Физика наблюдение сплошного и линейчатого спектров. Наблюдение линейчатого и сплошного спектров испускания

Тема: «Наблюдение сплошного и линейчатого спектров»

Цель работы:

учебная: пронаблюдать сплошной и линейчатый спектры;

профессиональная: выяснить, как осуществляется люминесцентный анализ пищевых продуктов.

Должен знать : понятия: спектр, спектральный анализ, люминесценция; виды спектров, устройство спектроскопа;

уметь: отличать сплошной спектр от линейчатого, наблюдать спектры излучения с помощью призмы и спектроскопа;

Оборудование: спектральные трубки с разными газами; блок питания, прибор для зажигания спектральных трубок; стеклянная пластина со скошенными гранями; спектроскоп, лампа накаливания, лампа дневного света.

Краткая теория:

Все спектры, как показывает опыт, можно разделить на три типа.Непрерывные спектры дают тела находящиеся в твёрдом или жидком состоянии, а также сильно сжатые газы. В спектре нет разрывов, можно видеть сплошную разноцветную полосу. В непрерывном спектре представлены с различной интенсивностью все длины волн. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Линейчатые спектры дают все вещества в газообразном атомарном состоянии. Каждый из них - это частокол цветных линий различной яркости разделённых широкими тёмными полосами. Обычно для наблюдения линейчатых спектров используется свечение паров вещества в пламени или свечение газового разряда в трубке. Полосатые спектры создаются молекулами не связанными или плохо связанными между собой. Полосатый спектр состоит из отдельных полос, разделённых тёмными промежутками. Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют сечение паров в пламени или сечение газового разряда.

Порядок выполнения работы:

1. Наблюдение сплошного (непрерывного) спектра:

а) солнечный;

б) от лампы накаливания;

в) от лампы дневного света.

2. Наблюдение линейчатых спектров, зарисовать основные линии:

а) гелий – Не

б) водород – Н

в) криптон – Кг

г) неон – Nе

Основные правила техники безопасности:

1. Аккуратно обращайтесь со стеклянными призмами, не допускайте их падения.

2. Не дотрагивайтесь руками до прибора для зажигания спектральных трубок (там высокое напряжение!).

Контрольные вопросы:

1) Что является причиной электролюминесценции, катодолюминесценции?

2) Что является основным элементом спектрального аппарата?

3) Зависят ли длины волн линейчатого спектра от способа возбуждения атомов?

4) Какие операции нужно проделать с крупицей вещества, чтобы узнать ее химический состав при помощи спектрального анализа?

Лабораторная работа №9

Тема: «Изучение треков заряженных частиц (по готовым фотографиям)»

Цель работы:

учебная: изучить треки заряженных частиц;

профессиональная: познакомиться с методами определения радиоактивности пищевых продуктов.

Должен знать : основные методы регистрации ионизирующих излучение, как зависит длина трека от энергии частицы, толщина трека от скорости частицы;

уметь: определять удельный заряд частицы;

Оборудование: готовые фотографии треков, калька, линейка.

Краткая теория:

При помощи камеры Вильсона наблюдают и фотографируют треки (следы) движущихся заряженных частиц. Трек частицы представляет собой цепочку из микроскопических капелек воды или спирта, образовавшихся вследствие конденсации пересыщенных паров этих жидкостей на ионах. Ионы же образуются в результате взаимодействия заряженной частицы с атомами и молекулами паров и газов, находящихся в камере.

При прочих одинаковых условиях трек толще у той частицы, которая имеет больший заряд. Например, при одинаковых скоростях трек а-частицы толще, чем трек протона и электрона.

Если частицы имеют одинаковые заряды, то трек толще у той, которая имеет меньшую скорость, движется медленнее. Отсюда очевидно, что к концу движения трек частицы толще, чем вначале, так как скорость частицы уменьшается вследствие потери энергии на ионизацию атомов среды.

Если камера Вильсона помещена в магнитное поле, то на движущиеся в ней заряженные частицы действует сила Лоренца, которая равна (для случая, когда скорость частицы перпендикулярна линиям поля): ,

где Ze = q – заряд частицы, V – скорость и В – индукция магнитного поля. Правило левой руки позволяет показать, что сила Лоренца направлена всегда перпендикулярно скорости частицы и, следовательно, является центростремительной силой: ,

где m – масса частицы, R – радиус кривизны ее трека. Отсюда .

Если частица имеет скорость, много меньшую, чем скорость света (т.е. частица не релятивистская), то соотношение между величиной ее кинетической энергии и радиусом кривизны будет:

.

1. Радиус кривизны трека зависит от массы, скорости и заряда частицы. Радиус тем меньше (т.е. отклонение частицы от прямолинейного движения тем больше), чем меньше масса и скорость частицы и чем больше ее заряд. Например, в одном и том же магнитном поле при одинаковых начальных скоростях отклонение электрона будет больше, чем отклонение протона, и на фотографии будет видно, что трек электрона – окружность с меньшим радиусом, чем радиус трека протона. Быстрый электрон отклоняется меньше, чем медленный. Атом гелия, у которого недостает одного электрона, (ион Не +) отклонится слабее, чем а-частица, так как при одинаковых массах заряда а-частицы больше, чем заряд однократно ионизированного атома гелия. Из соотношения между энергией частицы и радиусом кривизны трека видно, что отклонение от прямолинейного движения больше в том случае, когда энергия частицы меньше.

2. Так как скорость частицы к концу пробега уменьшается, то уменьшается и радиус кривизны трека (увеличивается отклонение от прямолинейного движения). По изменению радиуса кривизны можно определить направление движения частицы – начало ее движения там, где кривизна трека меньше.

3. Измерив, радиус кривизны трека и зная некоторые другие величины, можно вычислить для частицы отношение ее заряда к массе. Это отношение служит важнейшей характеристикой частицы и позволяет определить, что это за частица, или, как говорят, «идентифицировать» частицу, т.е. установит ее идентичность (отождествление, подобие) известной частице.

Чтобы определить направление вектора индукции магнитного поля, нужно воспользоваться правилом левой руки: четыре вытянутых пальца расположить по направлению движения протона, а отогнутый большой палец – в направлении радиуса кривизны трека (вдоль него направлена сила Лоренца). По положению ладони, в которую должны входить силовые линии, находим их направление, т.е. направление вектора индукции магнитного поля.

Порядок выполнения работы:

1. Определите радиус кривизны трека.

Радиус кривизны трека частицы определяют следующим образом. Наложите на фотографию листок прозрачной бумаги и переведите на нее трек. Начертите, как показано на рисунке, две хорды и восстановите к этим хордам в их серединах перпендикуляры. На пересечении перпендикуляров лежит центр окружности, ее радиус кривизны трека. Например, радиус кривизны на фотографии 3,2 см., а отрезок 0,4 см. на вашем чертеже соответствует истиной длине в 1 см.

0,4 см – 1 см

3,2 см – х

Значит, радиус кривизны трека частицы равен

R
о

2. Выполните задание по вариантам.

Вариант I: Отношение заряда частицы III к ее массе (удельный заряд частицы) находят по формуле: , где - удельный заряд протона.

Вариант II: Из формулы: - найдите массу электрона. Энергия электрона связана с его массой соотношением: .

Вариант III: Относительное увеличение массы протока равно отношению его кинетической энергии к энергии покоя - масса покоя протока.

Контрольные вопросы

1. Как направлен вектор магнитной индукции относительно плоскости фотографии треков частиц?

2. Почему радиусы кривизны на разных участках трека одной и той же частицы различны?

3. Каков принцип действия приборов для регистрации элементарных частиц?

«Спектр излучения» - Значение метода спектрального анализа. 3, 5 - водород. Актуализация знаний. Электролюминесценция – возбуждение за счёт энергии заряженных частиц, разгоняющихся в электрическом поле. Лампы дневного света. Спектры испускания: 1- сплошной, 2- натрия, 3- водорода, 4-гелия. Фотолюминесценция – возбуждение за счёт внешнего излучения: Работы С.И.Вавилова (1891–1951).

«Спектр» - Исследование спектров испускания и поглощения позволяет установить качественный состав вещества. Примеры линейчатых спектров. Спектры испускания. ФРАУНГОФЕР (Fraunhofer) Йозеф (1787–1826), немецкий физик. Поэтому каждый химический элемент имеет свой спектр. Постулаты Бора. Спектральный анализ. Усовершенствовал изготовление линз, дифракционных решеток.

«Виды спектров» - Виды спектров: Гелий. Прибор для определения химического состава сплава металлов. Натрий. 1. Непрерывный спектр. 3. Полосатый спектр. Определение состава вещества по спектру. Спектральный анализ. Наблюдение сплошного и линейчатых спектров. Лабораторная работа. 4. Спектры поглощения. Водород. 2. Линейчатый спектр.

«Спектральный анализ физика» - Главное поле деятельности Вуда - физическая оптика. Линейчатые спектры дают все вещества в газообразном атомарном состоянии. Изолированные атомы излучают строго определенные длины волн. Загадка Роберта Вуда. Слайд подготовлен учеником Якушевым А. (11 кл.). Спектральный анализ. Применение спектрального анализа.

1. Цель работы: изучить особенности линейчатого спектра газов и сплошного спектра излучения твёрдых тел.

2. Литература:

2.1. Касьянов В.А. Физика. 11 класс: учебник для общеобразовательных учебных заведений. – М., 2003. Параграфы 53 – 55.

2.2. Конспект лекций по предмету «Физика».

3. Подготовка к работе:

3.1. Ответить на вопросы самопроверки для получения допуска к работе:

3.1.1. Сформулируйте первый постулат Бора.

3.1.2. Сформулируйте правило квантования.

3.1.3. Какие энергетические состояния электрона в атоме называют связанными; свободными?

3.1.4. Сформулируйте второй постулат Бора.

3.1.5. На каких физических принципах основан спектральный анализ? Где используется этот метод исследования?

3.2. Подготовить бланк отчета в соответствии с пунктом 6.

4. Перечень необходимого оборудования:

4.2. Электронное издание «Лабораторные работы по физике 10-11 класс»: Дрофа, 2005. Лабораторная работа № 14.

5. Порядок выполнения работы:

5.1. Включить ПЭВМ. Установить лабораторную работу № 14. Рассмотреть установку для проведения эксперимента (рис.1).

5.2. Включите спектральную трубку с водородом.

5.3. Проведите наблюдение линейчатого спектра водорода с помощью плоскопараллельной пластинки: через грани, образующие угол 60° и угол 45°. Запишите последовательность цветов видимых спектральных линий.

5.4. Укажите отличие линейчатых спектров в этих двух случаях.

5.5. Повторите наблюдения линейчатых спектров:

а) для гелия, б) для неона.

5.6. Проведите наблюдение сплошного спектра от светлой вертикаль­ной полоски, спроецированной на экран проекционным аппаратом, через грани, образующие угол 60° и угол 45°. Укажите последовательность чередования цветов в сплошном спектре. Опишите отличие сплошных спектров при их наблюдении через разные грани.

5.7. Проведите наблюдение сплошного спектра излучения лампы накаливания с помощью плоскопараллельной пластинки. Опишите наблюдаемый спектр.

5.8. Изменяя напряжение на лампе, опишите изменение спектра из­лучения лампы в зависимости от температуры нити накала.

6.1. Номер и наименование работы.

6.2. Цель работы.

6.3. Схема установки (рис. 1).

6.4. Последовательность цветов видимых спектральных линий водорода для 60 0 и 45 0 . Отличие линейчатых спектров в этих двух случаях.

6.5. Последовательность цветов видимых спектральных линий гелия для 60 0 и 45 0 . Отличие линейчатых спектров в этих двух случаях.

6.6. Последовательность цветов видимых спектральных линий неона для 60 0 и 45 0 . Отличие линейчатых спектров в этих двух случаях.

6.7. Последовательность цветов сплошного спектра от светлой вертикаль­ной полоски, спроецированной на экран проекционным аппаратом для 60 0 и 45 0 . Отличие линейчатых спектров в этих двух случаях.



6.8. Описание сплошного спектра излучения лампы накаливания. Изменение спектра из­лучения лампы в зависимости от температуры нити накала.

6.9. Вывод по результатам наблюдений.

6.10. Ответы на контрольные вопросы.

ДИСПЕРСИЯ. НАБЛЮДЕНИЕ СПЕКТРОВ.

Цель работы:

Ознакомится с назначением, характеристиками и устройством монохроматора. Произвести его градуировку. Применить градуировку монохроматора для определения длин волн источников света.

1. Теоретическая часть и экспериментальная установка

Основной характеристикой волн является длина волны l , которая связана с частотой волны n и скоростью волны с соотношением: .

Длина электромагнитных волн лежит в широких пределах: от значений порядка 1000 м (радиоволны) до 10 -10 см (гамма-излучение). Свет – это электромагнитные волны с длиной волны от »400 нм до » 800 нм. Цвет света (субъективное восприятие объективной физической характеристики света – частоты волы) определяется частотой электромагнитной волны. Для красного света l кр » 800нм , зеленого l з » 550 нм , фиолетового l ф » 400 нм .

Световые волны строго определенной длины волны называются монохроматическими (одноцветными). Смешанные в определенной пропорции световые волны различных длин волн дают белый свет (цвет). Ни один из источников света не дает строго монохроматического света, т.е. волну строго одной длины волны.

В вакууме световые волны с различной длиной волны распространяются с одинаковой скоростью с = 300 000 км/с . Но в каком-либо веществе (среде) скорость света меньше, чем в вакууме. В результате этого наблюдается явление преломления света при переходе света из одной среды в другую.

Абсолютный показатель преломления среды n показывает во сколько раз скорость света в вакууме больше чем в данной среде .

Кроме того, скорость света в среде зависит от его длины волны v = f (l ). Это явление называется дисперсией .

Дисперсия приводит к тому, что показатели преломления для света различных длин волн различны. Например, для воды n кр (красный свет) = 1,331 , n ф (фиолетовый свет)= 1,344 .

Явление дисперсии можно наблюдать с помощью призмы (рис. 1), в которой световые лучи преломляются дважды на передней и задней поверхности призмы. С помощью призмы свет разлагается в спектр .

Вид спектров от различных источников света весьма разнообразен.

Спектры излучения можно разделить на три типа:

· Непрерывные (или сплошные ) спектры дают светящиеся тела, находящиеся в твердом или жидком состоянии, а также плотные газы. В сплошном спектре нет разрывов, что означает присутствие в излучении света всевозможных длин волн. Сплошные спектры дают, например, лампы накаливания.

· Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. Такие спектры – это «частокол» цветных линий различной яркости, разделенных темными промежутками. Для наблюдения линейчатых спектров используют свечение газов или паров веществ в пламени или электрической дуге, а так же газовый разряд в трубке, наполненной исследуемым газом или паром при низком давлении.

· Полосатые спектры состоит из отдельных полос, разделенных темными промежутками. Полосы образуются путем наложения большого числа близко расположенных линий. Полосатые спектры создаются не атомами, а молекулами, и наблюдаются в твердых и жидких образцах.

Если пропускать белый свет сквозь холодный газ, жидкость, раствор, прозрачное твердое тело, то на фоне непрерывного спектра источника наблюдаются темные линии или полосы. Такие спектры называются спектрами поглощения (абсорбции).

Спектры несут огромную информацию об их источниках. Изучение спектров позволяет определить температуру излучающего тела, его химический состав, характер движения источника, энергетические характеристики атомов и молекул и т. д.

Монохроматор – это один из видов спектральных приборов, предназначенный для разложения излучения в спектр с целью последующего определения физической природы источника этого излучения. Для этого спектр должен быть «растянут» настолько, чтобы в нем не перекрывались узкие участки (линии) спектра. Количество, положение и относительные интенсивности этих лини строго индивидуальны и характерны для каждого вещества.

В настоящей работе изучается монохроматор УМ2 (универсальный монохроматор, модель 2), предназначенный для спектральных исследований видимого и, частично, инфракрасного и ультрафиолетового излучения. Разложение света здесь осуществляется на основе явления дисперсии. Диспергирующим элементом в нем является стеклянная призма Аббе.

Оптическая схема монохроматора показана на рис. 2. Здесь: 1 - исследуемый источник света; 2 - конденсорная линза, предназначенная для увеличения яркости освещения щели. Ширина входной щели 3 регулируется микрометрическим винтом 4. Объектив 5 формирует параллельный пучок света и направляет его на переднюю грань призмы. Точная настройка (подвижка) этого объектива производится при помощи микрометрического винта 6. Призма Аббе 7 установлена на столике 9, который приводится во вращение барабаном 8. При помощи объектива 10 зрительной трубы изображение входной щели монохроматора формируется вблизи фокальной плоскости окуляра 12. В этой же плоскости помещен визир 11 – острие иглы. Это позволяет при визуальном наблюдении через окуляр одновременно видеть резкие изображения входной щели (вертикальные полоски света) и визира. Когда столик 9, на котором укреплена призма 7, барабаном 8 поворачивается относительно вертикальной оси, спектр также поворачивается, перемещаясь горизонтально, и в поле зрения

окуляра попадают разные участки спектра.


2. Экспериментальная часть

Задание 1. Подготовка монохроматора к работе

1. Осмотрите монохроматор, проверьте соответствие комплекта установки рисунку на планшете, который прилагается к прибору. Прочтите имеющиеся на приборах информационные таблички. Пользуясь рисунком на планшете, уясните назначение узлов и ручек управления монохроматором. Рассмотрите блок питания, ртутную и неоновую лампы.

2. На блоке питания включите тумблер "Сеть". На основании монохроматора расположены тумблеры включения освещения шкал и окулярного визира.

3. В поле зрения окуляра наблюдается окулярный указатель - визир 11, вертикальное острие иглы. Вращая обечайку окуляра, сделайте визир максимально резким. Поворачивая диск со светофильтрами наверху окуляра, можно менять цвет подсветки визира. Следует использовать цвет, ближайший к цвету наблюдаемого участка спектра. Интенсивность подсветки визира подбирается регулятором, расположенным рядом с его выключателем.

4. Изучите шкалу отсчетного барабана. Деления на барабане нанесены в градусных единицах j ° (2 ° /дел). Убедитесь, что при прохождении всего барабана, отсчетный флажок с риской не сходит с направляющей канавки барабана (при вращении барабана флажок желательно придерживать пальцем). Отсчет делений ведется по специальной риске с точкой на флажке.

5. Установите на рельс ртутную лампу вплотную к входной щели монохроматора. Питание лампы осуществляется от специального блока.

Внимание! Ртутная лампа наряду с видимым светом излучает ультрафиолет, вредный для глаз. Во избежание ожогов сетчатки глаза, лампа помещена в непрозрачный футляр с окошком, направленным в сторону щели монохроматора.

6. Раскройте входную щель на достаточно большую ширину (ручка микрометрического винта 4). Рукоятку затвора поставьте в положение "Откр.".

7. Приблизив глаз к окуляру монохроматора, вращением барабана 8 пройдите вначале весь спектр в любом направлении. В поле зрения должны наблюдаться вертикальные полосы от красного до фиолетового цветов.

8. Вращая барабан 8, найдите в спектре и установите в поле зрения окуляра яркую двойную желтую линию. Постепенно уменьшая ширину щели и пользуясь ручкой фокусировки 6, добейтесь, чтобы линии стали максимально контрастными – тонкими и яркими. «Желтый дублет» ртути должен четко различаться.

9. При просмотре всего спектра ртути по краям барабана должен оставаться некоторый запас делений.

Задание 2. Градуировка монохроматора

Цель: Градуировка любого измерительного прибора - это установление однозначного соответствия между значениями наблюдаемой физической величины и показаниями прибора. В частности, при градуировке монохроматора, необходимо установить зависимость между длинами волн линий, наблюдаемых в хорошо изученных (эталонных) спектрах и показаниями барабана 8: l = f(j ) . Эта зависимость должна быть отображена в виде градуировочного графика. В дальнейшем градировочный график может быть использован для определения длин волн в неизвестных спектрах.

Градуировка выполняется по линейчатым спектрам газов, длины волн спектральных линий которых уже известны. В настоящей работе монохроматор градуируется по спектрам паров ртути и инертного газа неона.

В таблице 1 указаны номер, цвет, длины волн для всех линий в спектре ртути в диапазоне видимого света от 400 нм до 710 нм . Этот спектр излучается в низковольтном дуговом разряде однозарядными ионами ртути.

Для получения полного спектра ртути необходимо очень хорошо настроить прибор и использовать качественную ртутно-кварцевую лампу. В студенческой лаборатории удается наблюдать наиболее яркие линии этого спектра (в таблице выделены жирным шрифтом, яркость линий дана в специальных единицах).

Обычно хорошо наблюдается одна из оранжевых линий, две близко расположенные желтые линии (дублет), одна яркая зеленая, сине-зеленая (голубая) и синяя яркая. Красные линии спектра и фиолетовую (405 нм ), несмотря на относительную яркость последней, наблюдать визуально сложно, так как их цвета лежат на границах цветового восприятия человеческого глаза. Но при достаточно хорошей настройке прибора их все же удается наблюдать. Надо понимать, что цвет – характеристика достаточно субъективная и то, что один наблюдатель назовет красным (или синим), другой может назвать оранжевым (или фиолетовым).

Таблица 1

№ п/п

Цвет линии

l , нм

Яркость

№ п/п

Цвет линии

l , нм

Яркость

Красная Зеленая
- “ - - “ -
- “ -

691

25

- “ -
- “ - - “ -

Оранжевая

3

- “ -
- “ - - “ -
- “ - - “ -
Желтая Сине-зеленая

492

10

- “ -

-“ -

- “ - - “ -
Яркий желтый дублет

579

100

Синяя яркая

436

400

577

24

- “ -
- “ - - “ -
Зеленая - “ -

Зеленая яркая

546

320

Фиолетовая

- “ - - “ -
- “ - - “ -

405

180



Отождествление линий в спектрах - это трудоемкая и кропотливая работа. Для ее облегчения показана схема расположения линий в спектре ртути (рис. 3 а ) и их относительные интенсивности (рис. 3 б ).

1. Начиная с фиолетового конца спектра, вращая барабан «на себя», поставьте напротив визира первую наблюдаемую линию спектра.

2. В таблицу 1 отчета занесите значение длины волны линии и отсчет по барабану.

3. Продолжайте градуировку. Отождествите наиболее характерные линии: яркую синюю, очень яркую зеленую, одну из желтого дублета и т. д. Возможно, удастся наблюдать крайнюю фиолетовую и одну из красных линий.

5. После завершения измерений ртутного спектра выключите ртутную лампу. Ее повторное включение возможно не ранее чем через 5-10 минут.

6. Замените ртутную лампу на неоновую, питание которой осуществляется напряжением



220В . Отождествите несколько линий спектра неона. Из спектра неона можно, например, выбрать линию 630 нм из тройки оранжевых линий и две - три другие линии – рис. 4.

7. Естественно, градуировочные кривые, построенные по спектру ртути и по спектру неона, на границе должны плавно сопрягаться.


8. Постройте на миллиметровой бумаге градуировочный график, как показано на рис. 4, откладывая по горизонтальной оси деления j по барабану, а по вертикальной оси - длину волны l . (Еще лучше, если построение градуировочного графика ведется одновременно с измерениями и заполнением таблицы 1 отчета. Тогда будет сразу видно, что какая-либо точка не ложится на плавную кривую, и ее следует «перемерить»). Угловая координата j по оси абсцисс (рис. 5) откладывается в порядке убывания. Это сделано для того, чтобы точки на графике соответствовали расположению линий спектра в поле зрения трубы монохроматора. Вначале построения графика точки наносятся аккуратно остро отточенным карандашом. Если возникает разброс точек, то следует перепроверить отождествление линий на этом участке. После уточнения точки следует отметить более четко. У точек, соответствующих наиболее ярким линиям укажите длину волны. Соедините точки кривой линией. График должен представлять собой гладкую монотонную кривую, проходящую через каждую измеренную точку.

Задание 3. Наблюдение сплошного спектра излучения и спектров поглощения

1. Источником сплошного спектра является лампа накаливания. Установите осветитель с лампой накаливания на рельс монохроматора и пронаблюдайте сплошной спектр лампы.

2. Для наблюдения спектров поглощения в данной работе используются интерференционные фильтры, пропускающие свет в очень узком интервале длин волн. Вставьте один из фильтров в держатель, укрепленный на монохроматоре. Измерьте длину волны середины полосы пропускания фильтра.

3. Сравните полученное значение с указанным на фильтре и сделайте вывод о точности измерений.

Задание 4. Измерение длины волны излучения лазера

Определите длину волны излучения выданного для опыта лазера.


Задание 5 . Исследование неизвестного спектра

(выполняется по заданию преподавателя)

1. С помощью градуировочной кривой, построенной для данного спектрального аппарата в данных условиях можно определять длину волны линий в спектре любого неизвестного излучения. В настоящей работе исследуется спектр газа, полученный в тлеющем разряде.

2. Установите трубку с газом на рельс прибора вплотную к щели. Подключите ее к источнику питания. Отрегулируйте положение лампы так, чтобы линии в спектре были максимально яркими.

3. Для каждой спектральной линии измерьте угловую координату j по шкале измерительного барабана. По градуировочному графику для каждой линии по значениям угла j определяется длина волны l (таблица 3 отчета).

4. Полученная таблица может быть сверена со значениями, взятыми из спектральных таблиц.

5. Описанные выше операции составляют основу метода идентификации вещества по его спектру – так называемого «качественного» спектрального анализа.

Отчет по лабораторной работе № 1

Дисперсия. Наблюдение спектров

выполненной студент курса, группа

…………………………………………………………………………………

«…… » …………… 200 г.

Задание 2. Градуирование монохроматора УМ2

Таблица 1

Цвет

l , нм

из таблицы

j , °

«на глазок»

Ртуть
1
2
3
4
5
6
7
8
Неон
9
10
11
12