Влияние невесомости. Интересные факты про невесомость. Дыхание в условиях невесомости

Наиболее распространенным фактором среды является естественная гравитация , действие которой проявляется во всех звеньях вселенной (от атомов до галактик), но в большей мере в мега- и макромире по следующей причине. Силы гравитации по сравнению с внутриядерными, внутриатомными и даже внутримолекулярными силами ничтожны (так, гравитационное притяжение между двумя протонами относится к электростатическим силам взаимного отталкивания как 1:10 36), в связи с чем влияние гравитационных сил на биологические объекты должно проявляться лишь на уровне структур, имеющих размеры от микронов и выше. Более мелкие же структуры (например, некоторые бактериофаги) из-за своих слишком малых размеров выходят из-под непосредственного влияния гравитационных сил и живут лишь в поле действия молекулярных электрических сил.

Величина гравитационного воздействия на живой организм напрямую зависит от его собственной массы (с увеличением массы гравитационное воздействие Земли возрастает). Вместе с тем гравитационное поле Земли является одной из немногих констант окружающей среды: с момента зарождения жизни на Земле на протяжении многих миллионов лет изменялись почти все параметры среды – температура, влажность, газовый состав атмосферы, атмосферное давление, спектр достигающих Земли электромагнитных колебаний, за исключением гравитационного воздействия Земли, зависящего от ее массы и размеров. При этом только благодаря стабильному гравитационному полю Земли, атмосфера и водные бассейны удерживаются на ней и не рассеиваются в космическое пространство, во многом предопределяя климатические условия планеты.

Гравитационное воздействие Земли (которое является частью механических условий окружающей среды ) оказывает существенное влияние на процессы развития живых организмов, индуцируя формирование антигравитационных механизмов, уравновешивающих организмы с окружающей средой. Механические условия окружающей среды , действующие на живой организм, складываются из следующих видов сил:

ü гравитационных (земного притяжения, интенсивность которого зависит от собственного веса организма), действуют одновременно на все структуры тела.

ü внутренних (внутримолекулярных и внутриатомных сил)

ü внешних (механических сил, возникающих в теле при сокращении скелетной и гладкой мускулатуры), их действие носит локальный характер, возникает в месте сокращения мышечной ткани и может проявляться в локальной деформации (изменении механического напряжения структур в ограниченных участках тела), либо изменении взаимного расположения одних частей тела относительно других , либо в сообщении телу ускорения , обуславливающему изменение кинетики движения. Действие внешних сил независимо от конечного эффекта приводит к возникновению в теле деформаций, которые могут быть преходящими (упругими, или обратимыми, в случае, если исчезают после прекращения внешней силы) или необратимыми (не исчезающими после применения внешней силы и приводящими к возникновению в теле различного рода травм).

Действие гравитационных сил на организм ощущается в случае затруднения его движения в гравитационном поле (при наличии опоры, силы трения) и проявляется возникновением субъективного ощущения собственного веса. Так, при контакте человека с опорой возникает внешняя сила, действующая на организм в виде реакции опоры, которая распространяется лишь на структуры организма, имеющие непосредственный контакт с опорой; все же остальные структуры продолжают перемещаться в гравитационном поле до тех пор, пока внутри самого тела не возникнут противодействия в виде упругих сил (упругих деформаций, представляющих собой изменение взаимного расположения отдельных элементов тела без нарушения целостности структур), уравновешивающих их массу. Иными словами, действие гравитационных сил на человека, касающегося какой-то опоры (будь-то поверхность земли, пола, кровати), проявляется в его некотором сжатии (под действием земного притяжения), но при этом и развитии в тканях собственного упругого сопротивления (упругих деформаций), препятствующего дальнейшему сжатию. В теле человека и животных деформации, противодействующие сжатию, вызванному земным притяжением, проявляются в виде сжатия и растяжения кожи, надкостницы, мышц, связок, костей, натяжения и смещения каркасных элементов (соединительнотканных оболочек и стромы) и паренхимы органов, перемещения жидкостей в межклеточном пространстве (межклеточных щелях, сосудах, полостях тела и органов), растяжения стенок сосудов в связи с перемещением масс крови и лимфы. В связи с существенными различиями механических свойств разных тканей, а также особенностями анатомического строения тела (предопределяющими механические связи между различными его структурами) возникающие в теле человека деформации являются неоднородными и могут проявляться в виде сжатия, растяжения, сдвига или кручения. При этом в связи с тем, что различные слои тела должны уравновешивать различные массы тела, величина упругих сил в разных слоях тела оказывается неодинаковой (деформации тем сильнее, чем больше величина действующих сил и чем слабее механические связи между структурами тела), и это обуславливает возникновение в теле сложного поля эластических сил, во многом предопределяющего субъективное восприятие веса собственного тела. Наибольшие напряжения возникают в опорно-связочном аппарате , в связи с тем, что, во-первых, через него передается действие внешних сил на организм, а, во-вторых, на него приходится основная нагрузка по уравновешиванию весомой массы органов и тканей тела. Возникновение поля эластических сил в теле человека под действием гравитационного притяжения Земли служит причиной раздражения различных механорецепторов, одни из которых реагируют только на начало процесса упругой деформации тканей, тогда как другие сохраняют свою активность на протяжении всего периода существования поля эластических сил, обуславливая постоянное ощущение человеком собственного веса.

Характер поля эластических сил и выраженность деформаций в теле под действием гравитации не являются постоянными и зависят от положения тела относительно вектора гравитационного поля, площади и области тела, через которую передается реакция опоры , а также от характера движений человека. Так, при вертикальном положении человека кости его нижних конечностей, таза и позвоночника испытывают деформацию сжатия, тогда как в костях верхних конечностей, закрепленных в плечевом поясе, напротив, возникают деформации растяжения. В случае, когда человек сидит , не касаясь опоры ногами , местом приложения внешних сил опоры является поверхность бедер и ягодиц, в которых возникает сжатие, тогда как в голени, наоборот, рястяжение.

Ощущение собственного веса исчезает лишь тогда, когда на тело не действуют никакие внешние силы и соответственно существующие между его структурами механические связи не испытывают никаких напряжений (состояние невесомости ). Подобное состояние возникает в начальный период свободного падения (когда сопротивление воздуха еще столь незначительно, что не оказывает тормозящего действия на тело, и тело перемещается в направлении вектора гравитационного поля с ускорением в 1g) или в космосе, когда космонавты вместе с кораблем находятся в состоянии как бы непрерывного падения (т.н. динамическая невесомость). Таким образом, все случаи динамической невесомости связаны с прекращением действия на тело внешних сил опоры, в результате чего оно начинает перемещаться под действием гравитационного поля земли.

При погружении тела человека в воду поле эластических сил, обусловленное действием гравитации, ослабевает настолько, сколько весит вытесненная телом жидкость. Однако возникающее при этом субъективное ощущение потери веса связано не с прекращением действия внешних сил, обуславливающих эффект веса, а с тем, что выталкивающая сила воды, выступающая в роли внешней силы, действует на большую часть поверхности тела, а не на ограниченную область, как это имеет место когда человек стоит, сидит или лежит на мягкой кровати. Однако, подобно тому, как члены экипажа подводной лодки при погружении ее в воду не теряют своего веса, так и все органы и ткани тела при погружении человека в жидкость продолжают сохранять неизменным свой первоначальный вес, а, следовательно, и упругие напряжения, обусловленные их деформацией. Более того, в состоянии динамической невесомости наши внутренние органы также сохраняют свой вес, что имеет существенное значение в механизме нарушений координации движений тела.

В случае действия на организм человека внешних сил, вызванных ускорением, превышающим ускорение силы тяжести , выраженность деформаций и упругих напряжений, противодействующих этим силам, будет гораздо большей гравитационных деформаций, что может послужить причиной развития необратимых деформаций (травм). Таким образом, с точки зрения физических процессов, вес, перегрузка и динамическая невесомость имеют единую природу и исключительно количественные различия, определяемые величиной внешних сил, действующих на организм и соответственно степенью собственного упругого напряжения тканей. Все они отражают особенности механического состояния тела: выраженность деформаций и напряженность поля эластических сил в теле. Но при этом, если эффект веса возникает в результате механических напряжений в тканях, противодействующих гравитационным силам, то перегрузка – механических напряжений в тканях, противодействующих силам, превосходящим гравитационные. Для динамической невесомости же характерно такое состояние тела, при котором в нем отсутствуют какие-либо механические напряжения, обусловленные действием внешних сил.

Гравитационное поле Земли оказывает наиболее выраженное влияние на процессы эмбриогенеза живых существ, развитие опорно-двигательного аппарата и деятельность сердечно-сосудистой системы. В частности, еще К.Э. Циолковский выдвинул предположение, согласно которому между линейными размерами тела живых существ и величиной гравитационного поля Земли, зависящей от ее размеров, должна существовать обратная зависимость. С одной стороны, чем выше сила гравитационного притяжения, тем меньше будут размеры тела животных, что было экспериментально доказано при культивировании некоторых животных в условиях гипергравитации. С другой стороны, действие гравитационного поля должно проявляться тем сильнее, чем больше масса организмов, в связи с увеличением напряженности поля эластических сил у крупных животных. Дело в том, что с увеличением размеров тела его масса растет пропорционально кубу линейных размеров, тогда как прочность структур тела – пропорционально квадрату линейных размеров. Таким образом, механические свойства тканей уже сами по себе предопределяют конечные размеры биосистемы. Если учесть, что масса наименьшего организма (вируса) отличается от массы наиболее крупного организма (кита) на 23 порядка, то, очевидно, что и влияние сил гравитации на эти организмы должно быть различным. Именно этим, по-видимому, объясняется то, что бактерии могут переносить ускорения даже в 50 000 g, тогда как кит, будучи выброшенным волной на берег, погибает под действием собственной тяжести. Несмотря на то, что размеры организмов определяются многими факторами, тем не менее хорошо известно, что животные-гиганты обитают только в водной среде, где выталкивающая сила воды способствует снятию большей части нагрузки с опорно-двигательного аппарата. Масса даже самых крупных наземных животных – бегемотов и слонов – в десятки раз меньше массы некоторых водных животных. В условиях искусственно создаваемой гравитации, величина которой в несколько раз превышает величину естественной, масса и размеры тела мышей, крыс, хомяков, цыплят даже в процессе онтогенеза оказываются значительно меньшими, чем у животных, выращенных в нормальных условиях. Длительная гипервесомость оказывает заметное влияние на строение костно-опорного аппарата, развитие антигравитационной мускулатуры, массу и размеры большинства органов (за исключением селезенки). Переход из водной в наземную среду обитания по существу представлял собой переход в гипергравитационную среду и был сопряжен с необходимостью не только уравновешивания массы тела, но и постоянного преодоления действия гравитационных сил при локомоциях. Все это в процессе эволюции привело к значительному увеличению массы скелета, появлению хорды, заменившейся в дальнейшем в процессе эволюции позвоночным столбом, и развитию мощной антигравитационной мускулатуры. Данные эволюционной морфологии свидетельствуют о том, что относительная масса скелета у наземных животных и птиц, для которых естественной средой обитания является суша, больше таковой водных животных. Причем у наземных животных и птиц почти 50% от общей массы скелета приходится на те его отделы, которые имеют непосредственное отношение к уравновешиванию силы тяжести. Более того, направление костных трабекул в губчатом веществе большинства костей полностью совпадает с направлением действия упругих сил, вызванных гравитационным полем (расположение трабекул таково, что они всегда "работают" только на сжатие, но не на изгиб или скручивание). Установлено, что расположение даже целых групп костей подчиняется этой же закономерности. Расположение трабекул в костной ткани не является генетически обусловленным, при изменении поля упругих сил происходит перестройка трабекулярной системы (так, при оперативном удалении большеберцовой кости у щенка происходит компенсаторное действию гравитационных сил 5-6-кратное усиление роста соседней малоберцовой кости; в случае неправильно сросшихся переломов также перестраивается трабекулярная система соседних участков кости). Высокие нагрузки всегда ведут к компенсаторному росту костей (закон Вольфа). Рядом исследователей показано, что длительная гипервесомость животных сопровождается утолщением костей, разрастанием соединительной ткани, увеличением содержания коллагена в связочном аппарате (иными словами, резкое усиление напряженности поля эластических сил обуславливает изменения не только функционального, но и морфологического характера). Действие динамической невесомости, напротив, приводит к потере кальция и фосфора костной тканью, уменьшению ее прочности. Проявлением данной закономерности является некоторая редукция скелета у вторично водных млекопитающих (тюленей, дельфинов, китов), у которых выталкивающее действие воды частично компенсирует гравитационное притяжение Земли. Между тем перемещение в воде сопряжено с преодолением значительно большего сопротивления среды и требует соответственно большего развития локомоторной мускулатуры.

Вместе с тем на формирование скелета повлияли не только гравитационные силы, но и характер передвижения животных в среде обитания, предопределяющий сопротивление движению. Если первые обитатели суши использовали преимущественно ундулирующий способ передвижения, то в дальнейшем в качестве основного получил развитие рычажный способ с помощью ходных конечностей. Несмотря на то, что передвижение с помощью конечностей привело к значительному сокращению трения с почвой, благодаря чему при той же мощности локомоторного аппарата затраты энергии, связанные с передвижением тела, значительно уменьшились, тем не менее такая форма локомоций потребовала, с одной стороны, возможности динамической фиксации подвижных сочленений, а, с другой – сохранения нормального положения тела в системе пространственных координат как в состоянии покоя, так и при движениях. Все это обусловило развитие специальных мышечных групп и формирование центров автоматического поддержания тонуса мускулатуры со сложной системой статических и статокинетических рефлексов. Отмеченные изменения достигли наибольшей выраженности у человека в связи с вертикальной позой. Влияние силы тяжести при вертикальном положении человека привело к более выраженному развитию ряда структур, обеспечивающих уравновешивание массы тела, а также тканей, выполняющих роль амортизационных устройств (межпозвоночные диски, мениски), появлению изогнутости позвоночного столба, сводчатости стопы, значительному развитию тазовых костей, обеспечивающих наряду с мышцами живота уравновешивание массы органов брюшной полости. Ортостаз человека обуславливает повышенную нагрузку не только на нижние конечности, но и на осевой скелет.

Таким образом, изменение кинетики роста, размеров тела, структурной организации костной ткани под влиянием гравитационных воздействий представляет собой лишь завершающий этап целой цепи процессов, начальным звеном которых являются изменения физиолого-биохимического характера. Пусковым механизмом этих реакций являются происходящие в различных структурах тела изменения напряженности поля эластических сил.

Наряду с костной системой, большой вклад в уравновешивание механических условий окружающей среды вносит скелетная мускулатура, фило- и онтогенетическое развитие которой во многом предопределяется действием гравитационных сил и характером передвижения животных. Выход животных на сушу обусловил резкое увеличение весовой нагрузки на костно-опорный аппарат, что вызвало компенсаторное усиление мышц-разгибателей и усложнение организации деятельности всей антигравитационной мускулатуры. Если у водоплавающих животных сохранение равновесия достигается сравнительно легко даже при неустойчивом равновесии, когда центр тяжести находится выше геометрического центра тела, то у наземных организмов достижение равновесия оказалось возможным лишь при условии постоянного перераспределения тонуса антигравитационной мускулатуры, обеспечивающей уравновешивание различных областей тела.

Развитие рычажного способа передвижения и удлинение конечностей привело к перемещению центра тяжести на значительное расстояние от поверхности земли, что потребовало не только обеспечение постоянного противодействия силе тяжести, но и сохранение равновесия тела как в состоянии покоя, так и при перемещениях отдельных его частей в связи с изменением позы и локомоциями. Передвижение с помощью конечностей связано с необходимостью постоянного преодоления поля гравитационных сил, так как при такой форме движения происходит постоянное перемещение массы тела относительно направления гравитационного поля. Все это в процессе эволюции привело к значительному развитию скелетной мускулатуры, на долю которой у большинства наземных организмов приходится до 40% от массы тела. Наибольшее развитие получила экстензорная мускулатура, формирование которой начинается раньше в процессе онтогенеза, а атрофия в старости происходит позже. Причем для создания постоянного антигравитационного усилия нужна экстензорная мускулатура с преобладанием медленных фазных единиц, способных к длительному тоническому напряжению.

Влияние естественной гравитации на сердечно-сосудистую систему человека осуществляется прямым и опосредованным путем. Прямое действие гравитационных сил связано с непосредственным их влиянием на массу крови (т.е. с появлением весомой массы крови под действием силы тяжести) и проявляется в возникновении гидростатического давления. Опосредованное действие гравитации на аппарат кровообращения состоит в том, что механические условия окружающей среды создают определенный запрос на развитие и функционирование антигравитационной мускулатуры, во многом определяющей уровень энергозатрат организма, а, следовательно, и интенсивность работы сердечно-сосудистой системы, от которой зависит доставка к периферическим тканям субстратов окисления и кислорода. Уровень доставки питательных веществ и кислорода, в свою очередь, определяет не только массу циркулирующей крови, но и в определенной мере степень развития всей сердечно-сосудистой системы, в том числе и размеры сердца. Наличие такой взаимосвязи подтверждается четкой взаимозависимостью, существующей у различных представителей позвоночных, между величиной сердца и весовыми особенностями тех отделов скелета, которые обеспечивают уравновешивание силы тяжести. Так, с увеличением роста животного организма увеличиваются и размеры сердца, масса циркулирующей крови и величина артериального давления. В частности, у жирафов при росте 3,5-4 метра давление в артериях дистальных отделов конечностей составляет 350-400 мм рт.ст. Такое высокое гидростатическое давление необходимо для обеспечения достаточного для нормального кровоснабжения давления в артериях головного мозга, поскольку из-за большой удаленности головного мозга от сердца (при расстоянии по вертикали от сердца до головного мозга в 1,2-1,4 метра), величина гидростатического давления на этом участке сосудистого русла падает на 90-100 мм рт.ст. Кроме гораздо более высокого, чем у других млекопитающих, артериального давления, для жирафов характерно наличие клапанов в артериях шеи, препятствующих обратному току крови в период диастолы, который возможен из-за значительного градиента давления в данной части сосудистого русла. Наконец, у этих млекопитающих имеет место более низкое расположение сердца, благоприятствующее венозному притоку к правому предсердию, а также исключительно жесткая кожа на конечностях, практически исключающая возможность растяжения венозных сосудов и депонирования в них крови. В строении сердечно-сосудситой системы тетрапод (ленивцев, летучих мышей и некоторых других), для которых нахождение головой вниз является вполне естественным, имеется также ряд существенных особенностей, предотвращающих развитие у них нарушений мозгового кровообращения при необычном направлении действия гидростатических сил.

Вертикальная поза человека и достаточно большие конечные размеры его тела обусловили значительные эволюционные перестройки в аппарате кровообращения. Так, в связи с тем, что крупные магистральные сосуды расположены вдоль вертикальной оси тела, наибольшей величины гидростатическое давление при вертикальной позе достигает в сосудах нижних конечностей, что обеспечивает увеличение и венозного давления, а, значит, само по себе облегчает венозный возврат от нижних конечностей к сердцу (из-за повышения градиента давления между венами нижних конечностей и венами, доставляющими кровь к сердцу). В то же время при одинаковой степени повышении давления в артериях и венах емкость вен в силу большей растяжимости их стенок возрастает в несколько раз больше, чем артерий, что может способствовать возникновению некоторого венозного застоя при длительном вертикальном положении тела. Между тем, препятствуют значительному венозному застою клапаны, имеющиеся в изобилии в венах нижних конечностей, а способствует венозному оттоку из нижних конечностей сдавливающее вены сокращение окружающих их скелетных мышц конечностей, имеющее место при ходьбе, беге, любых позных движениях. В случае же прекращения мышечной активности, в особенности, сочетающейся со снижением тонуса венозных сосудов, длительный ортостаз из-за скопления крови в нижних конечностях и нарушения ее притока к правой половине сердца может послужить причиной коллапса. Резкая перемена положения тела в пространстве с горизонтального на вертикальное приводит к первоначальному уменьшению венозного возврата по сосудам нижних конечностей и венам туловища, лежащим ниже уровня сердца, что сопровождается уменьшением кровенаполнения правой половины сердца, значительным уменьшением ударного объема сердца (до 45%) и минутного объема кровотока (на 20-40%, до 1-1,5 л/мин). Компенсаторно с целью нормализации кислородного снабжения тканей возрастает артерио-венозная разность по кислороду (почти на 70% по сравнению с исходным уровнем) и запускаются рефлекторные реакции в ответ на снижение активности прессорецепторов магистральных сосудов (вследствие снижения системного артериального давления) и повышения активности хеморецепторов магистральных сосудов (пониженным рО 2 и повышенным рСО 2). Отмеченные рефлекторные реакции проявляются в активации прессорного отдела сосудодвигательного центра и симпатических центров регуляции деятельности сердца, что приводит к возникновению тахикардии (способствующей нормализации минутного объема кровотока), повышению тонуса артериол, преходящим увеличением тонуса вен, а также интенсификацией присасывающего действия грудной клетки (вследствие усиления дыхания в ответ на повышение активности хеморецепторов сосудистого русла). При этом, если сердечный компонент компенсаторных реакций начинает проявляться почти одновременно с возникновением изменений гидростатических условий, то сосудистый – достигает своего максимума лишь через 10-20 с, тогда как основную роль в компенсации гемодинамических сдвигов в данный момент времени играет сокращение мышц нижних конечностей и живота, которое может обеспечить значительное повышение давление в сосудах брюшной полости и стремление к нормализации венозного возврата крови к сердцу. Сокращение же мышц нижних конечностей (преимущественно экстензорных, т.е. антигравитационных) возникает рефлекторно с целью поддержать ортостаз.

Если в начальный период ортостаза компенсация гемодинамических сдвигов обеспечивается преимущественно рефлекторным путем, то при длительном пребывании человека в вертикальном положении уравновешивание гидростатического давления достигается благодаря дополнительному подключению гуморальных механизмов, действие которых следует рассматривать как проявление адаптационных реакций организма, направленных на изменение емкости сосудистой системы и объема циркулирующей крови до уровня, соответствующего обменным процессам организма. Сущность этих гуморальных механизмов, принимающих участие в поддержании необходимого уровня артериального давления и объема циркулирующей крови, состоит в увеличении продукции антидиуретического гормона передним гипоталамусом, альдостерона клубочковой зоной коры надпочечников (секреция их возрастает в ответ на снижение артериального давления и соответственно активности прессорецепторов магистральных сосудов, способствуют уменьшению диуреза и увеличению объема циркулирующей крови) и активации ренин-ангиотензиновой системы (выброс ренина усиливается в ответ на понижение давления в приносящих артериолах почечных клубочков, оказывает влияние как на тонус артериол, так и на объем циркулирующей крови).

Энциклопедичный YouTube

  • 1 / 5

    В условиях невесомости на борту космического аппарата многие физические процессы (конвекция, горение и т. д.) протекают иначе, чем на Земле. Отсутствие силы тяжести, в частности, требует специальной конструкции таких систем как душ, туалет, системы разогрева пищи, вентиляции и т. д. Во избежание образования застойных зон, где может скапливаться углекислый газ, и для обеспечения равномерного смешивания теплого и холодного воздуха, на МКС, например, установлено большое количество вентиляторов. Прием пищи и питьё, личная гигиена, работа с оборудованием и в целом обычные бытовые действия также имеют свои особенности и требуют от космонавта выработки привычки и нужных навыков.

    Влияние невесомости неизбежно учитывается в конструкции жидкостного ракетного двигателя , предназначенного для запуска в невесомости. Жидкие компоненты топлива в баках ведут себя точно так же, как и любая жидкость (образуют жидкие сферы). По этой причине подача жидких компонентов из баков в топливные магистрали может стать невозможной. Для компенсации такого эффекта применяется специальная конструкция баков (с разделителями газовой и жидкой сред), а также - процедура осадки топлива перед запуском двигателя. Такая процедура состоит во включении вспомогательных двигателей корабля на разгон; создаваемое ими небольшое ускорение осаживает жидкое топливо на днище бака, откуда система подачи направляет топливо в магистрали.

    Воздействие на организм человека

    При переходе из условий земной гравитации к условиям невесомости (в первую очередь - при выходе космического корабля на орбиту), у большинства космонавтов наблюдается реакция организма, называемая синдромом космической адаптации .

    При длительном (более недели) пребывании человека в космосе отсутствие гравитации начинает вызывать в организме определённые изменения, носящие негативный характер .

    Первое и самое очевидное последствие невесомости - стремительное атрофирование мышц: мускулатура фактически выключается из деятельности человека, в результате падают все физические характеристики организма . Кроме того, следствием резкого уменьшения активности мышечных тканей является сокращение потребления организмом кислорода, и из-за возникающего избытка гемоглобина может понизиться деятельность костного мозга, синтезирующего его (гемоглобин) .

    Также есть основания полагать, что ограничение подвижности нарушит фосфорный обмен в костях, что приведёт к снижению их прочности .

    Вес и гравитация

    Довольно часто исчезновение веса путают с исчезновением гравитационного притяжения. Это не так. В качестве примера можно привести ситуацию на Международной космической станции (МКС). На высоте 350 километров (высота нахождения станции) ускорение свободного падения имеет значение 8,8 / ², что всего лишь на 10 % меньше, чем на поверхности Земли . Космонавты находятся в состоянии свободного падения (это и есть невесомость). Но при этом удерживаются на орбите благодаря первой космической скорости .

    Невесомость на Земле

    На Земле в экспериментальных целях создают кратковременное состояние невесомости (до 40 с) при полётах самолёта по баллистической траектории, то есть такой траектории, по которой летел бы самолет под воздействием одной лишь силы земного притяжения. Эта траектория является параболой при небольших скоростях движения, из-за чего её иногда ошибочно называют «параболической»; в общем случае траектория представляет собой эллипс или гиперболу.

    Такие методы применяются для тренировки космонавтов в России и США. В кабине пилота на нитке подвешен шарик, который обычно натягивает нитку вниз (если самолет покоится, либо движется равномерно и прямолинейно). Отсутствие натяжения нити, на которой висит шарик, свидетельствует о невесомости. Таким образом, пилот должен управлять самолётом так, чтобы шарик висел в воздухе, а нить не была натянута. Для достижения этого эффекта самолёт должен иметь постоянное ускорение g, направленное вниз. Другими словами, пилоты создают нулевую перегрузку. Длительно такую перегрузку (до 40 секунд) можно создать, если выполнить специальную фигуру пилотажа «провал в воздухе». Пилоты резко начинают набор высоты, выходя на «параболическую» траекторию, которая заканчивается таким же резким сбросом высоты. Внутри фюзеляжа имеется камера, в которой тренируются будущие космонавты, она имеет специальное мягкое покрытие на стенах, чтобы избежать травм как в моменты невесомости, так и в моменты перегрузок.

    Подобное чувство невесомости человек испытывает при полетах рейсами гражданской авиации во время посадки. Однако в целях безопасности полета и из-за большой нагрузки на конструкцию самолета, гражданская авиация сбрасывает высоту, совершая несколько протяженных спиральных витков (с высоты полета в 11 км до высоты захода на посадку порядка 1-2 км). То есть спуск производится в несколько заходов, во время которых пассажир на несколько секунд ощущает, что его отрывает от кресла вверх. Это же чувство испытывают и автомобилисты, знакомыми с трассами, проходящими по крутым холмам, когда машина начинает съезжать с верхушки вниз.

    Утверждения, что самолет для создания кратковременной невесомости выполняет фигуры высшего пилотажа типа «петли Нестерова » - не более чем миф. Тренировки выполняются в слегка модифицированных серийных машинах пассажирского или грузового класса, для которых фигуры высшего пилотажа и подобные режимы полета являются закритическими и могут привести к разрушению машины в воздухе или быстрому усталостному разрушению несущих конструкций.

    Состояние невесомости можно ощутить в начальный момент

    Первичными эффектами невесомости являются снятие гидростатического давления крови и тканевой жидкости, весовой нагрузки на костно-мышечный аппарат, а также отсутствие гравитационных стимулов специфических гравирецепторов афферентных систем. Реакции организма, обусловленные длительным пребыванием в невесомости, выражают, по существу, его приспособление к новым условиям внешней среды и протекают по типу «неупотребления» или «атрофии от бездействия»

    Состояние невесомости в начальный период часто вызывает нарушения пространственной ориентации, иллюзорные ощущения и симптомы болезни движения (головокружение, дискомфорт в желудке, тошнота и рвота), что связывают главным образом с реакциями вестибулярного аппарата и приливом крови к голове. Наблюдаются также изменения субъективного восприятия нагрузок и некоторые другие изменения, вызываемые реакциями чувствительных органов, которые настроены на земную силу тяжести. В течение первых десяти дней пребывания в невесомости в зависимости от индивидуальной чувствительности человека, как правило, происходит адаптация к указанным проявлениям невесомости и самочувствие восстанавливается.

    В условиях невесомости происходит перестройка координации движений, развивается детренированность сердечно-сосудистой системы.

    Невесомость влияет на баланс жидкости в организме, обмен белков, жиров, углеводов, минеральный обмен, а также на некоторые эндокринные функции. Наблюдаются потери воды, электролитов (в частности, калия, натрия), хлоридов и другие изменения в обмене веществ.

    Ослабление действия внешних сил на структуры, несущие весовую нагрузку, приводит к потере кальция и других веществ, важных для поддержания прочности костей. После длительного воздействия невесомости возможны явления легкой мышечной атрофии, некоторая слабость мускулатуры конечностей и т. д.

    К числу наиболее общих проявлений неблагоприятного влияния невесомости на организм в сочетании с другими особенностями условий жизни на космическом корабле относится астенизация, отдельные признаки которой (ухудшение работоспособности, быстрая утомляемость) обнаруживаются уже в процессе самого полета. Однако наиболее заметно астенизация сказывается при возвращении на Землю. Снижение массы тела, мышечной массы, минеральной насыщенности костей, уменьшение силы, выносливости, физической работоспособности ограничивают переносимость стрессовых воздействий, характерных для этого периода перегрузок, и действия земной силы тяжести.

    Нарушения двигательной функции в условиях космического полёта, по-видимому, не являются критическими, так как выработка навыков координации движений в невесомости протекает относительно успешно. Значительно более неблагоприятными представляются нарушения координации движений, которые могут развиваться в реадаптационный период в зависимости от продолжительности воздействия гиподинамии и невесомости.

    Ортостатическая неустойчивость, характеризующаяся выраженным усилением физиологических изменений, появлением головокружения, слабости, тошноты, и особенно возможностью обморочного состояния при вертикальной позе, представляет весьма серьезную проблему, типичную для послеполетного периода, хотя после кратковременных полетов эти признаки были непродолжительными и легко обратимыми.

    Изменения иммунологических реакций и устойчивости к инфекциям сопровождаются возрастанием восприимчивости к заболеваниям, что может привести к возникновению критической ситуации во время полета. В кратковременных полетах значительных изменений со стороны иммунологической реактивности не отмечалось.

    Существует определенная вероятность того, что и некоторые другие сдвиги в функциональном состоянии организма могут влиять на продолжительность безопасного пребывания в условиях длительной невесомости. Одни из них определяются процессами перестройки механизмов нервной и гормональной регуляции вегетативных и двигательных функций, другие зависят от степени структурных изменений (например, мышечной и костной ткани), детренированности сердечно-сосудистой системы и обменных сдвигов. Разработка и внедрение системы мероприятий по профилактике этих расстройств являются одной из важных задач медицинского обеспечения длительных космических полетов.

    В принципе возможны два способа профилактики влияния невесомости. Первый состоит в том, чтобы предотвратить адаптацию организма к невесомости, создавая на КА искусственную силу тяжести, эквивалентную земной; это наиболее радикальный, но сложный и дорогостоящий способ, причем исключающий прецизионные наблюдения за внешним пространством и возможности экспериментов в условиях невесомости. Второй способ допускает частичную адаптацию организма к невесомости, но вместе с тем предусматривает и принятие мер по профилактике или уменьшению неблагоприятных последствий адаптации. Профилактическое действие защитных средств рассчитано в первую очередь на поддержание достаточного уровня физической работоспособности, двигательной координации и ортостатической устойчивости (переносимости перегрузок и вертикальной позы), поскольку по современным данным изменения этих функций, возникающие в реадаптационный период, представляются наиболее критическими.

    Естественным и практически осуществимым является профилактическое воздействие на такие первичные пусковые эффекты невесомости, как снятие гидростатического давления крови я весовой нагрузки на костно-мышечный аппарат, что позволяет исключить или ослабить длинную цепочку вторично обусловленных сдвигов, в том числе и вызывающих наибольшую озабоченность в реадаптационном периоде. Значительно более сложно парирование тех изменений, которые возникают в деятельности афферентных систем в невесомости. Восполнить отсутствие гравитационных стимулов для специфических гравирецепторов, не прибегая к созданию искусственной тяжести, невозможно. Профилактические и терапевтические воздействия могут быть адресованы не только к первичным, или пусковым, эффектам невесомости, но и к более низким уровням патогенетической цепи.

    Профилактика реакций, связанных с отсутствием гидростатического давления крови в невесомости во время полета, может состоять, во-первых, в использовании средств и методов, искусственно воспроизводящих эффект гидростатического давления: дыхание под избыточным (выше атмосферного на 15 - 22 мм рт. ст.) давлением, воздействие отрицательным (ниже атмосферного на 25 - 70 мм рт. ст.) давлением на нижнюю половину тела и др., во-вторых, в профилактическом воздействии на некоторые промежуточные звенья патогенетической цепи с помощью фармакологических и гормональных препаратов. В послеполетный период рекомендуется ношение противоперегрузочных костюмов, обычно используемых летчиками (при давлении в камерах 35 - 50 мм рт. ст.), и установление щадящего режима с постепенным, дозированным увеличением времени пребывания в вертикальной позе.

    Восполнение дефицита весовой нагрузки на костно-мышечный аппарат в условиях невесомости относится к числу весьма перспективных направлений в разработке профилактических мероприятий и обеспечивается за счет физической тренировки с использованием пружинных или резиновых эспандеров, велоэргометров, тренажеров типа «бегущей дорожки» и нагрузочных костюмов, создающих статическую нагрузку на тело и отдельные мышечные группы за счет резиновых тяг.

    В системе профилактики сдвигов, преимущественно обусловленных отсутствием весовой нагрузки на опорно-двигательный аппарат, могут найти применение и другие методы воздействия, в частности, электростимуляция мышц, применение гормональных препаратов, нормализующих белковый и кальциевый обмен, а также различные способы повышения устойчивости организма к инфекциям.

    В общей системе защитных мероприятий должна быть учтена также возможность повышения неспецифической сопротивляемости организма за счет снижения неблагоприятного воздействия стресс-факторов космического полета (снижение уровня шумов, оптимизация температуры, создание надлежащих гигиенических и бытовых удобств), обеспечения достаточного водопотребления, полноценного и хорошо сбалансированного питания с повышенной витаминной насыщенностью, обеспечения условий для отдыха, сна и т. д. Увеличение внутреннего объема космических кораблей и создание на них улучшенных бытовых удобств заметно способствуют смягчению неблагоприятных реакций на невесомость.

    Следует отметить, что в системе мероприятий по профилактике неблагоприятного влияния на организм человека длительной невесомости самостоятельное значение принадлежит предполетному отбору и тренировке, а также восстановительной терапии, используемой в послеполетном периоде.

    На современном уровне знаний достижение относительно гармоничного профилактического эффекта может быть обеспечено лишь при использовании комплекса профилактических средств, адресованных различным звеньям патогенетической цепи. Правильность такого подхода к построению системы профилактических мероприятий наглядно продемонстрировали полеты экипажей орбитальных станций «Салют» (30, 63, 96, 140, 175, 185 и 211 сут) и «Скайлэб» (28, 59 и 84 сут). Эти полеты подтвердили способность человека существовать и функционировать на современных КА при использовании соответствующих средств профилактики, однако необходимо дальнейшее исследование влияния невесомости на организм человека.

    Космическое пространство не является однородной средой с постоянными (хотя бы в среднем) свойствами в каждой своей точке, поэтому конкретные условия полета КА будут зависеть от области пространства, траектории и продолжительности полета.

    В общем случае полет КА будет происходить:

    вне планеты, когда все необходимое для нормального существования КА и его экипажа должно находиться на его борту;

    в условиях глубокого вакуума, что вызывает необходимость подбора и разработки удовлетворяющих этому условию конструкционных материалов и смазок, обеспечения герметичности отсеков КА, разработки особых средств обеспечения теплового режима КА и т. п.;

    в условиях невесомости, что исключает нормальный конвективный теплообмен и гидростатическое давление жидкостей, вызывает изменение или нарушение жизненно важных функций человеческого организма;

    в условиях метеорной опасности, которая требует разработки конструкции, устойчивой к воздействию метеорных частиц;

    в условиях радиационной опасности, обусловленной электромагнитным и корпускулярным излучениями солнечного и галактического происхождения, в связи с чем необходимо обеспечение радиационной защиты экипажа и устойчивых к воздействию радиации материалов и аппаратуры.

    Следует отметить, что при увеличении длительности космических полетов как в околоземном пространстве, так и при полетах к другим планетам роль фактора внешних физических условий существенно возрастает.

    Кроме рассмотренных выше условий полета в космическом пространстве при разработке КА следует учитывать условия полета на участке выведения на орбиту в составе ракетно-космической системы, а для аппаратов, возвращаемых на Землю, - условия полета на участке спуска в атмосфере и приземления.

    Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем Лисицын В. Ю.

    Глава 6. Влияние гравитации на земные живые организмы

    Полагают, что силы гравитации принимают активное участие в эволюции, влияют на развитие растений и животных, включая отдельные клетки. По-видимому, существенно было влияние гравитации при выходе организмов на сушу, так как это привело к их большой перестройке – уменьшению размеров тела, усовершенствованию энергетической базы и т. д.

    Ученые считают, что этапы вращения вокруг центра галактики можно сопоставить с различными этапами развития органического мира и изменением гравитационного поля, особенно с различными критическими периодами. Так, гибель гигантских рептилий может связываться в числе других гипотез с резким изменением величины гравитационного поля. Однако при этом не исключают возможность существования и других причин – изменение магнитного поля, влияние слоя озона и т. д. Какой фактор преобладает, пока недостаточно ясно. Тем не менее, все ученые признают тот факт, что гибель группы животных происходит в результате изменения характеристик среды их обитания.

    На Земле нет растений и животных, нейтральных по отношению к действию силы тяжести. Известно, что организмы имеют специальные органы ориентации. У одноклеточных эту функцию берут на себя отдельные органеллы внутри клетки – митохондрии, аминопласты, пищевые вакуоли и др.

    Еще 100 лет тому назад Ч. Дарвин так описывал свои наблюдения: «Если поместить побег какого-нибудь обыкновенного растения в темноте, установив его в наклонном положении в стакане с водой, то верхушка через несколько часов загнется кверху, а если затем перевернуть побег (верхней стороной вниз), то наклоненный книзу побег перегнется в обратную сторону… Направляющим стимулом в этом случае, без сомнения, служат действующие силы тяжести».

    Сегодня хорошо известно о геотропизме – свойстве растений принимать определенное положение под влиянием земного притяжения. Это свойство жизнедеятельности растений и направляет стебли всегда вверх, а корни – вниз.

    Многочисленные опыты, проделанные Ч. Дарвином, обнаружили обстоятельство, настолько поразившее ученого, что он признал кончик корешка «самым удивительным образованием у растений». Оказалось, что гравитационное воздействие воспринимает только самая крайняя часть корня длиной всего в несколько десятых долей миллиметра. Но изгибается при этом не сам кончик, а соседний участок, значительно от него отстоящий. В связи с этим ученый сделал вывод о том, что кончик корня передает «некоторое влияние или стимул», который и заставляет корень изгибаться.

    Оставляя корень в несвойственном ему горизонтальном положении час – полтора, т. е. на время, достаточное, для того чтобы кончик успел передать свои необычные «ощущения», исследователь затем отрезал чувствительную верхушку. Потом растение переводил в нормальное, вертикальное положение, и тем не менее, его корешок уже без видимых причин, как бы «по памяти» изгибался под прямым углом. Дарвин приводит такую обратную аналогию: «Чтобы найти что-нибудь в этом роде в царстве животных, мы должны были бы предположить, что животное, лежа на земле, решило подняться в определенном направлении, и что после того, как голова его была отрезана, некоторый импульс продолжал очень медленно распространяться по нервам к соответствующим мускулам, так что через несколько минут обезглавленное животное поднялось в первоначальном направлении».

    Конечно, это сравнение растения с животным не более чем нарочито яркая иллюстрация, но мысль о действительном сходстве движения растительных и животных организмов волновала ученого. «Нельзя не изумляться, – пишет он, – сходству между описанными выше движениями растений и многими действиями, производимыми бессознательно низшими животными».

    Англичанин Т.Э. Найт сделал огород, используя обод колеса действующей ветряной мельницы, где размещались подопытные растения. Он убедился, что семена фасоли дали ростки по направлению к ступице колеса, а корни – наружу. ВРАЩЕНИЕ КОЛЕСА ДЕЙСТВОВАЛО на РАСТЕНИЯ также, КАК СИЛА ТЯЖЕСТИ. Опыт был поставлен для проверки гипотез, высказанных философами. Французские материалисты XVIII века придавали большое значение силе тяжести и считали ее единственной причиной, которая вынуждает корень направлять свой рост к центру планеты, а стебель – наружу.

    Так был фактически изобретен КЛИНОСТАТ, который и сейчас используется в лабораториях для изучения влияния силы тяжести на растения. При работе на клиностате растения размещаются в пробирках по краям медленно вращающегося диска, а пробирки, в свою очередь, тоже вращаются. Вращение колеса создает центробежную силу, моделирующую силу тяжести. Вращение пробирок исключает действие на растение силы тяжести. Растения, находящиеся во вращающихся пробирках, как бы теряют способность ориентироваться, запутываются в ориентировке по отношению к «верху» и «низу».

    В начале 20 столетия были обнаружены особые клетки в чехликах корешков и верхушках самых первых листков, устройство которых было похоже на органы равновесия беспозвоночных животных, так называемые статосциты. В основе чувства клеток, реагирующих на силу тяжести, лежит подвижное крахмальное зерно: перемещаясь под действием силы тяжести, оно оказывает давление на протоплазму, что ощущается клеткой. Дальше действие силы тяжести ведет к изгибу стебля. Примерно 30 лет назад ученые выяснили, в чем дело: оказывается, верхушки ростков вырабатывают особое вещество ауксин, являющийся регулятором роста. С его помощью объясняется искривление стебля – неравномерное распределение ауксина ведет к изменению скорости роста тех или иных частей растения. Дарвин был прав в своих тонких наблюдениях за природой.

    Изменяя скорость вращения колеса клиностата, можно ослаблять или, наоборот, усиливать действие силы тяжести. При этом выяснилась очень большая чувствительность растений к полю силы тяжести – даже когда центробежная сила становилась в 10 тысяч раз меньше поля силы тяжести Земли, растения ее чувствовали. Растения в какой-то степени страхуются и на случай резких изменений силы тяжести, которые могут встретиться в их жизни. Ослабление влияния силы тяжести, моделируемой при вращении колеса и пробирок, показало, что у растений в пробирках после всходов замедляется рост стеблей листьев, а потом некоторые из них пожелтели и завяли. Плоды образовались лишь на половине растений. Выжили те растения, которые своими чувствительными датчиками ощутили небольшое действие силы тяжести. Растения, которые не смогли этого сделать и приняли вращение за полную невесомость, погибли. Эта работа выполнена группой литовских ботаников под руководством А.И. Меркиса.

    Одним из первых ученых, обративших внимание на роль сил гравитации, особенно космических сил, как фактора, оказавшего влияние на живые организмы, был великий русский ученый К.Э. Циолковский. Он писал, что «даже маленькая сила тяжести может быть полезной для растений». И его предвидение оказалось справедливым. Полеты в космос показали, что влияние гравитации на рост растений очень значительно, практически в целом подтвердились лабораторные опыты на клиностате, где растения совершали сложные движения.

    По словам Э. Синиоста, сила тяжести служит как бы остовом, в отношении к которому регулируется весь характер роста растений. Высказываются соображения о том, что именно из-за силы тяжести мы видим леса и поля такими, какие они есть. Отметим, однако, что другие ученые говорят о преобладающем действии электромагнитного поля. Скорее всего, все поля своими совместными действиями определяют облик окружающего нас мира.

    В то же время известны исследования о влиянии сил гравитации на организм позвоночных животных. В связи с этим Г.С. Франтов (1994 г.) в своей работе писал: «П.К. Коржуев выявил ряд конкретных путей воздействия гравитации на их организмы. В основу исследования был положен факт о крови, о ее составных частях – эритроцитах и гемоглобине – и органах, их производящих. Ученые долго думали о таком факте: почему водные позвоночные – рыбы имеют небольшое количество крови, небольшое количество гемоглобина, тогда как позвоночные животные, живущие в условиях суши, обладают существенно большим количеством крови и гемоглобина. Возник еще вопрос, почему выход на сушу позвоночных животных привел к увеличению крови по сравнению с тоже позвоночными, но рыбами?

    Вот тут и появилась гипотеза о возникновении кроветворной функции скелета и о гравитации как о кроветворной функции скелета. С физической точки зрения, количество гемоглобина в организме характеризует энергетический баланс организма.

    Наблюдаемые параметры крови, гемоглобина и веса скелета показывают, что рыбы обладают существенно меньшим количеством крови и гемоглобина, птицы и сухопутные млекопитающие имеют в 5–6 раз большее количество крови и гемоглобина. Наблюдаемое соотношение в обеспечении гемоглобином рыб и наземных животных свидетельствует о том, что энергетическая потребность рыб в 5–6 раз меньше по сравнению с более молодыми представителями – птицами и млекопитающими. Объяснение этому факту П.К. Коржуев находит в том, что в воде и на суше имеет место различное действие гравитационных сил.

    Мы знаем, что при купании в соответствии с законом Архимеда в воде значительно легче передвигаться, чем на суше; в водной среде организмы из-за высокой плотности воды как бы взвешены, поэтому им не приходится затрачивать энергию на поддержание собственного тела, в отличие от наземных собратьев. Различие в поведении животного в воде и на суше послужило отправной точкой в исследованиях о выявлении конкретных путей воздействия сил гравитации.

    Рыбы, как водные животные менее обеспечены гемоглобином, чем наземные животные. Очагами синтеза гемоглобина у рыб является селезенка и почки, тогда как у позвоночных – скелет, а именно его костномозговая часть. Сразу же возникает вопрос, почему произошла замена органов синтеза гемоглобина и его носителей – эритроцитов? Почему природа отказалась от более простого способа усиления деятельности той же селезенки или почки при переходе позвоночных животных на сушу?

    Мы уже сталкивались с изменениями функций живой ткани, она всегда находит нагрузку для работы, соответствующую имеющимся возможностям.

    Однако увеличение объема почек и селезенки, связанное с усилением их работы, могло неблагоприятно сказаться на нормальной работе других органов, а с другой стороны, увеличенные почки и селезенка при работе на суше не смогли бы нормально работать из-за необходимости преодолевать гравитационное тяготение при движении организма. В наземных условиях нормально и усиленно функционировать могут органы синтеза гемоглобина, охраняемые самим скелетом, поскольку он выносит основную нагрузку от действия сил тяжести в наземных условиях. Более того, действие органов синтеза гемоглобина – костного мозга – регулируется по мере изменения нагрузок на разные части скелета.

    …Итак, при освоении суши скелет взял новую функцию – он стал новым очагом кроветворения. О мощности кроветворной функции скелета высших представителей позвоночных животных – птиц и млекопитающих – можно судить из следующих цифр: на долю кроветворной части скелета приходится 45 % веса скелета и до 7 % веса тела, а на долю собственно костной части приходится в этом случае лишь 55 % всего скелета. Наибольшее количество костномозгового вещества по отношению к весу скелета свойственно наиболее активным и подвижным представителям среди млекопитающих, наименьшее количество – самым пассивным по подвижности.

    На этом основании П.А. Коржуевым был выдвинут тезис, по которому все способы передвижения животных, в первую очередь наземных позвоночных, представляют собой не что иное, как способы преодоления сил гравитации, требующие в каждом отдельном случае особых затрат энергии. Силы гравитации представляют при этом как один из самых мощных факторов, определяющих эволюцию наземных позвоночных животных.

    Сегодня мы сталкиваемся с тем, что невесомость резко действует на космонавтов, на растения, с которыми делаются опыты, и на кристаллы. Но и здесь мы сталкиваемся с несколько изолированным подходом: а электромагнитное поле? Ведь оно тоже действует на воде и на суше, и в космосе, и во всех случаях несколько по-разному, но в конечном случае мы имеем дело все же с общим итогом.

    Интересно, что, используя анализ внешних воздействий, К.Э. Циолковский разбирает возможное действие поля. Он пишет очень интересно: «Животное – есть сложное сочетание из твердых, полутвердых, жидких и газообразных тел.

    Конечный органический продукт, поэтому будет зависеть от тяжести и даст при малой тяжести огромные тела.

    Чем плотнее атмосфера, тем размеры летающих животных будут больше»».

    В то же время необходимо помнить, что, кроме пятен и вспышек на Солнце, большое значение для жизнедеятельности живых организмов имеют воздействия сил гравитации Солнца, Земли и Луны. Так, показано (В.И. Хаснулин, 1989 г.), что из имевших место двадцати землетрясений в текущем столетии, лишь три совпадают с возмущениями на Солнце (1968, 1970, 1989), а остальные нет. Предполагается, что в жизнедеятельности организмов, крупнейших, глобальных переменах на Земле большую роль играют силы гравитации Солнца, Луны и других планет. Считают, что именно в периоды возмущения гравитационных сил, связанных с неравномерным ритмом притяжения Земли Солнцем, Луной и планетами, и возникают изменения в погоде, геомагнитном поле, а также здоровье людей; в дни гравитационных возмущений увеличивается количество людей со стенокардией, гипертоническими кризами, ухудшается психофизиологическое состояние человека, меняются показатели метаболизма. Учеными показано, что гравитационные возмущения несут увеличение атерогенных липидов в крови, приводят к функциональному иммунодефициту. По мнению В.И. Хаснулина (из СССР), Земля движется неравномерно, в виде «скачков» по орбите вокруг Солнца и именно в периоды торможения, резких толчков и возникают критические ситуации для организмов.

    Из книги Мухтасар «Сахих» (сборник хадисов) автора аль-Бухари

    Глава 310: Когда находящимся позади имама следует совершать земные поклоны? 388 (690). Сообщается, что аль-Бара бин ‘Азиб, да будет доволен им Аллах, сказал: «Когда посланник Аллаха, да благословит его Аллах и приветствует, произносил слова “Да услышит Аллах того, кто воздал Ему

    Из книги Достижение цели (сборник хадисов) автора Мухаммед

    Глава 8 Земные поклоны для невнимательных и прочие 326.Передают, что ‘Абдуллах ибн Бухейна, да будет доволен им Всевышний Аллах, рассказывал:«Однажды во время полуденного намаза после первых двух рак‘атов Пророк не сел для чтения ташаххуда, а встал, и люди встали вслед за

    Из книги Доказательства существования Бога. Аргументы науки в пользу сотворения мира автора Фомин А В

    ЧУДЕСА СВЕТА И ГРАВИТАЦИИ Парадокс света «О свете было так много написано и сказано, что люди и в самом деле думают, что они уже все о нем знают. Что же касается вопроса, заданного Богом многострадальному Иову: «По какому пути разливается свет?», то вопрос этот еще ждет

    Из книги Почему человечество приближает конец света? Пути выхода из трагической ситуации на земле автора Лисицын В. Ю.

    О гравитации «Нам всем так хорошо известна сила тяжести, а вот природа ее загадочна до сих пор. Неизвестен и механизм ее действия. Если природа гравитации корпускулярная, а корпускулы, так называемые гравитоны, - материальны, как тогда объяснить, что при коллапсе

    Из книги Ученые подтверждают ключевые истины Библии и всеобщую, живую связь всего со всем автора Лисицын В. Ю.

    Глава 3. Проблема вредного влияния космической информации на земные организмы Понятие «космическая информация»Прежде чем перейти к рассмотрению влияния космической информации небесных тел (звезд, планет и т. д.) на земные живые организмы, включая человека, нам

    Из книги Мастера иллюзий. Как идеи превращают нас в рабов автора Носырев Илья Николаевич

    Часть 6. Влияние ритмов вселенной на земные организмы Космос – это огромное живое тело, частью которого мы являемся. Солнце – большое СЕРДЦЕ, пульсации которого проходят по нашим мельчайшим сосудам. Луна – большой нервный центр, обрекающий нас на вечный трепет. Кто

    Из книги Открытая тайна автора Вэй У Вэй

    Глава 2. Влияние Солнца на живые организмы Земли Что же может происходить в нашем организме во время повышенной солнечной активности и какая существует от нее защита? Чтобы ответить на этот вопрос, необходимо иметь определенное представление о механизмах повреждения

    Из книги Христианство и религии мира автора Хмелевский Генрик

    Глава 3. Влияние естественного радиационного фона Земли на живые организмы «И с детства раннего уже я ощущал, что организм мой бесчисленным числом тончайших нитей связан с внешним миром». А.Л.Чижевский Основной вклад в изучение этой проблемы внесли ученые мира, имеющие

    Из книги Книга Урантии автора жители Небесные

    Глава 4. Влияние естественного радиационного фона земли на живые организмы Особый интерес представляют взгляды относительно роли радиации в естественном внутривидовом отборе живых организмов. В связи с этим Е.П. Подрушняк(1993 г.) писал: «Фундаментальные Физические Силы

    Из книги Люди Грузинской Церкви [Истории. Судьбы. Традиции] автора Лучанинов Владимир Ярославович

    Глава 5. Влияние земного и искусственного электромагнитных полей на живые организмы В XX веке накоплено большое количество научных исследований, позволяющих глубже познать биологическую сущность влияния земного и искусственного электромагнитных полей на живые

    Из книги автора

    Глава 2 Мемы - «живые» культурные идеи Что предполагает каждая сила природы? Она хочет воспроизвести себя самое! Мейстер Экхарт Человеку, получившему классическое гуманитарное образование, мысль, что у элементов культуры могут быть какие-то собственные эволюционные

    Из книги автора

    30. «Живые, живые, о!» Несомненно, сейчас растет тенденция преувеличивать важность самого факта жизни - нашего видимого существования как индивидуальных феноменов. Фразы «у нас только одна жизнь» и «мы должны ценить ее» звучат почти как поговорки и понятны всем.Откуда

    Из книги автора

    Из книги автора

    1. КОНТУР ДУХОВНОЙ ГРАВИТАЦИИ Всё, что говорится об имманентности, вездесущности, всемогуществе и всеведении Бога, одинаково справедливо и в отношении Сына в сферах духа. Наблюдаемая во всём творении чистая и всеобщая духовная гравитация, этот исключительно духовный

    Из книги автора

    6. КОНТУР ГРАВИТАЦИИ РАЗУМА Третий Источник и Центр - всеобщий интеллект - лично осознает каждый разум, каждый интеллект во всём творении и поддерживает личную и совершенную связь со всеми физическими, моронтийными и духовными разумными созданиями необъятных