Неорганические полимеры виды. Красный селен представляет собой менее устойчивую аморфную модификацию. Черный Серый Красный Серый селен

НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ

Имеют неорг. главные цепи и не содержат орг. боковых радикалов. Главные цепи построены из ковалентных или ионно-ковалентных связей; в нек-рых Н. п. цепочка ионно-ковалентных связей может прерываться единичными сочленениями координац. характера. Структурная Н. п. осуществляется по тем же признакам, что и орг. или элементоорг. полиме-ров (см. Высокомолекулярные соединения). Среди природных Н. п. наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют типа алмаза или кварца. К образованию линейных Н. п. способны элементы верх. рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает. Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы. Элементы VIII гр. могут входить в главную цепь, образуя координац. Н. п. Последние, в принципе, отличны от орг. координационных полимеров, где система координац. связей образует лишь вторичную структуру. Мн. или соли металлов переменной валентности по макроскопич. св-вам похожи на сетчатые Н. п.

Длинные гомоатомные цепи (со степенью полимеризации п >= 100) образуют лишь и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны. Линейные углерода - кумулены =С=С=С=С= ... и кар-бин ЧС = СЧС = СЧ... (см. Углерод); кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы-соотв. графит и алмаз. Сера, и теллур образуют атомные цепочки с простыми связями и очень высокими п. Их имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Др. элементы, даже ближайшие соседи углерода по псриодич. системе-В и Si, уже неспособны к образованию гомоатомных цепей или циклич. олигомеров с п >= 20 (безотносительно к наличию или отсутствию боковых групп). Это обусловлено тем, что лишь атомы углерода способны образовывать друг с другом чисто ковалентные связи. По этой причине более распространены бинарные гетероцепные Н. п. типа [ЧМЧLЧ] n (см. табл.), где атомы М и L образуют между собой ионно-ковалентные связи. В принципе, гетероцепные линейные Н. п. не обязательно должны быть бинарными: регулярно повторяющийся участок цепи м. б. образован и более сложными комбинациями атомов. Включение в главную цепь атомов металлов дестабилизирует линейную структуру и резко снижает и.

КОМБИНАЦИИ ЭЛЕМЕНТОВ, ОБРАЗУЮЩИЕ БИНАРНЫЕ ГЕТЕРОЦЕПНЫЕ НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ ТИПА [ЧМЧLЧ] n (ОБОЗНАЧЕНЫ ЗНАКОМ +)

* Образует также неорг. полимеры состава [ЧВЧРЧ] n .

Особенности электронной структуры главных цепей гомо-цепных Н. п. делают их весьма уязвимыми при атаке нуклеоф. или электроф. агентами. Уже по одной этой причине относительно стабильнее цепи, содержащие в качестве компонента L или др. , соседний с ним по периодич. системе. Но и эти цепи нуждаются обычно в стабилизации, к-рая в прир. Н. п. связана с образованием сетчатых структур и с очень сильным межмол. взаимод. боковых групп (включая образование солевых мостиков), в результате к-рого большинство даже линейных Н. п. не-растворимы и по макроскопич. св-вам сходны с сетчатыми Н. п.

Практич. интерес представляют линейные Н. п., к-рые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т. п. Такие Н. п. могут быть термостойкими каучуками, стеклами, волокнообразующими и т. п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, . Нек-рые комбинации М и L образуют цепи, не имеющие аналогов среди орг. полимеров, напр. с широкой зоной проводимости и . Широкой зоной проводимости обладает , имеющий хорошо развитую плоскую или пространств. структуру. Обычным сверхпроводником при т-ре вблизи 0 К является полимер [ЧSNЧ] х ; при повышенных т-рах он утрачивает сверхпроводимость, но сохраняет полупроводниковые св-ва. Высокотемпературные сверхпроводящие Н. п. должны обладать структурой керамик, т. е. обязательно содержать в своем составе (в боковых группах) и кислород.

Переработка Н. п. в стекла, волокна, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие , позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Лит.: Энциклопедия полимеров, т. 2, М., 1974, с. 363-71; Бартенев Г. М., Сверхпрочные и высокопрочные неорганические стекла, М., 1974; Кор-шак В. В., Козырева Н. М., "Успехи химии", 1979, т. 48, в. 1, с. 5-29; Inorganic polymers, в кн.: Encyclopedia of polymer science and technology, v. 7, N. Y.-L.-Sydney, 1967, p. 664-91. С. Я. Френкель.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ" в других словарях:

    Полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав… …

    Полимеры, не содержащие в повторяющемся звене связей C C, но способные содержать органический радикал как боковые заместители. Содержание 1 Классификация 1.1 Гомоцепные полимеры … Википедия

    Полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). В природе широко распространены трёхмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав… … Энциклопедический словарь

    Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н …

    Полимеры, макромолекулы к рых имеют неорганич. гл. цепи и не содержат боковых органич. радикалов (обрамляющих групп). Практич. значение имеет синтетич. полимер полифосфонитрилхлорид (полидихлорфссфазен) [ P(C1)2=N ]n. Из него получают др.… … Большой энциклопедический политехнический словарь

    Полимеры, молекулы к рых имеют неорганич. гл. цепи и не содержат органич. боковых радикалов (обрамляющих групп). В природе широко распространены трёхмерные сетчатые Н.п., к рые в виде минералов входят в состав земной коры (напр., кварц). В… … Естествознание. Энциклопедический словарь

    - (от поли... и греч. meros доля часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры… … Большой Энциклопедический словарь

    Ов; мн. (ед. полимер, а; м.). [от греч. polys многочисленный и meros доля, часть] Высокомолекулярные химические соединения, состоящие из однородных повторяющихся групп атомов, широко применяемые в современной технике. Природные, синтетические п.… … Энциклопедический словарь

    - (от греч. polymeres состоящий из многих частей, многообразный) химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы (См. Макромолекула)) состоят из большого числа… … Большая советская энциклопедия

Неорганические полимеры

  • Неорганические полимеры - полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.


Классификация полимеров

1. Гомоцепные полимеры

Углерод и халькогены (пластическая модификация серы).

Минеральное волокно асбест


Характеристика асбеста

  • Асбест (греч. ἄσβεστος, - неразрушимый) - собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон.

  • Ca2Mg5Si8O22(OH)2 -формула

  • Два основных типа асбестов - серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-асбесты


Химический состав

  • По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества:

  • Mg6(OH)8

  • 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О


Безопасность

  • Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, опухоли брюшины, желудка и матки.

  • На основе результатов всесторонних научных исследований канцерогенных веществ, Международное агентство по изучению рака отнесло асбест к первой, наиболее опасной категории списка канцерогенов.


Применение асбеста

  • Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных).

  • В строительстве (в составе асбесто-цементных смесей для производства труб и шифера).

  • В местах, где требуется снизить влияние кислот.


Роль неорганических полимеров в формировании литосферы


Литосфера

  • Литосфера - твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы.

  • Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5-10 км, а гранитный слой полностью отсутствует.



Химический состав

    Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая наряду с расплавленными минералами значительное количество газов. При выходе на поверхность магма образует лаву, последняя застывая образует базальтовые породы. Основной химический компонент лавы - кремнезем, или диоксид кремния, SiO2 . Однако при высокой температуре атомы кремния могут легко замещаться на другие атомы, например алюминия, образуя различного рода алюмосиликаты. В целом литосфера представляет собой силикатную матрицу с включением других веществ, образовавшихся в результате физических и химических процессов, протекавших в прошлом в условиях высокой температуры и давления. Как сама силикатная матрица, так и включения в нее содержат по преимуществу вещества в полимерной форме, то есть гетероцепные неорганические полимеры.


Гранит

  • Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд - биотита и мусковита. Граниты очень широко распространены в континентальной земной коре.

  • Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10-20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин,и в меньшей степени, для островных дуг.

  • Минеральный состав гранита:

  • полевые шпаты - 60-65 %;

  • кварц - 25-30 %;

  • темноцветные минералы (биотит, редко роговая обманка) - 5-10 %.


Базальт

  • Минеральный состав . Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит.

  • Химический состав . Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, сумма щелочных оксидов Na2O+K2O до 5 %,в щелочных базальтах до 7 %. Прочие оксиды могут распределяться так: TiO2=1.8-2.3 %; Al2O3=14.5-17.9 %; Fe2O3=2.8-5.1 %; FeO=7.3-8.1 %; MnO=0.1-0.2 %; MgO=7.1-9.3 %; CaO=9.1-10.1 %; P2O5=0.2-0.5 %;


Кварц (Оксид кремния(IV), кремнезем)


Формула: SiO2

  • Формула: SiO2

  • Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый

  • Цвет черты: белая

  • Блеск: стеклянный, в сплошных массах иногда жирный

  • Плотность: 2,6-2,65 г/см³

  • Твердость: 7





Химические свойства





Корунд (Al2O3 , глинозем)


Формула: Al2O3

  • Формула: Al2O3

  • Цвет: голубой, красный, жёлтый, коричневый, серый

  • Цвет черты: белая

  • Блеск: стеклянный

  • Плотность: 3,9-4,1 г/см³

  • Твердость: 9







Теллур


Теллур цепочечного строения

  • Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам.


Применение теллура

  • Производстве полупроводниковых материалов

  • Производство резины

  • Высокотемпературная сверхпроводимость


Селен


Селен цепочечного строения

Черный Серый Красный

Серый селен

    Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.


Применение серого селена

  • Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками».

  • Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.


Красный селен

  • Красный селен представляет собой менее устойчивую аморфную модификацию.

  • Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние.

  • Не имеет определенной температуры плавления.

  • Красный аморфный селен при повышении температуры (- 55) начинает переходить в серый гексагональный селен


Сера



Особенности строения

  • Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

  • Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.



Получение пластической серы


Применение серы

  • Получение серной кислоты;

  • В бумажной промышленности;

  • в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника);

  • в производстве красителей и светящихся составов;

  • для получения черного (охотничьего) пороха;

  • в производстве спичек;

  • мази и присыпки для лечения некоторых кожных заболеваний.


Аллотропные модификации углерода


Сравнительная характеристика


Применение аллотропных модификаций углерода

  • Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках.

  • Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)

Органические полимеры играют значительную роль в природе. К тому же их широко используют в промышленности. Далее рассмотрен состав, свойства, применение органических полимеров.

Особенности

Рассматриваемые материалы состоят из мономеров, представленных повторяющимися фрагментами структуры из нескольких атомов. Они соединяются в трехмерные структуры либо цепи разветвленной или линейной формы вследствие поликонденсации либо полимеризации. Нередко в строении они четко проявлены.

Следует сказать, что термин «полимеры» относится в основном к органическим вариантам, хотя существуют и неорганические соединения.

Принцип наименования рассматриваемых материалов состоит в присоединении приставки поли- к названию мономера.

Свойства полимеров определяются строением и размерами макромолекул.

Помимо макромолекул, большинство полимеров включает прочие вещества, служащие для улучшения функциональных характеристик путем модификации свойств. Они представлены:

  • стабилизаторами (предотвращают реакции старения);
  • наполнителями (включения различного фазового состояния, служащие для придания специфических свойств);
  • пластификаторами (повышают морозостойкость, снижают температуру переработки и улучшают эластичность);
  • смазками (позволяют избежать прилипания металлических элементов используемого в переработке оборудования);
  • красителями (служат в декоративных целях и для создания маркировок);
  • антипиренами (уменьшают горючесть некоторых полимеров);
  • фунгицидами, антисептиками, инсектицидами (придают антисептические свойства и устойчивость к воздействию насекомых и грибковой плесени).

В природной среде рассматриваемые материалы формируются в организмах.

Кроме того, существуют близкие к полимерам по строению соединения, называемые олигомерами. Их отличия состоят в меньшем количестве звеньев и изменении исходных свойств при удалении или добавлении одного либо нескольких из них, в то время как параметры полимеров при этом сохраняются. К тому же нет однозначного мнения относительно отношений между данными соединениями. Одни считают олигомеры низкомолекулярными вариантами полимеров, другие - отдельным типом соединений, не относящимся к высокомолекулярным.

Классификация

Полимеры дифференцируют по составу звеньев на:

  • органические;
  • элементоорганические;
  • неорганические.

Первые служат основой большинства пластмасс.

Вещества второго типа включают в звеньях углеводородные (органические) и неорганические фрагменты.

По строению их дифференцируют на:

  • варианты, в которых атомы разных элементов находятся в обрамлении органических групп;
  • вещества, где углеродные атомы чередуются с прочими;
  • материалы с углеродными цепями в обрамлении элементоорганических групп.

Все представленные типы имеют основные цепи.

Наиболее часто встречающимися среди неорганических полимеров являются алюмосиликаты и силикаты. Это основные минеральные вещества коры планеты.

На основе происхождения полимеры классифицируют на:

  • природные;
  • синтетические (синтезируемые);
  • модифицированные (измененные варианты первой группы).

Последние подразделяют по способу получения на:

  • поликонденсационные;
  • полимеризационные.

Поликонденсацией называют процесс формирования макромолекул из содержащих более одной функциональной группы молекул мономера с выделением NH 3 , воды и прочих веществ.

Под полимеризацией понимают процесс формирования из мономера макромолекул с кратными связями.

Классификация по макромолекулярному строению включает:

  • разветвленные;
  • линейные;
  • трехмерные сшитые;
  • лестничные.

По реакции на термическое воздействие полимеры дифференцируют на:

  • термореактивные;
  • термопластичные.

Вещества первого типа представлены пространственными вариантами с жестким каркасом. При нагреве с ними происходит деструкция, некоторые загораются. Это обусловлено равной прочностью внутренних связей и связей цепей. Вследствие этого термическое воздействие ведет к разрыву как цепей, так и структуры, следовательно, происходит необратимое разрушение.

Термопластичные варианты представлены линейными полимерами, обратимо размягчаемыми при нагреве и отверждаемыми при охлаждении. Их свойства после этого сохраняются. Пластичность данных веществ обусловлена разрывом при умеренном нагреве межмолекулярных и водородных связей цепей.

Наконец, по особенностям строения органические полимеры подразделяют на несколько классов.

  1. Слабо- и неполярные термопласты. Представлены вариантами с симметричной молекулярной структурой или со слабополярными связями.
  2. Полярные термопласты. К данному типу относят вещества с несимметричной молекулярной структурой и собственными дипольными моментами. Иногда их называют низкочастотными диэлектриками. Ввиду полярности они хорошо притягивают влагу. Также большинство из них способны смачиваться. Данные вещества отличаются от предыдущего класса также меньшим электросопротивлением. При этом многие из полярных термопластов характеризуются высокими показателями эластичности, химической стойкости, механической прочности. Дополнительная обработка позволяет превратить данные соединения в гибкие резинообразные материалы.
  3. Термореактивные полимеры. Как упоминалось выше, это вещества с пространственной системой ковалентных связей. Они отличаются от термопластичных вариантов твердостью, нагревоустойчивостью и хрупкостью, большим модулем упругости и меньшим коэффициентом линейного расширения. К тому же такие полимеры не подвержены воздействию обычных растворителей. Они служат основой для многих веществ.
  4. Слоистые пластмассы. Представлены слоистыми материалами из пропитанных смолой листов бумаги, стеклоткани, древесного шпона, ткани и др. Такие полимеры характеризуются наибольшей анизотропией характеристик и прочностью. Но они малопригодны для создания предметов сложной конфигурации. Применяются в радио-, электротехнике, приборостроении.
  5. Металлопласты. Это полимеры, включающие металлические наполнители в виде волокон, порошков, тканей. Данные добавки служат для придания специфических свойств: магнитных, улучшения демпфирования, электро- и теплопроводности, поглощения и отражения радиоволн.

Свойства

Многие органические полимеры отличаются хорошими электроизоляционными параметрами в обширном интервале напряжений, частот и температур, при большой влажности. К тому же они имеют хорошие звуко- и теплоизоляционные характеристики. Также обычно органические полимеры характеризуются высокой стойкостью к химическому воздействию, не подвержены гниению и коррозии. Наконец, данные материалы обладают большой прочностью при малой плотности.

Приведенные выше примеры демонстрируют общие для органических полимеров характеристики. Помимо этого, некоторые из них отличаются специфическими особенностями: прозрачностью и малой хрупкостью (органическое стекло, пластмассы), макромолекулярным ориентированием при направленном механическом влиянии (волокна, пленки), большой эластичностью (каучук), быстрым изменением физико-механических параметров под воздействием реагента в малом количестве (каучук, кожа и т. д.), а также большой вязкостью при малой концентрации, радиопрозрачностью, антифрикционными характеристиками, диамагнетизмом, и т. д.

Применение

Благодаря названным выше параметрам, органические полимеры имеют обширную сферу применения. Так, сочетание большой прочности с небольшой плотностью позволяет получить материалы большой удельной прочности (ткани: кожа, шерсть, мех, хлопок и т. д.; пластмассы).

Помимо названных, из органических полимеров выпускают прочие материалы: резины, лакокрасочные материалы, клеи, электроизоляционные лаки, волокнистые и пленочные вещества, компаунды, связующие материалы (известь, цемент, глина). Их применяют для промышленных и бытовых нужд.

Однако органические полимеры обладают существенным практическим недостатком - старением. Под этим термином понимают изменение их характеристик и размеров в результате физико-химических преобразований, происходящих под воздействием различных факторов: истирания, нагрева, облучения и т. д. Старение происходит путем протекания определенных реакций в зависимости от вида материала и воздействующих факторов. Наиболее распространенной среди них является деструкция, подразумевающая формирование более низкомолекулярных веществ вследствие разрыва химической связи главной цепи. На основе причин деструкцию подразделяют на термическую, химическую, механическую, фотохимическую.

История

Исследование полимеров начало развиваться к 40 гг. XX в. и сформировалось в качестве самостоятельной научной области в середине столетия. Это было связано с развитием знаний о роли данных веществ в органическом мире и выяснением возможностей их применения в промышленности.

При этом цепные полимеры производили еще в начале XX столетия.

К середине века освоили выпуск электроизолирующих полимеров (поливинилхлорида и полистирола), плексигласа.

В начале второй половины столетия расширилось производство полимерных тканей за счет возврата выпускавшихся прежде материалов и появления новых вариантов. Среди них - хлопок, шерсть, шелк, лавсан. В тот же период, благодаря применению катализаторов, начали выпуск полиэтилена и полипропилена при малом давлении и кристаллизующихся стереорегулярных вариантов. Немного позже освоили массовый выпуск самых известных герметиков, пористых и адгезивных материалов, представленных полиуретанами, а также элементоорганических полимеров, отличающихся от органических аналогов большей эластичностью и термостойкостью (полисилоксаны).

В 60 - 70 гг. были созданы уникальные органические полимеры с ароматическими компонентами, характеризующиеся высокой термостойкостью и прочностью.

Производство органических полимеров интенсивно развивается и сейчас. Это обусловлено возможностью использования дешевых материалов, таких как уголь, попутные газы нефтепереработки и добычи и природные газы, в совокупности с водой и воздухом в виде исходного сырья для большинства из них.

Слайд 2

НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп).

В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав земной коры (напр., кварц).

Слайд 3

В отличие от органических полимеров такие неорганические полимеры не могут существовать в высокоэластичном состоянии. Синтетически могут быть получены, напр., полимеры серы, селена, теллура, германия. Особый интерес представляет неорганический синтетический каучук - полифосфонитрилхлорид. Обладает значительной высокоэластической деформацией

Слайд 4

Главные цепи построены из ковалентных или ионно-ковалентных связей; в некоторых неорганических полимерах цепочка ионно-ковалентных связей может прерываться единичными сочленениями координационного характера. Структурная классификация неорганических
полимеров осуществляется по тем же признакам, что и органических или полимеров.

Слайд 5

Среди природных неорганических полимеров наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют кристаллы типа алмаза или
кварца.

Слайд 6

Строение неорганических полимеров

К образованию линейных неорганических полимеров способны элементы верхних рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает.

Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы.

Слайд 7

Длинные гомоатомные цепи (образуют лишь углерод и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны.

Слайд 8

Линейные полимеры углерода - кумулены =С=С=С=С= ... и кар-бин -С=С-С=С-...; кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы -соответственно графит и алмаз

Общая формула кумуленов: RR¹CnR²R³

Слайд 9

Виды неорганических полимеров

Сера, селен и теллур образуют атомные цепочки с простыми связями.

Их полимеризация имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Слайд 10

Практический интерес представляют линейные неорганические полимеры, которые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п.

Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты.

Слайд 11

Применение неорганических полимеров

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Посмотреть все слайды

Полимеры – высокомолекулярные соединения, которые состоят из множества мономеров. Полимеры стоит отличать от такого понятия как олигомеры, в отличие от которых при добавлении еще одного номерного звена свойства полимера не меняются.

Связь между звеньями мономеров может осуществляться с помощью химических связей, в таком случае они называются реактопластами, или благодаря силе междумолекулярного воздействия, что характерно для так называемых термопластов.

Соединение мономеров при образовании полимера может происходить в результате реакции поликонденсации или полимеризации.

В природе встречается множество подобных соединений, наиболее известные из которых: белки, каучук, полисахариды и нуклеиновая кислота. Такие материалы называются органическими.

На сегодняшний день большое количество полимеров производятся синтетическим путем. Такие соединения называются неорганическими полимерами. Неорганические полимеры получают путем соединения природных элементов с помощью реакции поликонденсации, полимеризации и химического превращения. Это позволяет заменить дорогие или редкие природные материалы, или создать новые, не имеющие аналоги в природе. Главное условие, чтобы полимер не содержал в составе элементов органического происхождения.

Неорганические полимеры, благодаря своим свойствам, обрели широкую популярность. Спектр их использования достаточно широк, при этом постоянно находят новые сферы применения и разрабатываются новые виды неорганических материалов.

Основные характеристики

На сегодняшний день существует множество видов неорганических полимеров, как природных, так и синтетических, которые обладают различными составом, свойствами, сферой применения и агрегатного состояния.

Современный уровень развития химической промышленности позволяет производить неорганические полимеры в больших объемах. Чтобы получить такой материал нужно создать условия повышенного давления и высокой температуры. Сырьем для производства выступает чистое вещество, которое поддается процессу полимеризации.

Неорганические полимеры характерны тем, что обладают повышенной прочностью, гибкостью, тяжело поддаются воздействию химических веществ и устойчивы к высоким температурам. Но некоторые виды могут быть хрупкими и не обладать эластичностью, но при этом достаточно прочными. Наиболее известными из них считаются графит, керамика, асбест, минеральное стекло, слюда, кварц и алмаз.

Наиболее распространенные полимеры в основе имеют цепочки таких элементов, как кремний и алюминий. Это связано с распространенностью этих элементов в природе, особенно кремния. Наиболее известные среди них такие неорганические полимеры как силикаты и алюмосиликаты.

Свойства и характеристики разнятся не только в зависимости от химического состава полимера, но и от молекулярной массы, степени полимеризации, строения атомной структуры и полидисперсности.

Полидисперсность – это присутствие в составе макромолекул разной массы.

Большинство неорганических соединений характеризуются такими показателями:

  1. Эластичность. Такая характеристика, как эластичность, показывает возможность материала увеличится в размерах под воздействием сторонней силы и вернутся в изначальное состояние после снятия нагрузки. Например, каучук способен увеличиться в семь-восемь раз без изменения структуры и различных повреждений. Возврат формы и размеров возможен благодаря сохранению расположения макромолекул в составе, перемещаются лишь отдельные их сегменты.
  2. Кристаллическая структура. От расположения в пространстве составных элементов, что называется кристаллической структурой, и их взаимодействия зависят свойства и особенности материала. Исходя из этих параметров, полимеры разделяют на кристаллические и аморфные.

Кристаллические имеют стабильную структуру, в которой соблюдается определенное расположение макромолекул. Аморфные состоят из макромолекул ближнего порядка, которые только в отдельных зонах имеют стабильную структуру.

Структура и степень кристаллизации зависит от нескольких факторов, таких как температура кристаллизации, молекулярная масса и концентрированность раствора полимера.

  1. Стеклообразность. Это свойство характерно для аморфных полимеров, которые при снижении температуры или повышении давления обретают стеклообразную структуру. В таком случае прекращается тепловое движение макромолекул. Температурные интервалы, при которых происходит процесс стеклообразования, зависит от типа полимера, его структуры и свойств структурных элементов.
  2. Вязкотекучее состояние. Это свойство, при котором происходят необратимые изменения формы и объема материала под воздействием сторонних сил. В вязотекущем состоянии структурные элементы перемещаются в линейном направлении, что становится причиной изменения его формы.

Строение неорганических полимеров

Такое свойство очень важно в некоторых сферах промышленности. Наиболее часто его используют при переработки термопластов с помощью таких методов как литье под давлением, экструзия, вакуум-формирования и других. При этом полимер расплавляется при повышенных температурах и высоком давлении.

Виды неорганических полимеров

На сегодняшний день существуют определенные критерии, по которым классифицируются неорганические полимеры. Основные из которых:

  • природа происхождения;
  • виды химических элементов и их разнообразие;
  • количество мономерных звеньев;
  • строение полимерной цепи;
  • физические и химические свойства.

В зависимости от природы происхождения классифицируют синтетические и натуральные полимеры. Натуральные формируются в природных условиях без участия человека, а синтетические производятся и модифицируются в промышленных условиях для достижения необходимых свойств.

На сегодняшний день существует множество видов неорганических полимеров, среди которых выделяются наиболее широко используемые. К таким относится асбест.

Асбест – тонковолокнистый минерал, который относится к группе силикатов. Химический состав асбеста представлен силикатами магния, железы, натрия и кальция. Асбест обладает канцерогенными свойствами, поэтому очень опасен для здоровья человека. Он очень опасен для работников, занятых на его добычи. Но в виде готовых изделий он достаточно безопасен, так как не растворяется в различных жидкостях и не вступает с ними в реакцию.

Силикон – один из наиболее распространенных синтетических неорганических полимеров. Его легко встретить в повседневной жизни. Научное название силикона – полисилоксан. Его химический состав представляет собой связь кислорода и кремния, которая придает силикону свойства высокой прочности и гибкости. Благодаря этому, силикон способен выдержать высокие температуры и физические нагрузки не теряя прочности, сохраняя форму и структуру.

Полимеры углерода очень распространены в природе. Существует также множество видов, синтезирующихся человеком в промышленных условиях. Среди природных полимеров выделяется алмаз. Этот материал невероятно прочный и обладает кристально чистой структурой.

Карбин – это синтетический углеродный полимер, который обладает повышенными свойствами прочности, не уступающими алмазу и графену. Производится в виде черного морошка мелкокристаллической структуры. Обладает свойствами электропроводимости, которая увеличивается под воздействием света. Способен выдержать температуру в 5000 градусов не теряя свойств.

Графит – углеродный полимер, структура которого отличается плоскостной ориентацией. Из-за этого структура графита слоистая. Этот материал проводит электричество, тепло, но не пропускает свет. Его разновидностью является графен, который состоит из одного слоя молекул углерода.

Полимеры бора отличаются высокой твердостью, не сильно уступая алмазам. Способны выдержать температуру более 2000 градусов, что намного больше пограничной температуры алмаза.

Полимеры селена – довольно широкий ряд неорганических материалов. Наиболее известный из них – карбид селена. Карбид селена – прочный материал, имеющий вид прозрачных кристаллов.

Полисиланы обладают особыми свойствами, которые отличают их от других материалов. Этот вид проводит электричество и выдерживает температуру до 300 градусов.

Применение

Неорганические полимеры применяются практически во всех сферах нашей жизни. В зависимости от вида, они обладают различными свойствами. Главная их особенность в том, что искусственные материалы обладают улучшенными свойствами в сравнении с органическими материалами.

Асбест применяется в различных сферах, в основном, в строительстве. Из смесей цемента с асбестом производят шифер и различные типы труб. Также асбест применяют для снижения кислотного влияния. В легкой промышленности асбест применяется для пошива противопожарных костюмов.

Силикон применяется в различных сферах. Из него производят трубки для химической промышленной, элементы, используемые в пищевой промышленности, а также используют в строительстве в качестве герметика.

В целом, силикон один из наиболее функциональных неорганических полимеров.

Алмаз наиболее известен как ювелирный материал. Он очень дорогой благодаря своей красоте и сложности добычи. Но алмазы также используются в промышленности. Это материал необходим в режущих устройствах для распила очень прочных материалов. Он может использоваться в чистом виде как резец или в виде напыления на режущие элементы.

Графит широко используется в различных сферах, из него делают карандаши, он применяется в машиностроении, в атомной промышленности и в виде графитовых стержней.

Графен и карбин пока малоизучены, поэтому сфера их применения ограничена.

Полимеры бора используются для производства абразивных материалов, режущих элементов и . Инструменты из такого материала необходимы для обработки металла.

Карбид селена применяется для производства горного хрусталя. Его получают путем нагрева до 2000 градусов кварцевого песка и угля. Хрусталь используют для производства высококачественной посуды и предметов интерьера.