Условие равновесия тела при отсутствии вращения. Равновесие тел, имеющих ось вращения. Развитие молекулярной физики

Пусть тело закреплено на неподвижной оси (п.1.4) и к нему приложена сила одним из двух способов:

1) линия действия проходит через ось вращения. будет уравновешена реакцией и тело находится в равновесии;

2) линия действия не проходит через ось вращения, что приводит к вращению тела.

Приложим к телу силу , вызывающую его вращение в противоположную сторону. При определённых условиях вращение может стать равномерным либо прекратится совсем. Из опытов известно, что это произойдет, если , где d 1 и d 2 – плечи сил и .

Плечо силы (d )относительно оси – кратчайшее расстояние от линии действия силы до этой оси.

Момент силы (М ) – произведение модуля силы на её плечо.

[М ] = 1 Нм

· В данном параграфе момент рассматривается как скалярная величина, а силы и их плечи лежат в плоскости, перпендикулярной оси вращения.

· Момент силы, вращающий тело по часовой стрелке, считают отрицательным, против – положительным.

Условие равновесия известно как правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к нему сил равна нулю.

Полное условие равновесия (для любых тел)

Тело находится в равновесии, если равнодействующая всех приложенных к нему сил равна нулю и сумма моментов этих сил относительно оси вращения также равна нулю.

Виды равновесия

1. Устойчивое равновесие – равновесие, при выходе из которого возникает сила , возвращающая тело в исходное положение.

2. Неустойчивое равновесие – равновесие, при выходе из которого возникает сила , ещё больше отклоняющая тело от исходного положения.



3. Безразличное равновесие – равновесие, при выходе из которого не возникает ни возвращающая, ни отклоняющая сила.

МОЛЕКУЛЯРНАЯ ФИЗИКА

Молекулярная физика – раздел физики, в котором явления изменения состояния тел и веществ объясняют с точки зрения внутреннего строения вещества.

Истоки молекулярной физики

Представления древних

Древние философские школы по-разному объясняли строение тел и веществ. Например, в Китае учёные полагали, что тела состоят из воды, огня, эфира, воздуха и др. Левкипп (V в. до н.э., Греция) и Демокрит (V в. до н.э., Греция) высказали идею о том, что:

1) все тела состоят из мельчайших частиц – атомов;

2) различия между телами определяются либо различием их атомов, либо различием в расположении атомов.

Развитие молекулярной физики

Большой вклад в науку внёс Михаил Васильевич Ломоносов (1711–1765, Россия). Он развил идею молекулярного (атомного) строения вещества и предположил, что:

1) частицы (молекулы) хаотически движутся;

2) скорость движения молекул связана с температурой вещества (чем выше температура, тем выше скорость);

3) должна существовать температура, при которой движение молекул прекращается.

Опыты, проведённые в XIX в., подтвердили правильность его идей.

Опыт Броуна

В 1827 г. ботаник Роберт Броун (1773–1858, Англия) поместил под микроскоп жидкость с мелкими твёрдыми частицами в ней и обнаружил, что:

1) частицы хаотически движутся;

2) чем меньше частица, тем сильнее заметно её движение;

Он пришёл к выводу, что толчки твёрдым частицам дают частицы жидкости при столкновениях. Работами многих учёных складывалось учение о строении и свойствах вещества – молекулярно-кинетическая теория (МКТ), основанное на представлениях о существовании молекул (атомов).

Основные положения МКТ

1) Вещества состоят из частиц: атомов и молекул;

2) частицы хаотически движутся;

3) частицы взаимодействуют друг с другом.

На основе этих положений были объяснены явления: упругость газов, жидкостей и твёрдых тел; переход вещества из одного агрегатного состояния в другое; расширение газов; диффузия и др.

Агрегатное состояние (термодинамическая фаза) – одно из трёх состояний вещества (твёрдое, жидкое, газообразное).

Диффузия – самопроизвольное смешивание веществ.

Определение

Равновесием тела называют такое состояние, когда любое ускорение тела равняется нулю, то есть все действия на тело сил и моментов сил уравновешены. При этом тело может:

  • находиться в состоянии спокойствия;
  • двигаться равномерно и прямолинейно;
  • равномерно вращаться вокруг оси, которая проходит через центр его тяжести.

Условия равновесия тела

Если тело находится в равновесии, то одновременно выполняются два условия.

  1. Векторная сумма всех сил, действующих на тело, равна нулевому вектору : $\sum_n{{\overrightarrow{F}}_n}=\overrightarrow{0}$
  2. Алгебраическая сумма всех моментов сил, действующих на тело, равна нулю: $\sum_n{M_n}=0$

Два условия равновесия являются необходимыми, но не являются достаточными. Приведем пример. Рассмотрим равномерно катящееся без проскальзывания колесо по горизонтальной поверхности. Оба условия равновесия выполняются, однако тело движется.

Рассмотрим случай, когда тело не вращается. Для того, чтобы тело не вращалось и находилось в равновесии, необходимо, чтобы сумма проекций всех сил на произвольную ось равнялась нулю, то есть равнодействующая сил. Тогда тело или находится в спокойствии, или двигается равномерно и прямолинейно.

Тело, которое имеет ось вращения, будет находиться в равновесном состоянии, если выполняется правило моментов сил: сумма моментов сил, которые вращают тело по часовой стрелке, должна равняться сумме моментов сил, которые вращают его против часовой стрелки.

Чтобы получить нужный момент при наименьшем усилии, нужно прикладывать силу как можно дальше от оси вращения, увеличивая тем же плечо силы и соответственно уменьшая значение силы. Примеры тел, которые имеют ось вращения, : рычаг, двери, блоки, коловорот и тому подобное.

Три вида равновесия тел, которые имеют точку опоры

  1. стойкое равновесие, если тело, будучи выведенным из положения равновесия в соседнее ближайшее положение и оставлено в спокойствии, вернется в это положение;
  2. неустойчивое равновесие, если тело, будучи выведенным из положения равновесия в соседнее положение и оставлено в спокойствии, будет еще больше отклоняться от этого положения;
  3. безразличное равновесие - если тело, будучи выведенным в соседнее положение и оставлено в спокойствии, останется в новом своем положении.

Равновесие тела с закрепленной осью вращения

  1. стойким, если в положении равновесия центр тяжести С занимает самое низкое положение из всех возможных ближних положений, а его потенциальная энергия будет иметь наименьшее значение из всех возможных значений в соседних положениях;
  2. неустойчивым, если центр тяжести С занимает наивысший из всех ближних положений, а потенциальная энергия имеет наибольшее значение;
  3. безразличным, если центр тяжести тела С во всех ближних возможных положениях находится на одном уровне, а потенциальная энергия при переходе тела, не изменяется.

Задача 1

Тело A массой m = 8 кг поставлено на шероховатую горизонтальную поверхность стола. К телу привязана нить, перекинутая через блок B (рисунок 1, а). Какой груз F можно подвязать к концу нити, свешивающейся с блока, чтобы не нарушить равновесия тела A? Коэффициент трения f = 0,4; трением на блоке пренебречь.

Определим вес тела ~A: ~G = mg = 8$\cdot $9,81 = 78,5 Н.

Считаем, что все силы приложены к телу A. Когда тело поставлено на горизонтальную поверхность, то на него действуют только две силы: вес G и противоположно направленная реакция опоры RA (рис. 1, б).

Если же приложить некоторую силу F, действующую вдоль горизонтальной поверхности, то реакция RA, уравновешивающая силы G и F, начнет отклоняться от вертикали, но тело A будет находиться в равновесии до тех пор, пока модуль силы F не превысит максимального значения силы трения Rf max, соответствующей предельному значению угла ${\mathbf \varphi }$o(рис. 1, в).

Разложив реакцию RA на две составляющие Rf max и Rn, получаем систему четырех сил, приложенных к одной точке (рис. 1, г). Спроецировав эту систему сил на оси x и y, получим два уравнения равновесия:

${\mathbf \Sigma }Fkx = 0, F - Rf max = 0$;

${\mathbf \Sigma }Fky = 0, Rn - G = 0$.

Решаем полученную систему уравнений: F = Rf max, но Rf max = f$\cdot $ Rn, а Rn = G, поэтому F = f$\cdot $ G = 0,4$\cdot $ 78,5 = 31,4 Н; m = F/g = 31,4/9,81 = 3,2 кг.

Ответ: Масса груза т = 3,2 кг

Задача 2

Система тел, изображённая на рис.2, находится в состоянии равновесия. Масса груза тг=6 кг. Угол между векторами $\widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}=60{}^\circ $. $\left|{\overrightarrow{F}}_1\right|=\left|{\overrightarrow{F}}_2\right|=F$. Найти массу гирь.

Равнодействующая сил ${\overrightarrow{F}}_1и\ {\overrightarrow{F}}_2$ равна по модулю весу груза и противоположна ему по направлению: $\overrightarrow{R}={\overrightarrow{F}}_1+{\overrightarrow{F}}_2=\ -m\overrightarrow{g}$. По теореме косинусов, ${\left|\overrightarrow{R}\right|}^2={\left|{\overrightarrow{F}}_1\right|}^2+{\left|{\overrightarrow{F}}_2\right|}^2+2\left|{\overrightarrow{F}}_1\right|\left|{\overrightarrow{F}}_2\right|{cos \widehat{{\overrightarrow{F}}_1{\overrightarrow{F}}_2}\ }$.

Отсюда ${\left(mg\right)}^2=$; $F=\frac{mg}{\sqrt{2\left(1+{cos 60{}^\circ \ }\right)}}$;

Поскольку блоки подвижные, то $m_г=\frac{2F}{g}=\frac{2m}{\sqrt{2\left(1+\frac{1}{2}\right)}}=\frac{2\cdot 6}{\sqrt{3}}=6,93\ кг\ $

Ответ: масса каждой из гирь равна 6,93 кг

При поступательном движении все точки тела движутся одинаково. Поэтому такое движение можно рассматривать как движение одной точки тела - его центра масс. При этом мы должны считать, что в центре масс сосредоточена вся масса тела и к нему приложена равнодействующая всех сил, действующих на тело. Из второго закона Ньютона следует, что ускорение этой точки равно нулю, если геометрическая сумма всех приложенных к ней сил - равнодействующая этих сил - равна нулю. Это и есть условие равновесия тела при отсутствии вращения.

Для того чтобы тело при отсутствии вращения находилось в равновесии, необходимо, чтобы равнодействующая сил, приложенных к телу, была равна нулю.

Но если геометрическая сумма сил равна нулю, то и сумма проекций векторов этих сил на любую ось тоже равна нулю. Поэтому условие равновесия тела можно сформулировать и так:

Для того чтобы тело при отсутствии вращения находилось в равновесии, необходимо, чтобы сумма проекций приложенных к телу сил на любую ось была равна нулю.

В равновесии, например, находится тело, к которому, как на рисунке 155, приложены две равные силы, действующие вдоль одной прямой, но направленные в противоположные стороны.

Состояние равновесия - это не обязательно состояние покоя. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил, приложенных к телу, оно может двигаться прямолинейно и равномерно. При таком движении тело тоже находится в состоянии равновесия. Например, парашютист, после того как он начал падать с постоянной скоростью, находится в состоянии равновесия.

На рисунке 155 силы приложены к телу не в одной точке. Но мы уже видели, что важна не точка приложения силы, а прямая, вдоль которой она действует. Перенос точки приложения силы вдоль линии ее действия ничего не изменяет ни в движении тела, ни в состоянии равновесия. Ясно, например, что ничего не изменится, если, вместо того чтобы тянуть вагонетку, как это показано на рисунке 156, а, еестанут толкать (рис. 156,б).

Если равнодействующая сил, приложенных к телу, не равна нулю, то, для того чтобы тело находилось в состоянии равновесия, к нему должна быть приложена добавочная сила, равная по модулю равнодействующей, но противоположная ей по направлению.

Поясним это на опыте. Прикрепим к двум точкам верхней перекладины рамы ди-

нанометры 1 и 2 (рис. 157). При помощи нитей в точке О прикрепим груз. Под действием трех сил точка О будет находиться в равновесии. Теперь заменим силы, действующие на точку О со стороны двух динамометров, одной силой. Для этого прикрепим к точке О еще один динамометр 3 и потянем его вверх. Когда стрелки динамометров 1 и 2 установятся на нуле шкалы, на точку О будут действовать только две силы. Одна из них - сила упругости пружины динамометра 3, измеряемая этим динамометром, - является равнодействующей сил Сила тяжести груза равна этой равнодействующей по абсолютной величине и направлена в противоположную сторону. Поэтому точка О находится в равновесии.

Рассмотрим еще один пример. Как удержать в равновесии лодку, на которую действуют течение реки и ветер, дующий от берега (рис. 158)? Найдем равнодействующую сил вызванных ветром и течением воды. Для этого воспользуемся правилом параллелограмма. Диагональ параллелограмма дает величину и

Рис. 157 (см. скан)

направление равнодействующей Для того чтобы лодка была в равновесии, к ней должна быть приложена уравновешивающая сила равная этой равнодействующей, но направленная в противоположную сторону. Такой силой, например, может быть сила натяжения каната, прикрепленного одним концом к носу лодки, а другим к берегу. Если, например, сила, с которой текущая вода действует на лодку, равна 150 н, а сила давления ветра равна 100 н, то равнодействующая этих двух взаимно перпендикулярных сил может быть вычислена по теореме Пифагора:

Лодка, следовательно, может быть удержана канатом, способным выдержать натяжение не менее 180 н.

Задача. Груз массой 100 кг подвешен к кронштейну (рис. 159, а), который состоит из поперечной балки и укосины Определите силы упругости, возникающие в балке и укосине, если .

Решение. Прежде всего выясним, каково происхождение сил, действующих на части кронштейна.

Под действием силы тяжести груз начинает падать вертикально вниз. При этом он увлекает за собой конец В балки. Ясно, что балка и укосина вследствие этого деформируются: балка удлиняется, а укосина сжимается (рис. 159, а). В деформированных частях кронштейна возникают силы упругости, направленные в сторону, противоположную деформации. Эти силы и нужно определить. На рисунке 159 вектор изображает силу упругости в сжатой

укосине, а вектор силу упругости в растянутой балке. Эти силы действуют на точку В, к которой подвешен груз.

Деформации балки и укосины будут увеличиваться до тех пор,пока равнодействующая сил и не уравновесит силу тяжести Тогда точка В будет находиться в равновесии. Следовательно, равнодействующая трех сил, приложенных к точке В: силы тяжести силы и силы равна нулю:

Равна нулю и сумма проекций этих сил на любую ось.

Направим ось X по горизонтали вправо (рис. 159, б), а ось по вертикали вверх. Сила направлена по вертикали, поэтому ее проекция на ось X равна нулю. Проекция силы на ось X равна модулю вектора взятому со знаком Проекция силы на ось X равна . Тогда можно записать:

Проекции всех сил на ось найдем таким же образом. Проекция силы равна нулю, проекция силы равна а проекция силы равна Поэтому

Из уравнении (1) и (2) нетрудно найти силы и

Значение найдем непосредственно из уравнения (2):

Подставив это значение в уравнение (1), получим:

равен 30°.

3. Шар массой 3 кг висит на веревке, прикрепленной к гладкой стене (рис. 161). Определите силу натяжения веревки и силу давления шара на стену. Нить образует со стеной угол 15°,

4. К середине троса длиной 20 м подвешен светильник массой в следствие чего трос провис на 5 см. Определите силы упругости, возникшие в тросе.

5. На наклонной плоскости лежит ящик массой 30 кг. Будет ли ящик соскальзывать вниз, если коэффициент трения ящика о наклонную плоскость равен 0,2? Длина наклонной плоскости 6 м, высота 2 м.

6. Антенная мачта (рис. 162) закреплена оттяжкой АВ, образующей угол 30° с мачтой. Сила, с которой антенна действует на мачту в точке В (натяжение антенны), равна 1000 н. Чему равна сила, сжимающая мачту, и сила, действующая на оттяжку?

Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим

шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел.

Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения.

В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т. д. Если вектор силы Р лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы F, не пересекает ось вращения, то эта сила не может быть уравновешена

силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы Опыт показывает, что если две силы по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тёло находится в равновесии, если выполняется условие:

где - кратчайшие расстояния от прямых, на которых лежат векторы сил (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы М:

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии от оси вращения. Эту единицу называют ньютон-метром

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или? двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия.

В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное.

Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

Равновесие называется неустойчивым, если при небольшом смещении тела из положения равновесия равнодействующая приложенных к нему сил отлична от нуля и направлена от положения равновесия (рис. 46).

Еслн при небольших смещениях тела из первоначального положения равнодействующая приложенных к телу сил остается равной нулю, то тело находится в состоянии безразличного равновесия. В безразличном равновесии находится шар на горизонтальной поверхности (рис. 47).

Тело, имеющее неподвижную ось вращения, находится в устойчивом равновесии, если его центр тяжести расположен ниже оси вращения и находятся на вертикальной прямой, проходящей через ось вращения (рис. 48, а).

При небольшом отклонении от этого положения равновесия алгебраическая сумма моментов сил, действующих на тело, становится отличной от нуля и возникающий момент сил поворачивает тело к первоначальному положению равновесия (рис. 48, б).

Если же центр тяжести находится на вертикальной прямой, проходящей через ось вращения, но расположен выше оси вращения, то равновесие неустойчивое (рис. 49, а, б).

Тело находится в безразличном равновесии, когда ось вращения тела проходит через его центр тяжести (рис. 50).

Равновесие тела на опоре.

Если вертикальная линия, проведенная через центр тяжести С тела, пересекает площадь опоры, то тело находится в равновесии (рис. 51). Если же вертикальная линия, проведенная через центр тяжести, не пересекает площадь опоры, то тело опрокидывается (рис. 52).

Начните вводить часть условия (например, могут ли , чему равен или найти ):

17. Равновесие тел при отсутствии вращения

  • №325. Найдите равнодействующую трех сил по 100 Н каждая, если угол между первой и второй силами равен 60°, а между второй и третьей - 90°.
  • №326. При каком способе подвешивания качелей (рис. 60) веревки будут испытывать меньшее натяжение?
  • β, следовательно, cosβ > cosα и Т1 > Т2. "> №327. Почему туго натянутая бельевая веревка часто обрывается под тяжестью повешенного на нее платья, в то время как слабо натянутая выдерживает тот же груз?
  • №328. Одинаковы ли показания обоих динамометров (рис. 61), одинаковую ли силу давления испытывает ось блока в обоих случаях?
  • №329. Система подвижного и неподвижного блоков находится в равновесии (рис. 62). Что произойдет, если точку А крепления нити передвинуть вправо?
  • №330. Тело массой 2 кг подвешено на нити. К телу привязали другую нить и оттянули ее в горизонтальном направлении. Найдите силу натяжения нити в новом положении равновесия, если сила натяжения горизонтальной нити равна 12 Н.
  • №331. Можно равномерно прямолинейно перемещать тело по горизонтальной поверхности, прикладывая к нему силы, как показано на рисунке 63. Одинаковы ли эти силы, если коэффициент трения одинаков в обоих случаях?
  • №332. На бельевой веревке длиной 10 м висит только один костюм, весящий 20 Н. Вешалка расположена посередине веревки, и эта точка провисает на 10 см ниже горизонтали, проведенной через точки закрепления веревки. Чему равна сила натяжения веревки?
  • №333. Найдите силы, действующие на стержни АВ и ВС (рис. 64), если α = 60°, а масса лампы 3 кг.
  • №334. К концу стержня АС (рис. 65) длиной 2 м, укрепленного шарнирно одним концом к стене, а с другого конца поддерживаемого тросом ВС длиной 2,5 м, подвешен груз массой 120 кг. Найдите силы, действующие па трос и стержень.
  • №335. Электрическая лампа (рис. 66) подвешена на шнуре и оттянута горизонтальной оттяжкой. Найдите силу натяжения шнура и оттяжки, если масса лампы равна 1 кг, а угол α = 60°.
  • №336. Тяжелый однородный шар подвешен на нити, конец которой закреплен на вертикальной стене. Точка прикрепления шара к нити находится на одной вертикали с центром шара. Каков должен быть коэффициент трения между шаром и стенкой, чтобы шар находился в рав
  • №337. Шарик радиусом г и массой m удерживается на неподвижном шаре радиусом R невесомой нерастяжимой нитью длиной l, закрепленной в верхней точке С шара (рис. 67). Других точек соприкосновения между шаром и нитью нет. Найдите силу натяжения нити. Трением