Отдаленные последствия действия радиации носят опухолевый характер. Ионизирующие излучения и их влияние на человека. Влияние атомных взрывов

Коварство многих болезней, вызываемых радиацией, состоит в длительном скрытом периоде. Лучевое поражение может развиться через несколько минут или спустя десятилетия. Иногда последствия облучения организма затрагивают его наследственный аппарат. В этом случае страдают уже последующие поколения.

Генетические последствия радиационного облучения

Эта тема достаточно трудна для изучения, поэтому окончательные выводы о биологическом воздействии радиации пока не сделаны. Но некоторые заключения все же имеют под собой серьезную исследовательскую почву. Например, достоверно известно, что ионизирующее излучение в гораздо большей степени поражает мужские половые клетки, чем женские. Так, полученная при низком уровне радиации доза облучения в 1 Гр вызывает:

  • до 2000 случаев генетических мутаций и до 10000 случаев хромосомных нарушений на каждый миллион младенцев, родившихся у облученных мужчин.
  • до 900 мутаций и 300 хромосомных патологий у потомства облученных женщин.

При получении этих данных учитывались только тяжелые генетические последствия облучения. Ученые полагают, что число менее серьезных дефектов намного больше, а ущерб от них зачастую еще выше.

Неопухолевые последствия воздействия на организм радиации

Отсроченный эффект того, что радиация делает с человеком, часто выражается в функциональных и органических изменениях. К ним относятся:

  • Нарушения микроциркуляции из-за повреждения мелких сосудов, вследствие чего развивается тканевая гипоксия, страдают печень, почки, селезенка.
  • Патологические изменения, созданные дефицитом клеток в органах с низкой скоростью разрастания тканей (половые железы, соединительная ткань).
  • Расстройство регулирующих систем: ЦНС, эндокринной, сердечнососудистой.
  • Избыточное новообразование тканей эндокринных органов в результате снижения их функций, вызванного радиацией.

Канцерогенные последствия радиоактивного облучения

Раньше других проявляют себя такие болезни, вызываемые радиацией, как лейкозы. Они становятся виновниками летальных исходов уже через 10 лет после обучения. Среди людей, подвергшихся действию проникающей радиации после бомбардировок Хиросимы и Нагасаки, смертность от лейкозов пошла на убыль только после 1970 года. Согласно данным НКДАР ООН (Научного комитета по действию атомной радиации), вероятность заболевания лейкозом составляет 1 шанс из 500 при получении дозы облучения 1 Гр.

Еще чаще развивается рак щитовидной железы - по информации того же НКДАР он поражает 10 человек из каждой тысячи облученных (в расчете на индивидуальную поглощенную дозу 1 Гр). С такой же частотой развивается и рак груди у женщин. Правда, оба этих заболевания, несмотря на злокачественность, приводят к смерти далеко не всегда: выжить удается 9 из 10 человек, перенесших рак щитовидной железы, и каждой второй заболевшей раком молочной железы женщине.

Одно из самых грозных отдаленных последствий, которое проникающая радиация может вызвать у людей, - это рак легких. Согласно исследованиям, наиболее высока вероятность заболеть им у шахтеров урановых родников - в 4-7 раз выше, чем у тех, кто пережил атомную бомбардировку. По мнению специалистов НКДАР, одна из причин этого - возраст шахтеров, которые в подавляющем большинстве старше облученного населения японских городов.

В других тканях организма, подвергшегося радиоактивной атаке, опухоли развиваются гораздо реже. Рак желудка или печени встречается не чаще 1 случая на 1000 при получении индивидуальной дозы в 1 Гр, рак иных органов фиксируется с частотностью 0,2-0,5 случая на 1000.

Снижение продолжительности жизни

Единого мнения о безусловном влиянии радиации на среднюю продолжительность жизни человека (СПЖ) у современных ученых нет. Но опыты на грызунах показали, что связь между облучением и более ранней смертностью есть. После получения дозы 1 Гр продолжительность жизни грызунов сокращалась на 1-5 %. Длительное воздействие гамма-излучения приводило к сокращению СПЖ при накоплении суммарной дозы 2 Гр. Причем смерть в каждом случае наступала от разных болезней, вызываемых радиацией: склеротических изменений, злокачественных новообразований, лейкозов и других патологий.

НКДАР ООН также рассматривал вопрос уменьшения продолжительности жизни как отдаленного последствия облучения. В результате специалисты пришли к выводу: при низких и умеренных дозах такая связь сомнительна, но интенсивное облучение проникающей радиацией действительно может вызывать у людей заболевания, сокращающие жизнь.

По оценкам разных ученых сокращение СПЖ человека составляет.

Лучевая болезнь – заболевание, возникающее от различных видов ионизирующих излучений.

При облучении в дозах 1-10 Гр развивается типичная форма острой лучевой болезни, при которой имеет место преимущественное поражение костного мозга (костномозговой синдром ). В диапазоне доз 10-20 Гр возникает кишечная (тошнота, рвота, кровавый понос, повышение температуры тела, мб полная паралитическая непроходимость кишечника и вздутие живота), при дозах 20-80 Гр - токсемическая (сосудистая) (нарушения в кишечнике и печени, парез сосудов, тахикардия, кровоизлияния, тяжелая интоксикация и отёк мозга) и при дозах выше 80 Гр - церебральная формы лучевой болезни ( судорожно-паралитический синдром, нарушение крово- и лимфообращения в ЦНС, сосудистого тонуса и терморегуляции. Функциональные нарушения пищеварительной и мочевыделительной систем, прогрессивное снижение кровяного давления).

Патогенез:

В течении луч болезни выделяют четыре фазы: 1) первичной острой реакции; 2) мнимого клинического благополучия (скрытая фаза); 3) разгара болезни; 4) восстановления.

1)Фаза первичной острой реакции организма человека развивается в зависимости от дозы сразу после облучения. Возникают некоторое возбуждение, головная боль, общая слабость. Затем наступают диспепсические расстройства (тошнота, рвота, потеря аппетита), нейтрофильный лейкоцитоз со сдвигом влево, лимфоцитопения. Наблюдаются повышенная возбудимость нервной системы, колебания артериального давления, ритма сердца и т.д. Активация гипофиз-адреналовой системы приводит к усиленной секреции гормонов коры надпо

Чечников.

Продолжительность фазы первичной острой реакции 1-3 дня.

2)Фаза мнимого клинического благополучия характеризуется включением защитно-компенсаторных реакций. В связи с этим самочувствие больных становится удовлетворительным, проходят клинически видимые признаки болезни. Длительность скрытой фазы зависит от дозы облучения и колеблется от 10-15 дней до 4-5 недель.

При сравнительно небольших дозах (до 1 Гр) начальные легкие функциональные реакции не переходят в развернутую клиническую картину и заболевание ограничивается затухающими явлениями начальных реакций. При очень тяжелых формах поражения скрытая фаза вообще отсутствует.



Однако в это время нарастает поражение системы крови: в периферической крови прогрессирует лимфоцитопения, снижается содержание ретикулоцитов и тромбоцитов. В костном мозгу развивается опустошение (аплазия).

3)Фаза разгара болезни характеризуется тем, что самочувствие больных вновь резко ухудшается, нарастает слабость, повышается температура тела, появляются кровоточивость и кровоизлияния в кожу, слизистые оболочки, желудочно-кишечный тракт, мозг, сердце и легкие. В результате нарушения обмена веществ и диспепсических расстройств резко снижается масса тела. Развиваются глубокая лейкопения, тромбоцитопения, выраженная анемия; увеличивается СОЭ; в костном мозгу опустошение с начальными признаками регенерации. Наблюдаются гипопротеинемия, гипоальбуминемия, повышение содержания остаточного азота и снижение уровня хлоридов. Угнетается иммунитет, в результате чего развиваются инфекционные осложнения, аутоинфекция и аутоинтоксикация.

Продолжительность фазы выраженных клинических проявлений от нескольких дней до 2-3 недель. При облучении в дозе свыше 2,5 Гр без проведения лечебных мероприятий возможен смертельный исход.

4)Фаза восстановления характеризуется постепенной нормализацией нарушенных функций, общее состояние больных заметно улучшается. Снижается до нормы температура тела, исчезают геморрагические и диспепсические проявления, со 2-5-го месяца нормализуется функция потовых и сальных желез, возобновляется рост волос. Постепенно происходит восстановление показателей крови и обмена веществ.

Период восстановления охватывает 3-6 месяцев, в тяжелых случаях лучевого поражения может затягиваться на 1-3 года, при этом возможен переход болезни в хроническую форму.

Отдаленные последствия действия радиации могут развиться спустя несколько лет и носят неопухолевый или опухолевый характер.

К неопухолевым формам в первую очередь относят сокращение продолжительности жизни, гипопластические состояния в кроветворной ткани, слизистых оболочках органов пищеварения, дыхательных путей, в коже и других органах; склеротические процессы (цирроз печени, нефросклероз, атеросклероз, лучевые катаракты и др.), а также дисгормональные состояния (ожирение, гипофизарная кахексия, несахарное мочеизнурение).

Одной из частых форм отдаленных последствий лучевых поражений является развитие опухолей в критических органах при α- и β-излучении, а также радиационные лейкозы.

2. Гипогликемические состояния. Виды. Механизмы развития. Последствия для организма. Гипогликемическая кома.

Гипогликемия - понижение уровня сахара крови ниже нормального. Развивается в результате недостаточного поступления сахара в кровь, ускоренного его выведения или вследствие того и другого.

Гипогликемическая реакция - ответ организма на острое временное снижение уровня ГПК ниже нормы.

Причины:

♦ острая гиперсекреция инсулина через 2-3 сут после начала голодания;

♦ острая гиперсекреция инсулина через несколько часов после нагрузки глюкозой (с диагностической или лечебной целью, а также после переедания сладкого, особенно у лиц пожилого и старческого возраста).

Проявления: низкий уровень ГПК, лёгкое чувство голода, мышечная дрожь, тахикардия. Указанные симптомы в покое выражены слабо и выявляются при дополнительной физической нагрузке или стрессе.

  • 1. Возникновение злокачественных новообразований (раков) практически любых органов - рак крови (лейкемия), кожи, костей, молочной железы, яичников, легких и щитовидной железы);
  • 2. нарушения генетического кода (мутации в половых и других клетках);
  • 3. развитие иммунодепрессии и иммунодефицита и, как результат, повышение чувствительности организма к обычным заболеваниям;
  • 4. нарушение обмена веществ и эндокринного равновесия;
  • 5. поражения органов зрения (помутнение хрусталика и возникновение катаракты);
  • 6. возникновение временной или постоянной стерильности (поражения яйцеклеток, сперматозоидов) и развитие импотенции;
  • 7. органические поражения нервной системы, кровеносных и лимфатических сосудов в результате гибели медленно размножающихся клеток нервной ткани и эндотелия (выстилки сосудов);
  • 8. ускоренное старение организма;
  • 9. нарушения психического и умственного развития.

Заключение

В небольших дозах радиация не оказывает практически никакого воздействия на состояние здоровья. Превышение же доз несет в себе реальную опасность как для людей, так и для всех живых организмов.

Следовательно, проблема разработки средств защиты от радиации была и остается актуальной и в наше время.

В течение многих лет после открытия радиации основным поражающим воздействием облучения считалось лишь покраснение кожи. До пятидесятых годов XX века основным фактором непосредственного воздействия радиации считалось прямое радиационное поражение некоторых органов и тканей: кожи, костного мозга, центральной нервной системы, желудочно-кишечного тракта (так называемая острая лучевая болезнь).

Одним из первичных эффектов облучения живой ткани является разрыв молекул белка и образование новых молекул, чуждых организму. Эти продукты тканевого распада - чуждые молекулы - уничтожаются антителами, которые вырабатываются некоторыми лейкоцитами (белыми кровяными клетками). Защищаясь от продуктов распада, организм до какого-то предела способен увеличивать число лейкоцитов (образование повышенного числа лейкоцитов называется лейкоцитозом). При дальнейшем действии радиации образующиеся в большом числе для борьбы с чужеродными белками антитела не успевают созревать, и наступает лейкоз или лейкемия - опухолевое системное поражение крови.

К началу 60-х г.г. выяснились, что многочисленные облучения могут сказаться не сразу, а через несколько лет. Этот так называемый латентный период оказывается разным для разных видов рака, для нарушений кровообращения, шизофрении, катаракты и других заболеваний, вызываемых радиацией. Так, расчет онкозаболеваемости после радиационной катастрофы в 1957 г. на Южном Урале показал, что максимум заболеваний всеми формами рака ожидается для мужчин в 2012 - 2020 гг. (через 55 - 63 г.), для женщин - еще позже, в 2016 - 2024 гг..

В своей работе я рассмотрел виды и средства защиты от ионизирующего излучения.

Действие ионизирующего излучения на организм человека может приводить к острым и удаленным, последствиям. Острые последствия являются результатом поглощения большой дозы ионизирующего излучения при облучении значительной части тела или местном облучении критических органов, тканей или систем органов, повреждение которых в наибольшей степени влияет на жизнедеятельность организма.

Острые последствия проявляются сразу или в короткие сроки после облучения (в течение нескольких часов, дней, недель). Полученная практически мгновенно большая поглощенная доза (около 5 Гр и более) при воздействии ионизирующего излучения на все тело человека с большим ступенем вероятности приведет к летальному исходу в течение нескольких недель. Это связано с тем, что подобное облучения приводит к серьезным нарушениям в костном мозге и пищеварительной системе. Усилиями врачей можно спасти жизнь человека, получившего дозу до 5 Гр.

Однако, если поглощена организмом доза достигает нескольких десятков Грей (например, 60 Грей), никакие усилия медицинского персонала не помогут человеку избежать летального исхода. Острые последствия облучения обычно проявляются в органах и тканях с клетками, которые быстро делятся, и в большинстве случаев приводят к гибели значительного количества клеток.

В органах и тканях, сформированных из клеток, которые медленно делятся и не деляться, в результате кратковременного поглощения большой дозы ионизирующего излучения происходят изменения, которые могут привести к заболеваниям через значительный промежуток времени (иногда через 10-20 лет) после облучения. Подобные эффекты называют отдаленными последствиями облучения.

Отдаленные последствия облучения — это заболевания, вызванные действием ионизирующего излучения на организм и возникают через длительное время после облучения. Как показали наблюдения, при средних и малых дозах облучения сокращение жизни, в основном, связано с увеличение частоты заболеваний крови (лейкозов) и раковых заболеваний отдельных органов и тканей. Первое место в этой группе заболеваний занимают лейкозы. Так, при медицинском обследовании людей, которые выжили после бомбардировок в Хиросиме и Нагасаки, после двухлетнего скрытого (латентного) периода наблюдали развитие лейкозов, а в среднем через 6-7 лет после облучения регистрировали максимальную частоту лейкозов.

Действие ионизирующего излучения на человека может также вызвать рак молочной и щитовидной желез. Попадание радионуклидов с воздухом в организм человека может привести к развитию рака легких. Облучение может вызвать и рак кожи. Все эти заболевания, вызванные действием ионизирующего излучения на организм человека, является отдаленными последствиями облучения.

Эффекты, возникающие в результате воздействия ионизирующего излучения на организм человека, разделяют на детерминированые (определенные, закономерные) и стохастические (случайные, вероятные).

Детерминированые эффекты неизбежно возникают при превышении определенных пороговых уровней доз и обычно характерны для больших поглощенных доз ионизирующего излучения (чаще 1 Грей и выше). К детерминированным эффектам относятся все острые последствия облучения (радиационные ожоги, лучевая болезнь и др.). А также эффекты, вызванные хроническим облучением при накоплении доз до определенных уровней (например, радиационная катаракта). После достижения порогового значения дозы радиационные эффекты проявляются тем раньше, чем больше доза, и усиливаются по мере увеличения дозы или мощности дозы облучения.

Детерминированые эффекты облучения могут вызвать такие нарушения в организме человека:

Лучевая болезнь;

Истощение красного костного мозга

Нарушение репродуктивной функции;

Неопухолевые формы поражения кожи;

Лучевая катаракта.

Детерминированые эффекты обычно возникают в том случае, когда в результате облучения погибло или стало неспособным к воспроизводству значительное число клеток ткани или органа человека. Это может привести к нарушению функции ткани или органа. Нарушения становятся все более серьезными с увеличением числа клеток, подвергшихся воздействию ионизирующего излучения. В том случае, когда в результате облучения число погибших клеток в биологической ткани или органе человека превышающей число образованных снова, это ведет к полной потере функции ткани или органа. Если серьезно повреждена ткань (или орган), которая играет важную роль в жизнедеятельности организма, то конечным результатом может стать смерть человека.

Детерминированые эффекты наблюдаются при облучении всего тела человека или локальном облучении критических органов.

Каждому человеку присуща чувствительность к действию ионизирующего излучения. У людей с неодинаковой радиочувствительностью подобные детерминированые эффекты могут проявляться при различных дозах облучения.

Стохастические эффекты характерны для низких доз, чем детерминированые эффекты, и наблюдаются при средних (от 0,2 до 1 Гр) и малых (менее 0,2 Гр) доз облучения. Обычно они наблюдаются в тех случаях, когда доза накапливается в течение длительного периода времени и в организме нет признаков ранних радиационных нарушений. Тогда организм может самостоятельно устранять некоторые нарушения, возникающие в клетках в результате облучения. Стохастические эффекты проявляются в виде раковых и генетических (наследственных) заболеваний, которые могут возникать через значительный промежуток времени после облучения (в некоторых случаях — через десятилетия, а иногда даже у потомков человека, подвергшегося облучению). Стохастические эффекты — это эффекты, о которых невозможно точно сказать, реализуются они у конкретного лица или нет. Можно лишь оценить вероятность их возникновения, пользуясь статистическими методами.

Стохастические эффекты возникают в том случае, когда облученная клетка не погибает, а меняется. Изменена, но жизнеспособная клетка может дать в результате деления новое поколение измененных клеток. Если эти клетки не будут уничтожены защитной системой организма, то после длительного латентного периода могут развиться раковые заболевание. При изменениях в половых клетках могут проявиться генетиские (наследственные) нарушения у некоторых представителей следующих поколений. Латентный (скрытый) период, когда заболевание никак не проявляется, может быть разным. Тяжесть заболевания не зависит от величины полученной дозы, но по мере увеличения дозы возрастает вероятность возникновения заболевания.

Виды ионизирующих излучений и их влияние на живой организм. XXI век невозможно представить без современного и постоянно совершенствуемого ядерного оружия, разбросанных по всей территории земного шара крупных объектов атомной энергетики и многих сложных промышленных производств, использующих в технологическом процессе различные радиоактивные вещества. Все это предопределило появление, а затем и нарастание интенсивности такого негативного фактора среды обитания, как ионизирующие излучения, представляющие значительную угрозу для жизнедеятельности человека и требующие проведения надежных мер по обеспечению радиационной безопасности работающих и населения.
Ионизирующее излучение - это явление, связанное с радиоактивностью. Радиоактивность - самопроизвольное превращение ядер атомов одних элементов в другие, сопровождающееся испусканием ионизирующих излучений.
В зависимости от периода полураспада1 различают ко-роткоживущие изотопы, период полураспада которых исчисляется долями секунды, минуты, часами, сутками, и дол-гоживущие изотопы, период полураспада которых от нескольких месяцев до миллиардов лет.
При взаимодействии ионизирующих излучений с веществом происходит ионизация атомов среды. Обладая относительно большой массой и зарядом, а-частицы имеют незначительную ионизирующую способность: длина их пробега в воздухе составляет 2,5 см, в биологической ткани - 31 мкм, в алюминии - 16 мкм. Вместе с тем для ос-частиц характерна высокая удельная плотность ионизации биологической ткани. Для Р-частиц длина пробега в воздухе составляет 17,8 м, в воде - 2,6 см, а в алюминии - 9,8 мм. Удельная плотность ионизации, создаваемая Р-частицами, примерно в 1000 раз меньше, чем для ос-частиц той же энергии. Рентгеновское и у-излучения обладают высокой проникающей способностью, и длина пробега их в воздухе достигает сотен метров.
Степень, глубина и форма лучевых поражений, развивающихся среди биологических объектов при воздействии на них ионизирующего излучения, в первую очередь зависят от величины поглощенной энергии излучения. Для характеристики этого показателя используется понятие поглощенной дозы, т. е. энергии излучения, поглощенной в единице массы облучаемого вещества.
Для характеристики дозы по эффекту ионизации, вызываемому в воздухе, используется так называемая экспозиционная доза рентгеновского и у-излучений, выраженная суммарным электрическим зарядом ионов одного знака, образованных в единице объема воздуха в условиях электронного равновесия.
Поглощенная и экспозиционная дозы излучений, отнесенные к единице времени, носят название мощности поглощенной и экспозиционной доз.
Для оценки биологического действия ионизирующего излучения наряду с поглощенной дозой используют также понятие биологической эквивалентной дозы.
Ионизирующее излучение - уникальное явление окружающей среды, последствия от воздействия которого на организм на первый взгляд совершенно неэквивалентны величине поглощенной энергии. В настоящее время распространена гипотеза о возможности существования цепных реакций, усиливающих первичное действие ионизирующих излучений.
Процессы взаимодействия ионизирующих излучений с веществом клетки, в результате которых образуются ионизированные и возбужденные атомы и молекулы, являются первым этапом развития лучевого поражения. Ионизированные и возбужденные атомы и молекулы в течение 10-6 с взаимодействуют между собой, давая начало химически активным центрам (свободные радикалы, ионы, ионы-радикалы и др.).
Затем происходят реакции химически активных веществ с различными биологическими структурами, при которых отмечается как деструкция, так и образование новых, несвойственных для облучаемого организма соединений.
На следующих этапах развития лучевого поражения проявляются нарушения обмена веществ в биологических системах с изменением соответствующих функций.
Однако следует подчеркнуть, что конечный эффект облучения является результатом не только первичного облучения клеток, но и последующих процессов восстановления. Такое восстановление, как предполагается, связано с ферментативными реакциями и обусловлено энергетическим обменом. Считается, что в основе этого явления лежит деятельность систем, которые в обычных условиях регулируют естественный мутационный процесс.
Если принять в качестве критерия чувствительности к ионизирующему излучению морфологические изменения, то клетки и ткани организма человека по степени возрастания чувствительности можно расположить в следующем порядке:
нервная ткань;
хрящевая и костная ткань;
мышечная ткань;
соединительная ткань;
щитовидная железа;
пищеварительные железы;
легкие;
кожа;
слизистые оболочки;
половые железы;
лимфоидная ткань, костный мозг.
Эффект воздействия источников ионизирующих излучений на организм зависит от ряда причин, главными из которых принято считать уровень поглощенных доз, время облучения и мощность дозы, объем тканей и органов, вид излучения.
Уровень поглощенных доз - один из главных факторов, определяющих возможность реакции организма на лучевое воздействие. Однократное облучение собаки у-излучением в дозе 4-5 Гр1 (400-500 рад) вызывает у нее острую лучевую болезнь; однократное же облучение дозой 0,5 Гр (50 рад) приводит лишь к временному снижению числа лимфоцитов и нейтрофилов в крови.
Фактор времени в прогнозе возможных последствий облучения занимает важное место в связи с развивающимися после лучевого повреждения в тканях и органах процессами восстановления.
Заболевания, вызываемые действием ионизирующих излучений. Важнейшие биологические реакции организма человека на действие ионизирующей радиации условно разделены на две группы. К первой относятся острые поражения, ко второй - отдаленные последствия, которые, в свою очередь, подразделяются на соматические и генетические эффекты.
Острые поражения. В случае одномоментного тотального облучения человека значительной дозой или распределения ее на короткий срок эффект от облучения наблюдается уже в первые сутки, а степень поражения зависит от величины поглощенной дозы.
При облучении человека дозой менее 100 бэр, как правило, отмечаются лишь легкие реакции организма, проявляющиеся в изменении формулы крови, некоторых вегетативных функций.
При дозах облучения более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Первая степень лучевой болезни (легкая) возникает при дозах 100-200 бэр, вторая (средней тяжести) - при дозах 200-300 бэр, третья (тяжелая) - при дозах 300-500 бэр и четвертая (крайне тяжелая) - при дозах более 500 бэр.
Дозы однократного облучения 500-600 бэр при отсутствии медицинской помощи считаются абсолютно смертельными.
Другая форма острого лучевого поражения проявляется в виде лучевых ожогов. В зависимости от поглощенной дозы ионизирующей радиации имеют место реакции I степени (при дозе до 500 бэр), II (до 800 бэр), III (до 1200 бэр) и IV степени (при дозе выше 1200 бэр), проявляющиеся в разных формах: от выпадения волос, шелушения и легкой пигментации кожи (I степень ожога) до язвенно-некротических поражений и образования длительно незаживающих трофических язв (IV степень лучевого поражения).
При длительном повторяющемся внешнем или внутреннем облучении человека в малых, но превышающих допустимые величины дозах возможно развитие хронической лучевой болезни.
Отдаленные последствия. К отдаленным последствиям соматического характера относятся разнообразные биологические эффекты, среди которых наиболее существенными являются лейкемия, злокачественные новообразования, катаракта хрусталика глаз и сокращение продолжительности жизни.
Лейкемия - относительно редкое заболевание. Большинство радиобиологов считают, что вероятность возникновения лейкемии составляет 1-2 случая в год на 1 млн населения при облучении всей популяции дозой 1 бэр.
Злокачественные новообразования. Первые случаи развития злокачественных новообразований от воздействия ионизирующей радиации описаны еще в начале XX столетия. Это были случаи рака кожи кистей рук у работников рентгеновских кабинетов.
Сведения о возможности развития злокачественных новообразований у человека пока носят описательный характер, несмотря на то что в ряде экспериментальных исследований на животных были получены некоторые количественные характеристики. Поэтому точно указать минимальные дозы, которые обладают бластомогенным эффектом, не представляется возможным.
Развитие катаракты наблюдалось у лиц, переживших атомные бомбардировки в Хиросиме и Нагасаки; у физиков, работавших на циклотронах; у больных, глаза которых подвергались облучению с лечебной целью. Одномоментная ката-рактогенная доза ионизирующей радиации, по мнению большинства исследователей, составляет около 200 бэр. Скрытый период до появления первых признаков развития поражения обычно составляет от 2 до 7 лет.
Сокращение продолжительности жизни в результате воздействия ионизирующей радиации на организм обнаружено в экспериментах на животных (предполагают, что это явление обусловлено ускорением процессов старения и увеличением восприимчивости к инфекциям). Продолжительность жизни животных, облученных дозами, близкими к летальным, сокращается на 25~50% по сравнению с контрольной группой. При меньших дозах срок жизни животных уменьшается на 2-4% на каждые 100 бэр.
Достоверных данных о сокращении сроков жизни человека при длительном хроническом облучении малыми дозами до настоящего времени не получено.
По мнению большинства радиобиологов, сокращение продолжительности жизни человека при тотальном облучении находится в пределах 1-15 дней на 1 бэр.
Регламентация облучения и принципы радиационной безопасности. С 1 января 2000 г. облучения людей в РФ регламентируют Нормы радиационной безопасности (НРБ)-9б, Гигиенические нормативы (ГН) 2.6.1.054-96.
Основные дозовые пределы облучения и допустимые уровни устанавливают для следующих категорий облучаемых лиц:
персонал - лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
население, включая лиц из персонала, вне сферы и условий их производственной деятельности.
Для указанных категорий облучаемых предусматриваются три класса нормативов:
основные дозовые пределы (предельно допустимая доза - для категории А, предел дозы - для категории Б);
допустимые уровни (допустимая мощность дозы, допустимая плотность потока, допустимое содержание радионуклидов в критическом органе и др.);
контрольные уровни (дозы и уровни), устанавливаемые администрацией учреждения по согласованию с Госсанэпиднадзором на уровне ниже допустимого.
Основные дозовые пределы установлены для трех групп критических органов.
Критический орган - орган, ткань, часть тела или все тело, облучение которых причиняет наибольший ущерб здоровью данного лица или его потомству. В основу деления на группы критических органов положен закон радиочувствительности Бергонье-Трибондо, по которому самые чувствительные к ионизирующему излучению - это наименее дифференцированные ткани, характеризующиеся интенсивным размножением клеток.
К первой группе критических органов относятся гонады, красный костный мозг и все тело, если тело облучается равномерным излучением. Ко второй группе - все внутренние органы, эндокринные железы (за исключением гонад), нервная и мышечная ткань и другие органы, не относящиеся к первой и третьей группам.
К третьей группе - кожа, кости, предплечья и кисти, лодыжки и стопы.
В НРБ-96 в качестве основных дозовых пределов используется эффективная доза, определяемая произведением эквивалентной дозы в органе на соответствующий взвешенный коэффициент для данного органа или ткани. Эффективная доза используется в качестве меры риска отдаленных последствий облучения человека. Эффективная доза для персонала равна 20 мЗв в год за любые последующие 5 лет, но не более 50 мЗв в год; для населения - 1 мЗв в год за любые последующие 5 лет, но не более 5 мЗв в год.
Для второй и третьей групп критических органов эквивалентная доза в органе соответственно равна:
для персонала - 150 и 300 мЗв;
для лица из населения - 15 и 50 мЗв.
Для группы персонала Б эффективная и эквивалентные дозы в органе не должны превышать 1/4 значения для персонала (группа А).
Основные дозовые пределы облучения лиц из персонала и населения установлены без учета доз от природных и медицинских источников ионизирующего излучения, а также доз в результате радиационных аварий. Регламентация указанных видов облучения осуществляется специальными ограничениями и условиями.
Помимо дозовых пределов облучения НРБ-96 устанавливают допустимые уровни мощности дозы при внешнем облучении всего тела от техногенных источников, а также допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи, спецодежды и средств индивидуальной защиты.
Соблюдение установленных норм облучения и обеспечение радиационной безопасности персонала предопределяются комплексом многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, и в первую очередь от типа (закрытого или открытого) источника излучения.
Защитные мероприятия, позволяющие обеспечить радиационную безопасность при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом.
Главные из них следующие:
доза внешнего облучения пропорциональна интенсивности излучения и времени воздействия;
интенсивность излучений от точечного источника пропорциональна количеству квантов или частиц, возникающих в нем за единицу времени, и обратно пропорциональна квадрату расстояния;
интенсивность излучения может быть уменьшена с помощью экранов.
Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности:
уменьшение мощности источников до минимальных величин ("защита количеством");
сокращение времени работы с источниками ("защита временем");
увеличение расстояния от источников до работающих ("защита расстоянием");
экранирование источников излучения материалами, поглощающими ионизирующие излучения ("защита экранами").
Гигиенические требования по защите персонала от внутреннего переобучения при использовании открытых источников ионизирующего излучения определяются сложностью выполняемых операций при проведении работ. Вместе с тем главные принципы защиты остаются неизменными. К ним относятся:
использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде;
герметизация производственного оборудования для изоляции процессов, которые могут быть источниками поступления радиоактивных веществ во внешнюю среду;
мероприятия планировочного характера;
применение санитарно-технических устройств и оборудования, использование защитных материалов;
использование средств индивидуальной защиты и санитарная обработка персонала;
выполнение правил личной гигиены.

По материалам книги - "Безопасность жизнедеятельности" Под редакцией проф. Э. А. Арустамова.