Какое максимальное значение энтропии может получится. Максимальное значение - энтропия

Любое сообщение, с которым мы имеем дело в теории информации, представляет собой совокупность сведений о некоторой физической системе. Например, на вход автоматизированной системы управления производственным цехом может быть передано сообщение о нормальном или повышенном проценте брака, о химическом составе сырья или температуре в печи. На вход системы управления средствами противовоздушной обороны может быть передано сообщение о том, что в воздухе находятся две цели, летящие на определенной высоте, с определенной скоростью. На тот же вход может быть передано сообщение о том, что на определенном аэродроме в данный момент находится такое-то количество истребителей в боевой готовности, или что аэродром выведен из строя огневым воздействием противника, или что первая цель сбита, а вторая продолжает полет с измененным курсом. Любое из этих сообщений описывает состояние какой-то физической системы.

Очевидно, если бы состояние физической системы было известно заранее, не было бы смысла передавать сообщение. Сообщение приобретает смысл только тогда, когда состояние системы заранее неизвестно, случайно.

Поэтому в качестве объекта, о котором передается информация, мы будем рассматривать некоторую физическую систему , которая случайным образом может оказаться в том или ином состоянии, т. е. систему, которой заведомо присуща какая-то степень неопределенности. Очевидно, сведения, полученные о системе, будут, вообще говоря, тем ценнее и содержательнее, чем больше была неопределенность системы до получения этих сведений («априори»). Возникает естественный вопрос: что значит «большая» или «меньшая» степень неопределенности и чем можно ее измерить?

Чтобы ответить на этот вопрос, сравним между собой две системы, каждой из которых присуща некоторая неопределенность.

В качестве первой системы возьмем монету, которая в результате бросания может оказаться в одном из двух состояний: 1) выпал герб и 2) выпала цифра. В качестве второй - игральную кость, у которой шесть возможных состояний: 1, 2, 3, 4, 5 и 6. Спрашивается, неопределенность какой системы больше? Очевидно, второй, так как у нее больше возможных состояний, в каждом из которых она может оказаться с одинаковой вероятностью.

Может показаться, что степень неопределенности определяется числом возможных состояний системы. Однако в общем случае это не так. Рассмотрим, например, техническое устройство, которое может быть в двух состояниях: 1) исправно и 2) отказало. Предположим, что до получения сведений (априори) вероятность исправной работы устройства 0,99, а вероятность отказа 0,01. Такая система обладает только очень малой степенью неопределенности: почти наверное можно предугадать, что устройство будет работать исправно. При бросании монеты тоже имеется два возможных состояния, но степень неопределенности гораздо больше. Мы видим, что степень неопределенности физической системы определяется не только числом ее возможных состояний, но и вероятностями состояний.

Перейдем к общему случаю. Рассмотрим некоторую систему , которая может принимать конечное множество состояний: с вероятностями , где

(18.2.1)

Вероятность того, что система примет состояние (символом обозначается событие: система находится в состоянии ). Очевидно, .

Запишем эти данные в виде таблицы, где в верхней строке перечислены возможные состояния системы, а в нижней - соответствующие вероятности:

Эта табличка по написанию сходна с рядом распределения прерывной случайной величины с возможными значениями , имеющими вероятности . И действительно, между физической системой с конечным множеством состояний и прерывной случайной величиной много общего; для того чтобы свести первую ко второй, достаточно приписать каждому состоянию какое-то числовое значение (скажем, номер состояния). Подчеркнем, что для описания степени неопределенности системы совершенно неважно, какие именно значения записаны в верхней строке таблицы; важны только количество этих значений и их вероятности.

В качестве меры априорной неопределенности системы (или прерывной случайной величины ) в теории информации применяется специальная характеристика, называемая энтропией. Понятие об энтропии является в теории информации основным.

Энтропией системы называется сумма произведений вероятностей различных состояний системы на логарифмы этих вероятностей, взятая с обратным знаком:

. (18.2.2)

Энтропия , как мы увидим в дальнейшем, обладает рядом свойств, оправдывающих ее выбор в качестве характеристики степени неопределенности. Во-первых, она обращается в нуль, когда одно из состояний системы достоверно, а другие - невозможны. Во-вторых, при заданном числе состояний она обращается в максимум, когда эти состояния равновероятны, а при увеличении числа состояний - увеличивается. Наконец, и это самое главное, она обладает свойством аддитивности, т. е. когда несколько независимых систем объединяются в одну, их энтропии складываются.

Логарифм в формуле (18.2.2) может быть взят при любом основании . Перемена основания равносильна простому умножению энтропии на постоянное число, а выбор основания равносилен выбору определенной единицы измерения энтропии. Если за основание выбрано число 10, то говорят о «десятичных единицах» энтропии, если 2 - о «двоичных единицах». На практике удобнее всего пользоваться логарифмами при основании 2 и измерять энтропию в двоичных единицах; это хорошо согласуется с применяемой в электронных цифровых вычислительных машинах двоичной системой счисления.

В дальнейшем мы будем везде, если не оговорено противное, под символом понимать двоичный логарифм.

В приложении (табл. 6) даны двоичные логарифмы целых чисел от 1 до 100.

Легко убедиться, что при выборе 2 в качестве основания логарифмов за единицу измерения энтропии принимается энтропия простейшей системы , которая имеет два равновозможных состояния:

Действительно, по формуле (18.2.2) имеем:

.

Определенная таким образом единица энтропии называется «двоичной единицей» и иногда обозначается bit (от английского «binary digit» - двоичный знак). Это энтропия одного разряда двоичного числа, если он с одинаковой вероятностью может быть нулем или единицей.

Измерим в двоичных единицах энтропию системы , которая имеет равновероятных состояний:

т. е. энтропия системы с равновозможными состояниями равна логарифму числа состояний.

Например, для системы с восемью состояниями .

Докажем, что в случае, когда состояние системы в точности известно заранее, ее энтропия равна нулю. Действительно, в этом случае все вероятности в формуле (18.2.2) обращаются в нуль, кроме одной - например , которая равна единице. Член обращается в нуль, так как . Остальные члены тоже обращаются в нуль, так как

.

Докажем, что энтропия системы с конечным множеством состояний достигает максимума, когда все состояния равновероятны. Для этого рассмотрим энтропию системы (18.2.2) как функцию вероятностей и найдем условный экстремум этой функции при условии:

Пользуясь методом неопределенных множителей Лагранжа, будем искать экстремум функции:

. (18.2.5)

Дифференцируя (18.2.5) по и приравнивая производные нулю, получим систему уравнений:

, (18.2.6)

откуда видно, что экстремум (в данном случае максимум) достигается при равных между собой значениях . Из условия (18.2.4) видно, что при этом

, (18.2.7)

а максимальная энтропия системы равна:

, (18.2.8)

т. е. максимальное значение энтропии системы с конечным числом состояний равно логарифму числа состояний и достигается, когда все состояния равновероятны.

Вычисление энтропии по формуле (18.2.2) можно несколько упростить, если ввести в рассмотрение специальную функцию:

, (18.2.9)

где логарифм берется по основанию 2.

Формула (18.2.2) принимает вид:

. (18.2.10)

Функция затабулирована; в приложении (табл. 7) приведены ее значения для от 0 до 1 через 0,01.

Пример 1. Определить энтропию физической системы, состоящей из двух самолетов (истребителя и бомбардировщика), участвующих в воздушном бою. В результате боя система может оказаться в одном из четырех возможных состояний:

1) оба самолета не сбиты;

2) истребитель сбит, бомбардировщик не сбит;

3) истребитель не сбит, бомбардировщик сбит;

4) оба самолета сбиты.

Вероятности этих состояний равны соответственно 0,2; 0,3; 0,4 и 0,1.

Решение. Записываем условия в виде таблицы:

Энтропия определяется как среднее значение собственной информации ансамбля

Метод максимума энтропии, аналогично методу максимума информации, строится на поиске среди всех возможных распределений вероятностей такого, которое обладает максимальной энтропией вида (3.19). Таким образом, критерий максимума энтропии используется для снятия неопределенности решения, а функционал (3.19) выступает как своеобразная «мера качества» изображения .

Смысл такой меры качества можно понять, обратившись к задаче оценивания плотностей распределения вероятностей в математической статистике. В случае известных моментов случайного распределения оценка, получаемая максимизацией выражения (3.19), является наименее смещенной из всех возможных оценок. Можно ожидать, что максимум (3.19) при наложенных ограничениях на процесс формирования изображения будет давать хорошую оценку плотности распределения. Попытаемся рассмотреть процесс формирования изображения и выяснить физический смысл критерия максимума энтропии.

Пусть суммарная интенсивность источника равна причем из точки излучается интенсивность из Подсчитаем число способов, которыми данный объект может быть сформирован из лучей:

Теперь найдем такое распределение, которое будет сформировано в наибольшем числе случаев

Заменив на его логарифм (максимум при этом не сместится) и используя формулу Стирлинга, получим :

Для решения задачи необходимо учесть также ограничения на уравнения формирования:

а также ограничение на суммарную интенсивность изображения, т. е.

Выражения составляют основу метода максимума энтропии. Физический смысл применения критерия максимума энтропии заключается в поиске такого распределения вероятностей на входе канала, которое в большинстве случаев формирует заданное выходное распределение или поиск наиболее правдоподобного распределения источника при заданных условиях формирования. В этом смысле метод максимума энтропии можно рассматривать как метод максимального правдоподобия для лучевой модели формирования изображений .

Рассмотрим одну из наиболее часто встречающихся форм записи метода максимума энтропии. Будем рассматривать одновременно с формированием изображения параллельное формирование шумового поля :

На основании приведенных рассуждений получим, что шумовое поле может быть создано способами, где

Для решения задачи необходимо максимизировать совместную вероятность формирования изображения и шумового поля

Логарифмирование этого выражения дает сумму энтропий шума и изображения:

Учитывая ограничения на процесс формирования и сохранение числа лучей (суммарную интенсивность), получим следующую задачу оптимизации:

где величины и являются множителями Лагранжа задачи оптимизации. Для решения системы найдем частные производные (3.25) по и приравняем их к нулю:

Подставляя выражения для и из (3.26), (3.27) в уравнения ограничений, находим

Из уравнений вида (3.28) определяются множители Лагранжа которые используются для нахождения функции входного распределения:

Экспонента в (3.29) обеспечивает положительность решения Сам функционал энтропии существенно нелинеен, что обусловливает интересную особенность уравнений (3.29): они могут содержать пространственные частоты, которые отсутствовали в спектре искаженного изображения. Это позволяет говорить о возможности «сверхразрешения», т. е. восстановлении информации, уничтоженной системой формирования с ограниченной полосой (эффекту сверхразрешения и оценке его возможностей посвящена гл. 5). Отметим также, что решения, получаемые на основе (3.29), обладают повышенным качеством по сравнению с линейными алгоритмами восстановления, однако требуют решения сложной системы нелинейных уравнений.

Выражению для энтропии в форме (3.19) существует альтернатива, предложенная Бургом для оценок спектров мощности . Эта форма энтропии имеет следующий вид:

Метод восстановления на основе выражения (3.30) также можно использовать в практике обработки изображений. Пусть нам известны зашумленные отсчеты спектра

где соответственно отсчеты спектров Наложим ограничение на расхождение истинных и зашумленных отсчетов спектра наблюдаемого изображения :

Тогда для нахождения решения требуется максимизировать более простой функционал:

Необходимо отметить, что в последнее время появилось большое число алгоритмов на основе как (3.19), так и (3.30), использующих при этом самые разнообразные ограничения, вытекающие из постановки каждой конкретной задачи. Правда, наличие двух норм энтропии вызывает некоторое сомнение, во-первых, из-за того, что неясно, какую из них использовать на практике, а во-вторых, из-за недостаточно четкой постановки задачи восстановления.

Существует еще одна интересная особенность алгоритмов, основанных на поиске максимума энтропии. Обратимся к выражениям (3.27)-(3.29) для случая идеальной системы формирования, но при наличии аддитивного шума Нетрудно видеть, что применение алгоритма максимума энтропии в этом случае претендует на выделение изображения из шума без каких-либо априорных характеристик шума и сигнала. Однако более внимательный анализ показывает, что решение с помощью уравнений вида (3.28) дает парадоксальный результат: сигнал и шум оказываются связаны линейной зависимостью. Действительно, оценка сигнала здесь равна

а оценка шума будет:

В практических приложениях для избежания этого эффекта выражение для энтропии шума берут с некоторым весовым коэффициентом и вместо (3.24) рассматривают следующий функционал:

Этот прием, однако, оставляет неясным физический смысл производных преобразований.

Еще один недостаток метода максимума энтропии состоит в том, что наилучшие результаты с его помощью получаются при восстановлении объектов, состоящих из отдельных импульсов на однородном фоне, а попытки применения метода к пространственно протяженным объектам вызывают появление флуктуаций .

Изложенные результаты, касающиеся методов максимума энтропии и максимума информации, могут быть объединены

в единую схему, основанную на построении алгоритмов оценивания плотности распределения с помощью метода максимального правдоподобия. Тем самым рассмотренные алгоритмы можно включить в группу методов статистической регуляризации, описанных в § 2.4. Отличие лишь в том, что эти алгоритмы основаны на другой статистической модели - представлении самого изображения как плотности вероятности. Такая модель сразу же приводит к нелинейности рассматриваемых функционалов . Однако отмеченные ранее недостатки заставляют искать алгоритмы, которые, сохраняя преимущества теоретико-информационных методов восстановления (неограниченность по полосе частот, неотрицательность решения и т. п.), позволяют восстанавливать более широкий класс изображений.

Для источника с зависимыми сообщениями энтропия тоже вычисляется как математическое ожидание количества информации на один элемент этих сообщений. Количество информации и энтропия являются логарифмическими мерами и измеряются в одних и тех же единицах.


6. Энтропия объединенных статистически независимых источников информации равна сумме их энтропий. 7. Энтропия характеризует среднюю неопределенность выбора одного состояния из ансамбля, полностью игнорируя содержательную сторону ансамбля. ЭНТРОПИЯ ЭКОСИСТЕМЫ - мера неупорядоченности экосистемы, или количества энергии, недоступной для использования. Чем больше показатель энтропии, тем менее устойчива экосистема во времени и пространстве.

4.1.2. Энтропия и производительность дискретного источника сообщений

Любое из этих сообщений описывает состояние какой-то физической системы. Мы видим, что степень неопределенности физической системы определяется не только числом ее возможных состояний, но и вероятностями состояний. В качестве меры априорной неопределенности системы (или прерывной случайной величины) в теории информации применяется специальная характеристика, называемая энтропией.

Энтропия, как мы увидим в дальнейшем, обладает рядом свойств, оправдывающих ее выбор в качестве характеристики степени неопределенности. Наконец, и это самое главное, она обладает свойством аддитивности, т. е. когда несколько независимых систем объединяются в одну, их энтропии складываются. Если за основание выбрано число 10, то говорят о «десятичных единицах» энтропии, если 2 — о «двоичных единицах».

Докажем, что энтропия системы с конечным множеством состояний достигает максимума, когда все состояния равновероятны. Пример 3. Определить максимально возможную энтропию системы, состоящей из трех элементов, каждый из которых может быть в четырех возможных состояниях.

Следует заметить, что полученное в этом случае значение энтропии будет меньше, чем для источника независимых сообщений. Это следует из того, что при наличии зависимости сообщений неопределенность выбора уменьшается и, соответственно, уменьшается энтропия. Определим энтропию двоичного источника. График зависимости (4.4) представлен на рис. 4.1. Как следует из графика, энтропия двоичного источника изменяется в пределах от нуля до единицы.

Основные свойства энтропии

Обычно отмечают, что энтропия характеризует заданное распределение вероятностей с точки зрения степени неопределенности исхода испытания, т. е. неопределенности выбора того или иного сообщения. Действительно, легко убедиться, что энтропия равна нулю тогда и только тогда, когда одна из вероятностей равна единице, а все остальные равны нулю; это означает полную определенность выбора.

Возможна и другая наглядная интерпретация понятия энтропии как меры «разнообразия» сообщений, создаваемых источником. Легко убедиться, что приведенные выше свойства энтропии вполне согласуются с интуитивным представлением о мере разнообразия. Также естественно считать, что количество информации, содержащееся в элементе сообщения, тем больше, чем более разнообразны возможности выбора этого элемента.

Выражение представляющее математическое ожидание количества информации в выбираемом элементе, для источника, находящегося в -м состоянии, можно назвать энтропией этого состояния. Определенная выше энтропия источника на элемент сообщения зависит от того, каким образом сообщения расчленяются на элементы, т. е. от выбора алфавита. Однако энтропия обладает важным свойством аддитивности.

Отметим некоторые свойства энтропии. Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической.

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.

Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии. Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний.

Другими словами, энтропия - это то, как мы описываем систему. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

С одной стороны, это расширяет возможности использования энтропии при анализе самых различных явлений, но, с другой стороны, требует определенной дополнительной оценки возникающих ситуаций. Это во-первых.Во-вторых, Вселенная — это не обычный конечный объект с границами, это сама бесконечность во времени и пространстве.

МАКСИМАЛЬНАЯ РАБОТА - в термодинамике 1) работа, совершаемая теплоизолиров. Любое сообщение, с которым мы имеем дело в теории информации, представляет собой совокупность сведений о некоторой физической системе. Очевидно, если бы состояние физической системы было известно заранее, не было бы смысла передавать сообщение.

Очевидно, сведения, полученные о системе, будут, вообще говоря, тем ценнее и содержательнее, чем больше была неопределенность системы до получения этих сведений («априори»). Чтобы ответить на этот вопрос, сравним между собой две системы, каждой из которых присуща некоторая неопределенность.

Однако в общем случае это не так. Рассмотрим, например, техническое устройство, которое может быть в двух состояниях: 1) исправно и 2) отказало. Подчеркнем, что для описания степени неопределенности системы совершенно неважно, какие именно значения записаны в верхней строке таблицы; важны только количество этих значений и их вероятности. Понятие об энтропии является в теории информации основным.

Количество этой информации и называется энтропией. Предположим, что в некоторое сообщение вошло элементов алфавита, элементов и т.д. Величину называют энтропией источника сообщений. 3. Энтропия максимальна, если все состояния элементов сообщений равновероятны. В теории информации доказывается, что всегда, т. е. наличие вероятностных связей уменьшает энтропию источника сообщений.

Игра в бильярд начинается с того, что шары аккуратной пирамидкой выстраиваются на столе. Затем наносится первый удар кием, который разбивает пирамиду. Шары перекатываются по столу по причудливым траекториям, многократно сталкиваются со стенками стола и друг с другом и, наконец, застывают в некотором новом расположении. Отчего-то новое расположение всегда менее упорядоченно. Почему? Можно пробовать бесконечно. Положения шаров на столе каждый раз будут меняться, но никогда мы не придем к такой же упорядоченной пирамиде, которая была на столе перед первым ударом. Система самопроизвольно переходит в менее упорядоченные состояния. Никогда не в более упорядоченные. Для того чтобы система перешла в упорядоченное состояние, необходимо вмешательство извне. Кто-нибудь из играющих берет треугольную рамку и формирует новую пирамиду. Процесс требует вложения энергии. Не существует способа заставить шары самопроизвольно выстроиться в пирамиду в результате соударений друг с другом и со стенками.

Процесс нарастания беспорядка на бильярдном столе не управляется (хотя и требует энергии для своего прохождения), потому что хороший бильярдный стол специально делается таким, чтобы энергия шара в любой его точке была одинаковой. То, что происходит на бильярдном столе, демонстрирует другой великий принцип, по которому организована наша Вселенная: принцип максимума энтропии. Разумеется, одним лишь бильярдным столом великий принцип мироздания не ограничивается. Так что будем разбираться.

Энтропия - это мера неупорядоченности системы. Чем меньше порядка в системе, тем выше ее энтропия. Наверное, имеет смысл поговорить о том, что считать порядком и что беспорядком.

Под порядком можно понимать регулярное расположение частиц, когда расстояния и направления повторяются, а по расположению нескольких частиц можно предсказать расположение следующей. Если частицы равномерно перемешаны безо всякого видимого закона расположения - это беспорядок. Если частицы аккуратно собраны в одной области пространства - это порядок. Если разбросаны повсюду - беспорядок. Если разные компоненты смеси находятся в разных местах - это порядок. Если все вперемежку - беспорядок. В общем, спросите маму или жену - она объяснит.

Энтропия газа (между прочим, слово "газ" - это искаженное греческое "хаос") выше, чем жидкости. Энтропия жидкости выше, чем твердого тела. Вообще говоря, повышение температуры увеличивает беспорядок. Из всех состояний вещества наименьшую энтропию будет иметь твердый кристалл при температуре абсолютного нуля. Эту энтропию принимают за нулевую.

В различных процессах энтропия изменяется. Если в некотором процессе не происходит изменения энергии, то процесс протекает самопроизвольно только в том случае, если это ведет к повышению энтропии системы. (Что происходит, когда меняется и энтропия, и энергия, мы обсудим немного позже.) Именно поэтому после удара кием шары на бильярдном столе переходят в менее упорядоченное положение. Изменения энтропии в различных системах можно суммировать в виде принципа максимума энтропии :

Любая система самопроизвольно стремится занять наиболее неупорядоченное доступное ей состояние.

Очень часто это же самое формулируется в виде принципа неуменьшения энтропии :

Энтропия изолированной системы не может уменьшиться.

Эта формулировка породила и порождает продолжать массу споров на тему тепловой смерти Вселенной: Вселенная по определению является изолированной системой (поскольку у нее отсутствует окружающая среда, с которой был бы возможен обмен массой или энергией), следовательно, ее энтропия постепенно возрастает. Следовательно, Вселенная придет в конце концов в состояние полной однородной неупорядоченности, в котором не может существовать ни один объект, как-то отличающийся от окружения. Тема в высшей степени увлекательная, но давайте об этом как-нибудь в другой раз.

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What"s an intuitive way to understand entropy? , заданный на сайте Quora

Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.

Так что же такое энтропия?

Если в двух словах, то
Энтропия - это то, как много информации вам не известно о системе

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.


Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые - меньшему, но мы этим пренебрежём).


Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей - вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) - макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).

А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.

Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти - 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 - 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:

Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.

Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.

Другими словами, энтропия - это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Физический пример: газ под поршнем

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа - это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.

Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:

Хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона - Менделеева pV = νRT - это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 10 23 .

Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации - мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.

Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Твёрдые тела и потенциальная энергия

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.

Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.

Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Понимаем второй закон термодинамики

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.


Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

Перемешивание газов

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого - красными.

Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Разбираемся с демоном Максвелла

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача - пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные - справа.


Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?

Решается этот парадокс, однако, очень просто. Ведь энтропия - это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много - чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю - у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.

Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе - но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние - и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.