Деление четырехзначных чисел на двузначные примеры. Деление столбиком на двузначное число. Деление числа на классы

Теорему о свойстве углов с соответственно параллельными сторонами следует рассмотреть для случаев, когда данные углы или оба острые, или оба тупые, или один из них острый, а другой тупой.

Теорема находит широкое применение при изучении свойств различных фигур и, в частности, четырехугольника.

Встречающееся иногда при формулировке теорем указание на то, что стороны углов с соответственно параллельными сторонами могут иметь или одинаковое или противоположное направление, считаем ненужным. Если пользоваться термином «направление», то следовало бы разъяснить, что должно понимать под этим словом. Достаточно обратить внимание учащихся на то, что углы с соответственно параллельными сторонами равны, если они оба острые или оба тупые, если же один из углов тупой, а другой острый, то они в сумме составляют 2d.

Теорема об углах с соответственно перпендикулярными сторонами может быть дана непосредственно после теоремы о свойстве углов с соответственно параллельными сторонами. Учащимся приводятся примеры использования свойств углов с соответственно параллельными и перпендикулярными сторонами в приборах и деталях машин.

Сумма углов треугольника

При выводе теоремы о сумме углов треугольника можно использовать наглядные пособия. Вырезают треугольник ABC, пронумеровываются его углы, затем обрывают их и прикладывают друг к другу. Получается l+2+3=2d. Проводят из вершины С треугольника ABC высоту CD и перегибают треугольник так, чтобы высота делилась пополам, т.е. вершина С упала в точку D - основание высоты. Линия перегиба MN есть средняя линия треугольника ABC. Затем перегибают равнобедренные треугольники AMD и DNB по их высотам, при этом вершины А и В совпадут с точкой D и l+2+3=2d.

Следует помнить, что использованием наглядных пособий в систематическом курсе геометрии отнюдь не ставится задача подменить логическое доказательство какого-либо предложения опытной проверкой его. Наглядные пособия должны лишь содействовать пониманию учащимися того или иного геометрического факта, свойств той или иной геометрической фигуры и взаимно расположения отдельных ее элементов. При определении величины угла треугольника следует напомнить учащимся о рассмотренной ранее теореме о внешнем угле треугольника и указать, что теорема о сумме углов треугольника позволяет и построением и вычислением установить числовую зависимость между углами внешними и внутренними, не смежными с ними.

Как следствие из теоремы о сумме углов треугольника доказывается, что в прямоугольном треугольнике катет, лежащий против угла в 30 градусов, равен половине гипотенузы.

По ходу изложения материала учащимся следует задать вопросы и простые задачи, содействующие лучшему усвоению нового материала. Например, Какие прямые называются параллельными?

При каком положении секущей равны все углы, образуемые двумя параллельными прямыми и этой секущей?

Прямая, проведенная в треугольнике параллельно основанию, отсекает от него малый треугольник. Доказать, что отсекаемый треугольник и данный равноугольны.

Вычислить все углы, образуемые двумя параллельными и секущей, если известно, что один из углов равен 72 градуса.

Внутренние односторонние углы соответственно равны 540 и 1230. На сколько градусов надо повернуть одну из прямых вокруг точки ее пересечения с секущей, чтобы прямые были параллельны?

Доказать, что биссектрисы: а) двух равных, но не противоположных углов, образуемых двумя параллельными прямыми и секущей, параллельны, б) двух неравных углов при тех же прямых и секущей - перпендикулярны.

Даны две параллельные прямые АВ и CD и секущая EF, пересекающая данные прямые в точках К и L. Проведенные биссектрисы КМ и KN углов AKL и BKL отсекают на прямой CD отрезок MN. Найти длину MN, если известно, что отрезок KL секущей, заключенный между параллельными, равен а.

Каков вид треугольника, в котором: а) сумма двух любых углов больше d, б) сумма двух углов равна d, в) сумма двух углов меньше d? Ответ: а) остроугольный, б) прямоугольный, в) тупоугольный. Во сколько раз сумма внешних углов треугольника больше суммы внутренних его углов? Ответ: в 2 раза.

Могут ли все внешние угля треугольника быть: а) острыми, б) тупыми, в) прямыми? Ответ: а) нет, б) да, в) нет.

В каком треугольнике каждый внешний угол вдвое больше каждого из внутренних углов? Ответ: равносторонний.

Изучая методику параллельных прямых необходимо использовать историческую, теоретическую и методическую литературу для полного формирования понятия параллельные прямые.