Приближенные значения величины и погрешности измерений примеры. Приближенное значение величины и погрешности измерений. Приближенные вычисления с помощью дифференциала

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем:

D а = ½а А ½<= D а пред . .

а – D а пред . ≤ А а + D а пред . . (4)

а – D а пред . будет приближенным значением А с недостатком,

а + D а пред приближенным значением А с избытком. Пользуются также краткой записью:

А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбрать возможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

4. Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.



Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

(7)

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред. (8)

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

(9)

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред. (10)

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

О величине относительной ошибки можно примерно судить по количеству верных значащих цифр числа.

Сахалинской области

«Профессиональное училище № 13»

Методические указания к самостоятельной работе обучающихся

Александровск-Сахалинский

Приближенные значения величин и погрешности приближений: Метод указ. / Сост.

ГБОУ НПО «Профессиональное училище №13», - Александровск-Сахалинский, 2012

Методические указания предназначены для обучающихся всех профессий, изучающих курс математики

Председатель МК

Приближенное значение величины и погрешности приближений.

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3/2 можно рассматривать как приближенное значение числа - 8/5 с точностью до 1/5 , поскольку

< а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3/2 есть приближенное значение числа - 8/5 c избытком, так как - 3/2 > - 8/5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.

Погрешности

Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется предельной абсолютной погрешностью приближенной величины a.

Отношение абсолютной погрешности к модулю приближенного значения называется относительной погрешностью приближенного значения. Относительную погрешность обычно выражают в процентах.

Пример. | 1 - 20 | < | 1 | + | -20|.

Действительно,

|1 - 20| = |-19| = 19,

|1| + | - 20| = 1 + 20 = 21,

Упражнения для самостоятельной работы.

1. С какой точностью можно измерять длины с помощью обыкновенной линейки?

2. С какой точностью показывают время часы?

3. Знаете ли вы, с какой точностью можно измерять веc тела на современных электрических весах?

4. а) В каких пределах заключено число а , если его приближенное значение с точностью до 0,01 равно 0,99?

б) В каких пределах заключено число а , если его приближенное значение с недостатком с точностью до 0,01 равно 0,99?

в) В каких пределах заключено число а , если его приближенное значение с избытком с точностью до 0,01 равно 0,99?

5 . Какое приближение числа π ≈ 3,1415 лучше: 3,1 или 3,2?

6. Можно ли приближенное значение некоторого числа с точностью до 0,01 считать приближенным значением того же числа с точностью до 0,1? А наоборот?

7 . На числовой прямой задано положение точки, соответствующей числу а . Указать на этой прямой:

а) положение всех точек, которые соответствуют приближенным значениям числа а с недостатком с точностью до 0,1;

б) положение всех точек, которые соответствуют приближенным значениям числа а с избытком с точностью до 0,1;

в) положение всех точек, которые соответствуют приближенным значениям числа а с точностью до 0,1.

8. В каком случае абсолютная величина суммы двух чисел:

а) меньше суммы абсолютных величин этих чисел;

б) равна сумме абсолютных величин этих чисел?

9. Доказать неравенства:

a) |a - b | < |a | + |b |; б)* |а - b | > ||а | - | b ||.

Когда в этих формулах имеет место знак равенства?

Литература:

1. Башмаков (базовый уровень) 10-11 кл. – М.,2012

2. Башмаков, 10 кл. Сборник задач. - М: Издательский центр «Академия», 2008

3. , Мордкович:Справочные материалы: Книга для учашихся.-2-е изд.-М.: Просвещение, 1990

4. Энциклопедический словарь юного математика/Сост. .-М.: Педагогика,1989

Абсолютное значение разности между приближенным и точным (истинным) значением величины называется абсолютной погрешностью приближенного значения. Например , если точное число 1,214 округлить до десятых, то получим приближенное число 1,2 . В данном случае абсолютная погрешность приближенного числа составит 1,214 – 1,2 = 0,014 .

Но в большинстве случаев точное значение рассматриваемой величины неизвестно, а только приближенное. Тогда и абсолютная погрешность неизвестна. В этих случаях указывают границу , которую она не превышает. Это число называют граничной абсолютной погрешностью. Говорят, что точное значение числа равно его приближенному значению с погрешностью меньшей, чем граничная погрешность. Например , число 23,71 есть приближенное значение числа 23,7125 с точностью до 0,01 , так как абсолютная погрешность приближения равна 0,0025 и меньше 0,01 . Здесь граничная абсолютная погрешность равна 0,01 .*

(* Абсолютная погрешность бывает и положительной и отрицательной. Например , 1,68 ≈ 1,7 . Абсолютная погрешность равна 1,68 – 1,7 ≈ - 0,02 . Граничная погрешность всегда положительна).

Граничную абсолютную погрешность приближенного числа «а » обозначают символом Δа . Запись

х ≈ а ( Δа )

следует понимать так: точное значение величины х находится в промежутке между числами а а и а –Δа, которые называют соответственно нижней и верхней границей х и обозначают Н Гх и В Гх .

Например , если х ≈ 2,3 ( 0,1), то 2,2 < х < 2,4 .

Наоборот, если 7,3 < х < 7,4, то х ≈ 7,35 ( 0,05).

Абсолютная или граничная абсолютная погрешность не характеризуют качество выполненного измерения. Одна и та же абсолютная погрешность может считаться значительной и незначительной в зависимости от числа, которым выражается измеряемая величина.

Например , если измеряем расстояние между двумя городами с точностью до одного километра, то такая точность вполне достаточна для этого измерения, в то же время при измерении расстояния между двумя домами одной улицы такая точность будет недопустимой.

Следовательно, точность приближенного значения величины зависит не только от величины абсолютной погрешности, но и от значения измеряемой величины. Поэтому мерой точности служит относительная погрешность.

Относительной погрешностью называется отношение абсолютной погрешности к величине приближенного числа. Отношение граничной абсолютной погрешности к приближенному числу называют граничной относительной погрешностью ; обозначают её так: Δа/а . Относительную и граничную относительную погрешности принято выражать в процентах .

Например , если измерения показали, что расстояние между двумя пунктами больше 12,3 км , но меньше 12,7 км , то за приближенное значение его принимают среднее арифметическое этих двух чисел, т.е. их полусумму , тогда граничная абсолютная погрешность равна полуразности этих чисел. В данном случае х ≈ 12,5 ( 0,2). Здесь граничная абсолютная погрешность равна 0,2 км , а граничная


1. Числа точные и приближенные. Числа, с которыми мы встречаемся на практике, бывают двух родов. Одни дают истинное значение величины, другие - только приблизительное. Первые называют точными, вторые - приближенными. Чаще всего удобно пользоваться приближенным числом вместо точного, тем более, что во многих случаях точное число вообще найти невозможно.




Результаты действий с числами дают: с приближенными числами приближенные числа. Например. Во время эпидемии 60% жителей Санкт-Петербурга болеют гриппом. Это приблизительно 3млн человек. с точными числами точное числа Например. В аудитории на лекции по математике 65 человек. приближенные числа Например. Средняя температура тела пациента в течение дня 37,3: утро: 37,2 ; день:36,8 ; вечер38.


Теория приближенных вычислений позволяет: 1) зная степень точности данных, оценить степень точности результатов; 2) брать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата; 3) рационализировать процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точность результата.






1) если первая (слева) из отбрасываемых цифр менее 5, то последнюю оставленную цифру не изменяют (округление с недостатком); 2) если первая отбрасываемая цифра больше 5 или равна 5, то последнюю оставленную цифру увеличивают на единицу (округление с избытком). Округление: а) до десятых 12,34 12,3; б) до сотых 3,2465 3,25; 1038,79. в) до тысячных 3,4335 3,434. г) до тысяч; При этом учитывают следующее:


Величины, наиболее часто измеряемые в медицине: масса m, длина l, скорость процесса v, время t, температура t, объём V и т.д. Измерить физическую величину – это значит сравнить её с однородной величиной, принятой за единицу. 9 Единицы измерения физических величин: О с н о в н ы е Длина - 1 м - (метр) Время - 1 с - (секунда) Масса - 1 кг - (килограмм) П р о и з в о д н ы е Объем - 1 м³ - (метр кубический) Скорость - 1 м/с - (метр в секунду)


Приставки к названиям единиц: Кратные приставки - увеличивают в 10, 100, 1000 и т.д. раз г - гекто (×100) к – кило (× 1000) М – мега (×) 1 км (километр) 1 кг (килограмм) 1 км = 1000 м = 10³ м 1 кг = 1000 г = 10³ г Дольные приставки – уменьшают в 10, 100, 1000 и т.д. раз д – деци (×0, 1) с – санти (× 0, 01) м – милли (× 0, 001) 1 дм (дециметр) 1дм = 0,1 м 1 см (сантиметр) 1см = 0,01 м 1 мм (миллиметр) 1мм = 0,001 м Кратные приставки используют при измерении больших расстояний, масс, объемов, скоростей и т. п. Дольные приставки используют при измерении малых расстояний, скоростей, масс, объёмов и т.п.


Для диагностики, лечения, профилактики заболеваний в медицине используется различная измерительная медицинская аппаратура.


Термометр. Во-первых, нужно учесть верхний и нижний пределы измерений. Нижний предел – это минимальное, а верхний – максимальное измеряемое значение. Если неизвестно предполагаемое значение измеряемой величины, лучше взять прибор с «запасом». Например, измерение температуры горячей воды не стоит проводить уличным или комнатным термометром. Лучше найти прибор с верхним пределом 100 °С. Во-вторых, нужно понять, насколько точно должна быть измерена величина. Так как погрешность измерений зависит от цены деления, для более точных измерений выбирается прибор с меньшей ценой деления.


Погрешности измерений. Для измерения разных диагностических параметров величин нужен свой прибор. Например, длину измеряют линейкой, а температуру – термометром. Но линейки, термометры, тонометры и другие приборы бывают разными, поэтому чтобы измерить какую- либо физическую величину, нужно выбрать подходящий именно для этого измерения прибор.


Цена деления прибора. Температуру тела человека нужно определять точно, лекарства вводить строго определенное количество,поэтому Цена делений шкалы измерительного прибора – важная характеристика каждого прибора. Правило для вычисления цены деления прибора.. Чтобы подсчитать цену делений шкалы, нужно: а) выбрать на шкале два ближайших оцифрованных штриха; б) сосчитать количество делений между ними; в) разность значений около выбранных штрихов разделить на количество делений.


Цена деления прибора. Цена деления (50-30)/4=5 (мл) Цена деления: (40-20)/10=2 км/ч, (20-10)/10= 1грм, (39-19)/10=2 LITR, (8-4)/10=0,4 psi, (90-50)/10= 4 темп, (4-2)/10=0,2 с


Определите цену деления приборов: 16


Абсолютная погрешность измерения. При проведении любых измерений неизбежно возникают ошибки. Эти ошибки обусловлены различными факторами. Все факторы можно разделить на три части: ошибки, вызванные несовершенством приборов; ошибки, вызванные несовершенством методов проведения измерений; ошибки обусловленные влиянием случайных факторов, от которых невозможно избавиться. Измеряя какую-либо величину, хочется знать не только её значение, но и то, насколько этому значению можно доверять, насколько оно точно. Для этого необходимо знать, насколько истинное значение величины может отличаться от измеренного. Для этих целей вводится понятие абсолютной и относительной погрешностей.


Абсолютная и относительная погрешности. Абсолютная погрешность показывает, на сколько реальное значение физической величины отличается от измеренного. Она зависит от самого прибора (инструментальная погрешность) и от процесса измерений (погрешность отсчёта по шкале). Инструментальная погрешность должна быть указана в паспорте прибора (как правило, она равна цене деления прибора). Погрешность отсчёта обычно принимают равной половине цены деления. Абсолютной погрешностью приближенной величины называется разность Δ x = |x – x 0 |, где х 0 - приближенное значение, а х – точное значение измеряемой величины или иногда вместо х употребляют А ΔА = |А – А 0 |.


Абсолютная и относительная погрешности. Пример. Известно, что -0,333 приближенное значение для -1/3. Тогда по определению абсолютной погрешности Δ x= |x – x 0 |= | -1/3+0,333 | = | -1/3+33/1000 | = | -1/300 | = 1/300. Во многих практически важных случаях нельзя найти абсолютную погрешность приближения из-за того, что неизвестно точное значение величины. Однако можно указать положительное число, больше которого эта абсолютная погрешность не может быть. Это любое число h,удовлетворяющее неравенству | Δ x | h Оно называется границей абсолютной погрешности.


В этом случае говорят, что величина х приближенно с точностью до h равна x 0. х=х 0 ± h или х 0 - h х х 0 + h


Абсолютные инструментальные погрешности средств измерений


Оценка приборных погрешностей измеряемых величин. Для большинства измерительных приборов, погрешность прибора равна цене его деления. Исключение составляют цифровые приборы и стрелочные измерительные приборы. Для цифровых приборов погрешность указывается в их паспорте и обычно в раз превышает цену деления прибора. Для стрелочных измерительных приборов погрешность определяется их классом точности, который указывается на шкале прибора, и пределом измерений. Класс точности указывается на шкале прибора как число, которое не обведено никакими рамками. Например, на приведенном рисунке класс точности манометра равен 1,5. Класс точности показывает, сколько процентов составляет погрешность прибора от предела его измерений. Для стрелочного манометра предел измерений составляет 3 атм, соответственно погрешность измерения давления равна 1,5% от 3 атм, то есть 0,045 атм. Следует отметить, что для большинства стрелочных приборов их погрешность оказывается равной цене деления прибора. Как и в нашем примере, где цена деления барометра равна 0,05 атм.


Абсолютная и относительная погрешности. Абсолютная погрешность нужна для определения диапазона, в который может попасть истинное значение, но для оценки точности результата в целом она не очень показательна. Ведь измерение длины в 10 м с погрешностью в 1 мм безусловно является весьма точным, в то же время измерение длины в 2 мм с погрешностью в 1 мм очевидно является крайне неточным. Абсолютную погрешность измерения обычно округляют до одной значащей цифры ΔА 0,17 0,2. Численное значение результата измерений округляют так, чтобы его последняя цифра оказалась в том же разряде, что и цифра погрешности А=10,332 10,3


Абсолютная и относительная погрешности. Наряду с абсолютной погрешностью принято рассматривать и относительную погрешность, которая равна отношению абсолютной погрешности к значению самой величины. Относительной погрешностью приближённого числа называется отношение абсолютной погрешности приближённого числа к самому этому числу: Е = Δx. 100% х 0 Относительная погрешность показывает на сколько процентов от самой величины могла произойти ошибка и является показательной при оценки качества результатов эксперимента.


Пример. При измерении длины и диаметра капилляра получили l =(10,0 ±0,1)см, d=(2,5 ±0,1)мм. Какое из этих измерений точнее? При измерении длины капилляра допускается абсолютная погрешность 10мм на 100мм следовательно абсолютная погрешность10/100=0,1=10%. При измерении диаметра капилляра допустимая абсолютная погрешность 0,1/2,5=0,04=4% Следовательно измерение диаметра капилляра выполнено точнее.


Во многих случаях нельзя найти абсолютную погрешность. Следовательно и относительную погрешность. Но можно найти границу относительной погрешности. Любое число δ,удовлетворяющее неравенству | Δ x | / | x о | δ,является границей относительной погрешности. В частности, если h–граница абсолютной погрешности, то число δ= h/| x о |, является границей относительной погрешности приближения x о. Отсюда. Зная границу отн.п-и. δ можно найти границу абсолютной погрешности h. h= δ | x о |


Пример. Известно, что 2=1,41… Найти относительную точность приближенного равенства или границу отн.погрешности приближенного равенства 2 1,41. Здесь х = 2, x о = 1,41, Δ x = 2-1,41. Очевидно 0 Δ x 1,42-1,41=0,01 Δ x/ x о 0,01/1,41=1/141, Граница абс.погрешности равна 0,01, аграница относительной погрешности равна 1/141


Пример. При считывании показаний со шкалы важно, чтобы ваш взгляд падал перпендикулярно шкале прибора, при этом ошибка будет меньше. Для определения показания термометра: 1.определяем количество делений, 2. умножаем их на цену деления 3. учитываем погрешность 4.записываем окончательный результат. t = 20 °С ± 1,5 °С Это означает, что температура лежит в пределах от 18,5° до 21,5°. То есть она может быть, например, и 19, и 20 и 21 градусов Цельсия. Чтобы увеличить точность измерений, принято повторить их не менее трёх раз и вычислить среднее значение измеряемой величины


Н А Х О Ж Д Е Н И Е С Р Е Д Н Е Г О З Н А Ч Е Н И Я Результаты измерений С 1 = 34,5 С 2 = 33,8 С 3 = 33,9 С 4 = 33,5 С 5 = 54,2 а)Найдем среднее значение четырех величин с ср = (с 1 + с 2 + с 3 + с 4):4 с ср = (34,5 + 33,8 + 33,9 + 33,5):4 = 33,925 33,9 б)Найдем отклонение величины от среднего значения Δс = | c – c cp | Δc 1 = | c 1 – c cp | = | 34,5 – 33,9 | = 0,6 Δc 2 = | c 2 – c cp | = | 33,8 – 33,9 | = 0,1 Δc 3 = | c 3 – c cp | = | 33,9 – 33,9 | = 0 Δc 4 = | c 4 – c cp | = | 33,5 – 33,9 | = 0,4


В)Найдем абсолютную погрешность Δc = (c 1 + c 2 + c 3 + c 4):4 Δc = (0,6 + 0,4) :4 = 0,275 0,3 г)Найдем относительную погрешность δ = Δс: с СР δ = (0,3: 33,9) 100% = 0,9 % д) Запишем окончательный ответ с = 33,9 ± 0,3 δ = 0,9%


ДОМАШНЕЕ ЗАДАНИЕ Подготовиться к к практическому занятию по материалам лекции. Выполнить задание. Найти среднее значение и погрешность: а 1 = 3,685 а 2 = 3,247 а 3 = 3,410 а 4 = 3,309 а 5 = 3,392. Создать презентации по темам: «Округление величин в медицине», «Погрешности измерений», «Медицинская измерительная аппаратура»

Сейчас, когда человек владеет мощным арсеналом компьютерной техники (различные калькуляторы, компьютеры и т.п.), соблюдение правил приближенных вычислений особенно важно, чтобы не исказить достоверность результата.

Выполняя любые вычисления, следует помнить о точности результата, которую можно или нужно (если устанавливают) получить. Так, недопустимо производить вычисления с большей точностью, чем это задано данным физической задачи или требуется условиями експерименту1. Например, выполняя математические действия с числовыми значениями физических величин, которые имеют две достоверные (значимые) цифры, нельзя записывать результат расчетов с точностью, что выходит за пределы двух достоверных цифр, даже если в итоге имеем их больше.

Значение физических величин надо записывать, отмечая лишь знаки достоверного результата. Например, если числовое значение величины 39 600 имеет три достоверных знаки (абсолютная погрешность результата равен 100), то результат надо записать в виде 3,96 104 или 0,396 105. В подсчете достоверных цифр не учитываются нули слева от числа.

Чтобы результат вычислений был корректным, его надо округлить, оставляя лишь истинное значение величины. Если числовое значение величины содержит лишние (недостоверные) цифры, которые преобладают заданную точность, то последняя цифра, хранящейся увеличивается на 1 при условии, что избыток (лишние цифры) равна или больше половины значения следующего разряда числа.

В разных числовых значениях нуль может быть как достоверной, так и недостоверной цифрой. Так, в примере б) он является недостоверной цифрой, а в г) - достоверной, значимой. В физике, если хотят подчеркнуть достоверность разряда числового значения физической величины, в стандартном ее выражении указывают «0». Например, запись значения массы 2,10 10-3 кг указывает на три достоверные цифры результата и соответствующую точность измерения, а значение 2,1 10-3 кг только две достоверные цифры.

Следует помнить, что результат действий с числовыми значениями физических величин является приближенным результатом, который учитывает точность расчета или погрешность измерений. Поэтому при приближенных вычислений следует руководствоваться следующими правилами подсчета достоверных цифр:

1. При выполнении арифметических действий с числовыми значениями физических величин в их результате следует брать столько достоверных знаков, сколько их имеет числовое значение с наименьшим количеством достоверных знаков.

2. Во всех промежуточных подсчетах следует сохранять на одну цифру больше, чем их имеет числовое значение с наименьшим количеством достоверных знаков. В конечном итоге эта «дополнительная» цифра отбрасывается путем округления.

3. Если отдельные данные имеют более достоверных знаков, чем другие, их значения предварительно следует округлить (можно сохранить одну «избыточную» цифру) и после этого выполнять действия.