины:

Где располагаются проводящие пути мозга спины

Все нервные ткани располагаются в сером и белом веществе, соединяют спинномозговые рога и кору полушарий.

Морфофункциональная характеристика нисходящих проводящих путей спинного мозга ограничивает направление импульсов только в одном направлении. Раздражение синапсов осуществляется от пресинаптической к постсинаптической мембране.

Проводниковой функции спинного и головного мозга соответствуют следующие возможности и расположение основных восходящих и снисходящих путей:

  • Ассоциативные проводящие пути – являются «мостиками», соединяющими участки между корой и ядрами серого вещества. Состоят из коротких и длинных волокон. Первые, находятся в пределах одной половины или доли мозговых полушарий.
    Длинные волокна способны передавать сигналы через 2-3 сегмента серого вещества. В спинномозговом веществе нейроны образуют межсегментарные пучки.
  • Комиссуральные волокна – образуют мозолистое тело, соединяющее новообразованные отделы спинного и головного мозга. Расходятся лучистым способом. Расположены в белом веществе мозговой ткани.
  • Проекционные волокна – место расположения проводящих путей в спинном мозге позволяет импульсам максимально быстро достигать коры полушарий. По характеру и функциональным особенностям, проекционные волокна делятся на восходящие (афферентные пути) и нисходящие.
    Первые разделяют на экстерорецептивные (зрение, слух), проприорецептивные (двигательные функции), интерорецептивные (связь с внутренними органами). Рецепторы располагаются между позвоночным столбом и гипоталамусом.
К нисходящим проводящим путям спинного мозга относятся:

Анатомия проводящих путей достаточно сложна для человека, не имеющего медицинского образования. Но нейронная передача импульсов и является тем, что делает организм человека единым целым.

Последствия повреждений проводящих путей

Чтобы понять нейрофизиологию сенсорных и двигательных путей, следует немного познакомиться с анатомией позвоночника. Спинной мозг имеет структуру, во многом напоминающую цилиндр, окруженный мышечной тканью.

Внутри серого вещества проходят проводящие пути, контролирующие работу внутренних органов, а также двигательные функции. Ассоциативные проводящие пути отвечают за болевые и тактильные ощущения. Двигательные – за рефлекторные функции организма.

В результате травмы, пороков развития или заболеваний спинного мозга, проводимость может снизиться или полностью прекратиться. Происходит это по причине отмирания нервных волокон. Для полного нарушения проводимости импульсов спинного мозга характерна парализация, отсутствие чувствительности конечностей. Начинаются сбои в работе внутренних органов, за которые отвечает поврежденная нейронная связь. Так, при поражении нижней части спинного мозга, наблюдается недержание мочи и самопроизвольная дефекация.

Рефлекторная и проводниковая деятельность спинного мозга нарушается сразу после возникновения дегенеративных патологических изменений. Происходит отмирание нервных волокон, тяжело поддающихся восстановлению. Болезнь быстро прогрессирует и наступает грубое нарушение проводимости. По этой причине приступать к медикаментозному лечению необходимо как можно раньше.

Как восстановить проходимость в спинном мозге

Лечение непроводимости в первую очередь связано с необходимостью прекращения отмирания нервных волокон, а также устранению причин, ставших катализатором патологических изменений.

Медикаментозное лечение

Заключается в назначении препаратов, препятствующих отмиранию клеток мозга, а также достаточному кровоснабжения поврежденного участка спинного мозга. При этом учитываются возрастные особенности проводящей функции спинного мозга, а также серьезность травмы или заболевания.

Для дополнительной стимуляции нервных клеток проводится лечение электрическими импульсами, помогающее поддерживать мышечный тонус.

Хирургическое лечение

Операция по восстановлению проводимости спинного мозга затрагивает два основных направления:
  • Устранение катализаторов, ставших причиной парализации работы нейронных связей.
  • Стимуляция спинного мозга с целью восстановления потерянных функций.
Перед назначением операции проводится общее обследование организма и определение локализации дегенеративных процессов. Так как перечень проводящих путей достаточно большой, нейрохирург стремится сузить поиски с помощью дифференциальной диагностики. При тяжелых травмах крайне важно быстро устранить причины компрессии позвоночника.

Народная медицина при нарушении проводимости

Народные средства при нарушении проводимости спинного мозга, если и используются, должны применяться с особой осторожностью, чтобы не привести к ухудшению состояния пациента.

Особой популярностью пользуются:

Полностью восстановить нейронные связи после травмы достаточно сложно. Многое зависит от быстрого обращения в медицинский центр и квалифицированной помощи нейрохирурга. Чем больше времени пройдет от начала дегенеративных изменений, тем меньше шансов на восстановление функциональных возможностей спинного мозга.

Существует множество работ, посвященных структурно-функциональным изменениям нервной системы при воздействии факторов внешней среды. Как и в других областях знания, результаты этих исследований крайне разноречивы, что связано, в частности, с особенностями организации мозга, которая носит ярко выраженный индивидуальный характер . Для более четкого установления путей структурно-функциональной перестройки этой исключительно сложно организованной системы необходимы экспериментальные модели, сопоставимые в плане влияния на кардинальные пути адаптации изучаемых структур.

Цель исследования заключалась в выявлении диапазона адаптивных морфологических изменений элементов пирамидной, экстрапирамидной систем и сегментарного аппарата мозга при правосторонней перевязке внутренней сонной артерии.

Материал и методы исследования.

Работа произведена на 36 беспородных собаках-самцах, из которых 26 были интактными. 10 животным экспериментально моделировали ишемию посредством односторонней перевязки внутренней сонной артерии. Исследования проводились в соответствии с приказами Минвуза СССР № 742 от 13.11.84 «Об утверждении правил проведения работ с использованием экспериментальных животных» и № 48 от 23.01.85 «О контроле за проведением работ с использованием экспериментальных животных».

В работе были использованы интактные животные (26) и собаки с правосторонней перевязкой внутренней сонной артерии (10).

После выполнения эксперимента животному внутривенно вводили 10% раствор тиопентала натрия (из расчета 0,5 мл на кг массы тела). Взятие материала проводили через 30 минут после остановки сердца. При помощи безопасной бритвы извлекали кору головного мозга (поле Prc1), участок среднего мозга на уровне верхнего двухолмия и четвертый поясничный сегмент спинного мозга. Каждый из отделов разлагали на 3 кусочка. Первый кусочек помещали в 12% раствор формалина для дальнейшей заливки в блоки. Второй кусочек замораживали в охлажденном до -70° жидким азотом изооктане и после изготовления криостатных срезов инкубировали в средах для выявления ферментов. Последний кусочек использовали для электронномикроскопического исследования. Специально заточенной иглой для инъекций диаметром 1,0 мм пунктировали кору, крупноклеточную часть красного ядра (КЯ) и передний рог спинного мозга. Полученный при пункции столбик серого вещества помещали в глутаралдегид.

Результаты исследования и их обсуждение. Одна из особенностей нашей работы заключалась в том, что интактные животные рассматривались не только как контроль, а как полноценная экспериментальная группа. Отсюда и такое большое число собак, составивших ее (26 особей). Это позволило с большей точностью оценить диапазон колебаний важнейших структурно-функциональных показателей элементов ЦНС собак, находящихся в одинаковых условиях и не подвергавшихся экспериментальным воздействиям. Эти показатели сильно варьировали по величине. Так, число клеток с перинуклеарным хроматолизом колебалось у мотонейронов спинного мозга от 4 до 20%, у интернейронов - от 0 до 8%. В крупноклеточной части КЯ колебания этого показателя составили от 4 до 16%, в моторной коре - от 0 до 16%.

Большое количество абсолютных и относительных морфометрических показателей, полученных нами, имело целью рассмотреть особенности неврологической конституции интактных животных. Почти все эти показатели сильно варьировали. Особенно велики были колебания объемов нервных клеток, их ядер, ядер глиальных клеток и глиального индекса. У мотонейронов спинного мозга показатель глиального индекса варьировал от 1,08 до 2,24, в моторной коре - от 1,44 до 3,00. Коэффициент элонгации двигательного нейрона спинного мозга колебался от 1,52 до 2,13, промежуточного - от 1,42 до 2,19, пирамидного нейрона V слоя моторной коры - от 2,70 до 3,26.

На электронномикроскопическом уровне обнаружен полиморфизм ядер и структур цитоплазмы нервных и глиальных клеток, свидетельствующий о разной организации ультраструктур интактного организма.

Воздействие экспериментальной ишемии приводит к характерным изменениям элементов ЦНС. При небольшом количестве клеток с перинуклеарным хроматолизом (в КЯ и моторной коре таких клеток даже меньше, чем у интактных собак), отмечено большее число нейронов, характеризующихся равномерным и тотальным хроматолизом. Так, среди двигательных клеток спинного мозга количество нейронов с тотальным хроматолизом достигает у отдельных собак 12%, в крупноклеточной части КЯ - 16%, в моторной коре - 20%. Такое значительное число клеток коры с тотальным хроматолизом является, по-видимому, одним из морфофункциональных эквивалентов экспериментальной ишемии. Характерно также, что тотальный хроматолиз чаще отмечается в относительно мелких клетках, что скорей всего связано с особенностями их кровоснабжения и метаболизма.

Наряду с этим нельзя не подчеркнуть, что число нормохромных нейронов очень вариабельно и в моторной коре у отдельных собак колеблется от 32 до 68%. Таким образом, адаптация моторной коры к гипоксии носит выраженный индивидуальный характер. Этот факт отмечен и предыдущими исследованиями .

Воздействие экспериментальной ишемии приводит к разнонаправленной динамике объемов нервных клеток в различных отделах ЦНС. Так, объемы двигательных клеток спинного мозга и моторной коры достоверно больше, чем у интактных собак (на 16,5% и 10,5% соответственно, р 0,05), а в КЯ отмечены достоверно меньшие значения этого показателя (на 15,9%, р

Показатель оптической плотности продукта реакции сукцинатдегидрогеназы (СДГ) по сравнению с интактной группой имеет тенденцию к уменьшению, но только в мелкоклеточной части КЯ и в III слое коры отличия оказались достоверными.

Выраженная чувствительность нейронов III слоя к гипоксии отмечена многими авторами, связывающими ее с максимальным уровнем кровоснабжения этого афферентного слоя, на котором конвергируют аксоны вентролатерального ядра талямуса . Гистоэнзиматическая неоднородность нейронов детально изучалась нами в предыдущих исследованиях как в спинном, так и в головном мозге . Типологический анализ выявил меньшую долю «окислительных» клеток в спинном мозге, обеих частях КЯ и во всех слоях коры, кроме V, причем в VI слое их было меньше всего.

Гистоэнзиматический профиль различных нейронных ансамблей, основанный на оптической плотности СДГ, обусловлен разным характером реагирования нервных клеток на дефицит кислородного снабжения.

Ультраструктурные изменения элементов спинного мозга были минимальны, а в нейронах головного мозга

найдено уменьшение числа рибосом и полисом, свидетельствующее о снижении белоксинтетической активности. Аналогичные выводы сделаны на основании комплексных радиоавтографических исследований с применением меченых атомов глюкозы, метионина и уридина . В сателлитах нейронов крупноклеточной части КЯ обнаружена выраженная инвагинация ядерной мембраны, что свидетельствует об усилении биосинтетических процессов . В сателлитах моторной коры обнаружено эксцентричное расположение ядер, в редких случаях фрагментация, извилистость кариолеммы. Известно, что именно олигодендроглия особенно чувствительна к гипоксии, в то время как астроциты проявляют относительную устойчивость к этому фактору . Снижение количества синаптических пузырьков и их агглютинация, а также наличие мембранных включений в пресинаптических отростках свидетельствуют о нарушении проведения нервного импульса, что, по мнению большинства авторов, связано с деполяризацией синаптических мембран, возникающей вследствие повышения внутриклеточной концентрации ионов кальция при гипоксии . Это состояние является обратимым . Предполагается также, что редукция синапсов является одним из ранних механизмов переключения нейронов на уровни взаимодействия, адекватные гипоксическому воздействию .

Появление мембранных включений указывает на глубокую деструкцию отростка и перестройку его липопротеинового комплекса, связанную со снижением синтеза биогенных аминов и фосфолипидов, а также снижением активности окислительных ферментов, в частности, цитохромоксидазы и моноаминоксидазы . Повреждение липидных комплексов приводит к дальнейшему нарушению ионных каналов и изменению содержания в нейроне ионов кальция, калия, натрия и хлора .

Таким образом, воздействие экспериментальной ишемии свидетельствует о значительных изменениях структурно-функционального состояния различных отделов мозга, среди которых преобладают серьезные нарушения окислительного обмена и белоксинтетического аппарата нейрона.

Список литературы

1. Абушов А.М., Сафаров М.И., Меликов Э.М. Влияние гаммалона на ультраструктуру нейронов различных образований головного мозга // Макро- и микроуровни организации мозга. - М: Ин-т Мозга РАМН, 1992. - С.6.

2. боголепова И.Н., Малофеева Л.И. Возрастные изменения нейроно-глиальных соотношений в речедвигательной зоне коры мозга пожилых мужчин//Морфологические ведомости, 2014, в.2, с. 13-18.

3. Воробьева Т.В., Яковлева Н.И. Ультраструктурные изменения синапсов сенсомоторной области коры мозга при гипоксии // Принципы организации центральных механизмов двигательных функций. - М.: Ин-т Мозга ВНЦПЗ АМН СССР. - 1979. - С.15-19.

4. Гусев Е.И., Бурд Г.С., Боголепов Н.Н. и др. Изменения в ЦНС в раннем постишемическом периоде и возможность их фармакологической коррекции // Актуальные вопросы фундаментальной и прикладной медицинской морфологии. - Смоленск: Изд-во Смоленск. мед. ин-та. - 1994. - С. 44.

9. Шаврин В.А., Туманский В.А., Полковников Ю.Ф. Реакция нейронов и глиальных клеток коры большого мозга в ответ на дефицит кровотока и водную нагрузку по данным электронно-микроскопической радиоавтографии D-глюкозы-3Н, D,L-метионина-3Н и уридина-3Н//«Морфология»-Киев: Здоров’я,1986.- вып.10.-С.6-10.

10. Эрастов Е.Р. Гистохимическая организация нейронов спинного мозга. // Морфология, 1998, т.113, в.3, с.136-137.

11. Эрастов Е.Р. Кора больших полушарий. Н.Новгород, Изд-во НГМА, - 2000. - 16 с.

12. Эрастов Е.Р. Морфофункциональная перестройка элементов нервной системы при воздействии различных факторов внешней среды. //Аспекты адаптации. Критерии индивидуальных адаптаций. Закономерности и управление. Н.Новгород, Изд-во НГМА, 2001. -С.152-160.

13. Chalmers G.R., Edgerton V.R. Single motoneuron succinate dehydrogenase activity//J.Histochem.Cytochem.,1989.-Vol.37.- P.1107-1114. 245.

14. Farkas-Bargeton E., Diebler M.F. A topographical study of enzyme maturation in human cerebral neocortex: a histochemical fn biochemical study// Architectonics of cerebral cortex. - New York,1978. - P.175-190.

15. Gajkowska B., Mossakowski M.J. Calcium accumulation in synapses of the rat hippocampus after cerebral ischemia // Neuropat. Pot. - 1992. - V. 30. - ¹2. - P. 111- 125.

16. Hong S.C., Lanzino G., Moto G. et al. Calcium-activated proteolysis in rat neocortex induced by transient focal ischemia // Brain Res. - 1994.- V. 661. - P. 43-50.

17. Regehr W.G, Tank D.W. Dendritic calcium dynamics. // Curr. Opin. Neurobiol. - 1994. - Vol. 4. - P. 373-382.