Дисперсия кто открыл. Изучение нового материала. Примеры решения задач

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты .

Дисперсия света представляется в виде зависимости:

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

, (10.1.1)

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы .

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n , а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы . Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим , что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн , поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно . Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее . Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества , показывает, как быстро меняется показатель преломления с длиной волны .

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной . Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией . Рассмотрим подробнее эти виды дисперсии.

  • 3.Свободные колебания в lc-контуре. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение.
  • 4. Вынужденные электрические колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
  • 5. Резонанс напряжений и резонанс токов.
  • Основы теории максвелла для электромагнитного поля.
  • 6.Общая характеристика теории Максвелла. Вихревое магнитное поле. Ток смещения.
  • 7.Уравнения Максвелла в интегральном виде.
  • Электромагнитные волны
  • 8.Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Энергия электромагнитных волн. Давление электромагнитных волн.
  • Геометрическая оптика
  • 9. Основные законы геометрической оптики. Фотометрические величины и их единицы.
  • 10. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
  • 11.Световые волны
  • 12.Интерференция света при отражении от тонких пластинок. Полосы равной толщины и равного наклона.
  • 13. Кольца Ньютона. Применение явления интерференции. Интерферометры. Просветление оптики.
  • 14.Дифракция света
  • 15. Дифракция света на круглом экране и круглом отверстии.
  • 16.Дифракция света на одной щели. Дифракционная решетка.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
  • 19.Поляризация света. Естественный и поляризованный свет. Степень поляризации. Закон малюса.
  • 20.Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
  • 21. Эффект доплера для световых волн.
  • 22.Тепловое излучение. Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре абсолютно черного тела. Законы Кирхгофа, Стефана- Больцмана, Вина.
  • 23. Элементы специальной теории относительности Постулаты специальной теории относительности. Преобразования Лоренца.
  • 2. Длительность событий в разных системах отсчета.
  • 24. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.

    Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ):

    Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через призму. Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г.

    Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной , рис.1.

    Величина

    называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.

    Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения.

    Рассмотрим дисперсию света в призме, рис.2.

    Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α 1 . После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что

    т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

    Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

    На явлении нормальной дисперсии основано действие призменных спектрометров , широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу.

    Электронная теория дисперсии света. Из макроскопической электромагнитной теории Максвелла следует, что

    но в оптической области спектра для всех веществ μ ≈ 1, поэтому

    n = ε. (1)

    Формула (1) противоречит опыту, т.к. величина n, являясь переменной n = f(λ), равняется в то же время определенной постоянной ε (постоянной в теории Максвелла). Кроме того, полученные из этого выражения значения n не согласуются с экспериментальными данными.

    Для объяснения дисперсии света была предложена электронная теория Лоренца, в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

    Ознакомимся с этой теорией на примере однородного изотропного диэлектрика, предположив формально, что дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества равна

    ε = 1 + χ = 1 + Р/(ε 0 Е),

    где χ – диэлектрическая восприимчивость среды, ε 0 – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны напряженностью Е). Тогда

    n 2 = 1 + Р/(ε 0 Е), (2)

    т.е. зависит от Р. Для видимого света частота ω~10 15 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет. Эти электроны наз. оптическими электронами.

    Для простоты рассмотрим колебания одного оптического электрона в молекуле. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны. Пусть n 0 – концентрация атомов в диэлектрике, тогда

    Р = р n 0 = n 0 е х. (3)

    Подставив (3) в (2) получим

    n 2 = 1 + n 0 е х /(ε 0 Е), (4)

    т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Е 0 cos ωt.

    Уравнение вынужденных колебаний электрона для простейшего случая

    d 2 x/dt 2 +ω 0 2 x = (F 0 /m)cos ωt = (e/ m) E 0 cos ωt, (5)

    где F 0 = еE 0 –амплитудное значение силы, действующей на электрон со стороны поля волны, ω 0 = √k/m – собственная частота колебаний электрона, m – масса электрона. Решив уравнение (5), найдем ε = n 2 в зависимости от констант атома (е, m, ω 0) и частоты внешнего поля ω, т.е. решим задачу дисперсии.

    Решением (5) является

    Х = А cos ωt, (6)

    А = еЕ 0 /m(ω 0 2 – ω 2). (7)

    Подставим (6) и (7) в (4) и получим

    n 2 = 1 + n 0 e 2 /ε 0 m(ω 0 2 – ω 2). (8)

    Из (8) видно, что показатель преломления вещества зависит от частоты ω внешнего поля, и что в области частот от ω = 0 до ω = ω 0 значение n 2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия ). При ω = ω 0 значение n 2 = ± ∞; в области частот от ω = ω 0 до ω = ∞ значение n 2 меньше 1 и возрастает от - ∞ до 1 (нормальная дисперсия). Перейдя от n 2 к n, получим график зависимости n = n(ω), рис.1. Область АВ – область аномальная дисперсии . Изучение аномальной дисперсии – Д.С. Рождественский.

    Поглощением света – называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.

    С точки зрения электронной теории, взаимодействие света и вещества сводится к взаимодействию электромагнитного поля световой волны с атомами и молекулами вещества. Электроны, входящие в состав атомов, могут колебаться под действием переменного электрического поля световой волны. Часть энергии световой волны затрачивается на возбуждение колебаний электронов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения, а также переходит в другие формы энергии, например, в энергию теплового излучения.

    Поглощение светового излучения можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

    Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света

    I = I e -K l (1)

    где I 0 λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l ; К λ – коэффициент поглощения, зависящий от λ, т.е. К λ = f(λ).

    Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества свет встречает на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален С:

    К λ = c λ С (2)

    где c λ – коэффициент пропорциональности, который также зависит от λ. Учитывая (2), можно закон Бугера (1) переписать в виде:

    I λ = I 0λ e - c C l (3)

    c λ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то c λ называют молярным коэффициентом поглощения .

    Соотношение (3) носит название закона Бугера-Ламберта-Бера. Отношение величины светового потока, вышедшего из слоя I , к во­шедшему I 0λ носит название коэффициента оптического (или свето-) пропускания слоя Т :

    Т = I /I 0 λ = e - c C l (4)

    или в процентах

    Т = I /I 0λ 100%. (5)

    Поглощение слоя равно отношению

    Л
    огарифм величины 1/Т называетсяоптической плотностью слоя D

    D = lg 1/T = lg I 0 λ /I l λ = 0,43c λ Сl (6)

    т.е. оптическая плотность характеризует поглоще­ние света средой. Соотношение (6) может быть использовано как для определения концен- трации растворов, так и для характеристики спек­тров поглощения веществ.

    Зависимость оптической плотности от длины волны D = f(λ) является спектральной характеристикой поглощения данного вещества, а кривая, выражающая эту зависимость, называется спектром поглощения. Спектры поглощения, как и спектры испускания, бывают линейчатые, полосатые и сплошные, рис. 3. Cогласно модели атома Бора кванты света испускаются и поглощаются при переходе системы (атома) из одного энергетического состояния в другое. Если при этом в оптических переходах меняется только электронная энергия системы, как это имеет место в атомах, то в спектре линия поглощения будет резкой.

    Рис.3.а)линейчатый спектр поглощения, б)полосатый спектр поглощения, в) сплошной спектр поглощения.

    Однако для сложных молекул, энергия которых слагается из электронной Е эл, колебательной Е кол и вращательной Е вр энергии (Е =Е эл + Е кол + Е вр) при поглощении света изменяется не только электронная энергия, но обязательно колебательная и вращательная. Причем поскольку ∆Е эл >>∆E кол >>∆Е вр, то в результате этого набор линий, соответствующих электронному переходу, в спектре поглощения растворов выглядит как полоса поглощения.

    Коэффициент поглощения для диэлектриков невелик (примерно 10 -3 – 10 -5 см -1), для них наблюдаются широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения . Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

    Коэффициент поглощения для металлов имеет большие значения (примерно 10 3 - 10 5 см -1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощается свет. На рис. 1 показана типичная зависимость коэффициента поглощения света от частоты в области полосы поглощения. Видно, что внутри полосы поглощения наблюдается аномальная дисперсия. Однако поглощение света веществом должно быть значительным, чтобы повлиять на ход показателя преломления.

    Зависимостью коэффициента поглощения от длины волны (частоты) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения этих длин волн стекло будет казаться черным. Это явление используется при изготовлении светофильтров , которые в зависимости от хим. состава стекол пропускают свет только определенных длин волн, поглощая остальные.

    Окружающий мир наполнен миллионами разнообразных оттенков. Благодаря свойствам света каждый предмет и объект вокруг нас имеет определенный цвет, воспринимаемый человеческим зрением. Изучение световых волн и их характеристик позволило людям глубже взглянуть на природу света и явления, связанные с ним. Сегодня поговорим о дисперсии.

    Природа света

    С физической точки зрения свет представляет собой сочетание электромагнитных волн с разными значениями длины и частоты. Глаз человека воспринимает не любой свет, а только лишь тот, длина волн которого колеблется от 380 до 760 нм. Остальные разновидности остаются для нас невидимыми. К ним, например, относятся инфракрасное и ультрафиолетовое излучения. Знаменитый ученый Исаак Ньютон представлял свет как направленный поток самых мелких частиц. И лишь позже было доказано, что он по своей природе является волной. Однако Ньютон все же был отчасти прав. Дело в том, что свет обладает не только волновыми, но и корпускулярными свойствами. Это подтверждается всем известным явлением фотоэффекта. Выходит, что световой поток имеет двоякую природу.

    Цветовой спектр

    Белый свет, доступный для человеческого зрения, - это совокупность нескольких волн, любая из которых характеризуется определенной частотой и собственной энергией фотонов. В соответствии с этим его можно разложить на волны разного цвета. Каждая из них носит название монохроматической, а определенному цвету соответствует свой диапазон длины, частоты волн и энергии фотонов. Другими словами, энергия, излучаемая веществом (или поглощаемая), распределяется по вышеназванным показателям. Это объясняет существование светового спектра. Например, зеленый цвет спектра соответствует частоте, находящейся в диапазоне от 530 до 600 ТГц, а фиолетовый - от 680 до 790 ТГц.

    Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света. Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет. Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму. Дисперсия света выражается следующим равенством:

    где n - показатель преломления, ƛ - частота, а ƒ - длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе. Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.

    Первые шаги на пути к открытию дисперсии

    Как было сказано выше, световой поток при прохождении через призму разлагается на цветовой спектр, который Исаак Ньютон достаточно детально изучил в свое время. Результатом его исследований стало открытие явления дисперсии в 1672 году. Научный интерес к свойствам света появился еще до нашей эры. Знаменитый Аристотель уже тогда заметил, что солнечный свет может иметь разные оттенки. Ученый утверждал, что характер цвета зависит от «количества темноты», присутствующей в белом свете. Если ее много, то возникает фиолетовый цвет, а если мало, то красный. Великий мыслитель также говорил о том, что основным цветом световых лучей является белый.

    Исследования предшественников Ньютона

    Аристотелевскую теорию взаимодействия темноты и света не опровергли и ученые 16-17 веков. И чешский исследователь Марци, и английский физик Хариот независимо друг от друга проводили опыты с призмой и были твердо уверены в том, что причиной появления разных оттенков спектра является именно смешивание светового потока с темнотой при прохождении его через призму. На первый взгляд, выводы ученых можно было назвать логичными. Но их эксперименты были достаточно поверхностными, и они не смогли подкрепить их дополнительными исследованиями. Так было, пока за дело не взялся Исаак Ньютон.

    Открытие Ньютона

    Благодаря пытливому уму этого выдающегося ученого было доказано, что белый свет не является основным, и что остальные цвета возникают вовсе не в результате взаимодействия света и темноты в разных соотношениях. Ньютон опроверг эти убеждения и показал, что белый свет является составным по своей структуре, его образуют все цвета светового спектра, называемые монохроматическими. В результате прохождения светового пучка через призму разнообразие цветов образуется из-за разложения белого света на составляющие его волновые потоки. Такие волны с разной частотой и длиной преломляются в среде по-разному, образуя определенный цвет. Ньютон поставил опыты, которые до сих пор используются в физике. Например, эксперименты со скрещенными призмами, с использованием двух призм и зеркала, а также пропускание света через призмы и перфорированный экран. Теперь нам известно, что разложение света на цветовой спектр происходит вследствие различной скорости прохождения волн с разной длиной и частотой сквозь прозрачное вещество. В результате одни волны выходят из призмы раньше, другие - чуть позже, третьи - еще позже и так далее. Так и происходит разложение светового потока.

    Аномальная дисперсия

    В дальнейшем ученые-физики позапрошлого столетия сделали очередное открытие, касающееся дисперсии. Француз Леру обнаружил, что в некоторых средах (в частности, в парах йода) зависимость, выражающая явление дисперсии, нарушается. За изучение этого вопроса взялся живший в Германии физик Кундт. Для своего исследования он позаимствовал один из методов Ньютона, а именно опыт с использованием двух скрещенных призм. Разница состояла лишь в том, что вместо одной из них Кундт применял призматический сосуд с раствором цианина. Оказалось, что показатель преломления при прохождении света через такие призмы увеличивается, а не уменьшается, как это происходило в экспериментах Ньютона с обычными призмами. Немецкий ученый выяснил, что этот парадокс наблюдается вследствие такого явления, как поглощение света веществом. В описанном опыте Кундта поглощающей средой выступал раствор цианина, а дисперсия света для таких случаев была названа аномальной. В современной физике такой термин практически не используют. На сегодняшний день открытую Ньютоном нормальную и обнаруженную позже аномальную дисперсию рассматривают как два явления, относящихся к одному учению и имеющих общую природу.

    Низкодисперсные линзы

    В фототехнике дисперсия света считается нежелательным явлением. Она становится причиной так называемой хроматической аберрации, при которой на изображениях появляется искажение цветов. Оттенки фотографии при этом не соответствуют оттенкам снимаемого объекта. Особенно неприятным такой эффект становится для фотографов-профессионалов. Из-за дисперсии на фотоснимках не только происходит искажение цветов, но и нередко наблюдается размытие краев или, наоборот, появление чересчур очерченной каймы. Мировые производители фототехники справляются с последствиями такого оптического явления с помощью специально разработанных низкодисперсных линз. Стекло, из которого они производятся, обладает великолепным свойством одинаково преломлять волны с разными значениями длины и частоты. Объективы, в которых устанавливаются низкодисперсные линзы, называются ахроматами.

    ) света (частотная дисперсия), или, то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

    Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

    Энциклопедичный YouTube

      1 / 3

      Дисперсия и спектр света

      Дисперсия света и Цвет тел

      Дисперсия света. Цвета тел.

      Субтитры

    Свойства и проявления

    Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

    • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления - минимальна,
    • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления - максимальна.

    Однако в некоторых веществах (например в парах иода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

    Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

    Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

    n = a + b / λ 2 + c / λ 4 {\displaystyle n=a+b/\lambda ^{2}+c/\lambda ^{4}} ,

    где λ {\displaystyle \lambda } - длина волны в вакууме; a , b , c - постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

    Иногда, когда после сильного ливня вновь проглядывает солнце, можно увидеть радугу. Это происходит потому, что воздух насыщен мельчайшей водяной пылью. Каждая капля воды в воздухе выполняет роль крохотной призмы, дробящей свет на разные цвета.

    Около 300 лет назад И.Ньютон пропустил солнечные лучи через призму. Он открыл, что белый свет – это «чудесная смесь цветов».

    Это интересно… Почему в спектре белого света выделяют только 7 цветов?

    Так, например, Аристотель указывал всего три цвета радуги: красный, зеленый, фиолетовый. Ньютон вначале выделил в радуге пять цветов, а позднее – десять. Однако, впоследствии, он остановился на семи цветах. Выбор объясняется, скорее всего, тем, что число семь считалось «магическим» (семь чудес света, семь недель и т.д.).

    Дисперсия света впервые была экспериментально обнаружена Ньютоном в 1666 г., при пропускании узкого пучка солнечного света через стеклянную призму. В полученном им спектре белого света он выделил семь цветов: Из этого опыта Ньютон сделал вывод, что «световые пучки, отличающиеся по цвету, отличаются по степени преломления». Наиболее сильно преломляются фиолетовые лучи, меньше всех – красные.

    Белый свет является сложным светом, состоящим из волн различной длины (частоты). Каждой цветности соответствует своя длина и частота волны: красного, оранжевого, зеленого, голубого, синего, фиолетового – такое разложение света называется спектром.

    Волны различной цветности по-разному преломляются в призме: меньше красного, больше – фиолетового. Призма отклоняет волны разной цветности на разные углы . Такое их поведение объясняется тем, что при переходе световых волн из воздуха в стеклянную призму скорость волн «красного цвета» изменяется меньше, чем «фиолетового цвета». Таким образом, чем меньше длина волны (больше частота), тем показатель преломления среды для таких волн больше.

    Дисперсией называется зависимость показателя преломления света от частоты колебаний (или длины волны).

    Для волн различной цветности показатели преломления данного вещества различны; вследствие этого при отклонении призмой белый свет разлагается в спектр .

    При переходе монохроматической световой волны из воздуха в вещество длина световой волны уменьшается, частота колебаний остается неизменной . Неизменным остается цвет.

    При наложении всех цветов спектра образуется белый свет.

    Почему же мы видим предметы окрашенными? Краска не создает цвета , она избирательно поглощает или отражает свет.

    Опорный конспект:

    Вопросы для самоконтроля по теме «Дисперсия света»

    1. Что называют дисперсией света?
    2. Нарисуйте схемы получения спектра белого света с помощью стеклянной призмы.
    3. Почему белый свет, проходя через призму, дает спектр?
    4. Сравните показатели преломления для красного и фиолетового света.
    5. Какой свет распространяется в призме с большей скоростью – красный или фиолетовый?
    6. Как объяснить многообразие цветов в природе с точки зрения волновой оптики?
    7. Какого цвета будут видны через красный светофильтр окружающие предметы? Почему?