Параметры расположение корней квадратного трехчлена. Исследование расположения корней квадратного трехчлена в заданиях с параметрами

Министерство образования и молодежной политики Чувашской Республики

Автономное учреждение Чувашской Республики

«Цивильский аграрно-технологический техникум»

Направление – физико-математическое и информационно-технологическое

Исследовательская работа:

Расположение корней квадратного трехчлена

Работу выполнила:

студентка 1 курса гр.14 Б

специальности «Экономика

Руководитель:

Ешмейкина

Ирина Анатольевна,

преподаватель математики

Цивильск 2012

1. Введение.

2. Теоретическая часть

2.1. Расположение корней квадратного трехчлена.

2.2. Десять правил расположения корней квадратного трехчлена

3. Практическая часть

3.1. Примеры решения задач

3.2. Расположение корней относительно одной точки.

3.3. Расположение корней относительно двух и более точек.

4. Выводы.

5. Использованная литература.

6. Приложения

Введение

Актуальность: в заданиях ГИА (часть 2) и ЕГЭ по математике с развернутым ответом (часть С), встречаются задачи с параметрами, которые часто вызывают большие трудности у учащихся. Причем часто учащиеся испытывают психологические проблемы, бояться таких задач, т. к. в школе и техникуме мало решают задачи, содержащие параметры.

Трудности при решении задач с параметрами обусловлены тем, что наличие параметра заставляет решать задачу не по шаблону, а рассматривать различные случаи, при каждом из которых методы решения существенно отличаются друг от друга.

Многие задачи с параметрами сводятся к исследованию расположения корней квадратного трехчлена относительно заданной точки или заданного промежутка (отрезка, интервала, луча).

Цель работы: исследовать расположение корней квадратного трехчлена относительно заданной точки или заданного промежутка.

Собрать материал по данной теме Рассмотреть правила расположения корней квадратного трехчлена. Решить задачи используя правила расположения корней квадратного трехчлена.

Объект исследования: квадратный трехчлен и расположение его корней.

1. Поисково – собирательный.

Практическая значимость: данный материал поможет при подготовке к ЕГЭ студентам, желающим продолжить образование в ВУЗе.

Теоретическая часть

2.1. Расположение корней квадратного трехчлена

Многие задачи с параметрами сводят к исследованию расположения корней квадратного трехчлена относительно заданной точки или заданного промежутка:

При каких значениях параметра корни (или корень) квадратного уравнения больше (меньше, не больше, не меньше) заданного числа; расположены между двумя заданными числами; не принадлежат заданным промежуткам и т. д. и т. п.

График квадратичной функции у = ах²+вх+с имеет следующие расположения относительно оси абсцисс.

https://pandia.ru/text/78/376/images/image002_6.jpg" align="right hspace=12" width="196" height="202">Квадратное уравнение х²+pх+q=0 либо не имеет решение (парабола вида D), либо имеет один или два положительных корня (С), либо имеет один или два отрицательных корня (А), либо имеет корни разных знаков (В).

Разберем параболу С. Чтобы уравнение имело корни необходимо, чтобы дискриминант D ≥ 0. Так как оба корня уравнения по построению должны быть положительными, то и абсцисса вершины параболы, лежащая между корнями, положительна, хв > 0.

Ордината вершины f(xв) ≤ 0 в силу того, что мы потребовали существование корней.

Если потребовать выполнение условия f(0) > 0, то в силу непрерывности исследуемой функции найдется точка х1(0;хв) такая, что f(х1) = 0. Очевидно, что это меньший корень уравнения. Итак, собирая все условия вместе, получаем: Квадратное уравнение х² + pх + q = 0 имеет два может быть кратных корня х1,х2 >

Рассуждая аналогичным образом, выведем следующие правила расположения корней квадратного трехчлена.

2.2. Десять правил расположения корней квадратного трехчлена

Правило 1. Квадратное уравнение ах2 + bх + с = 0 (а ≠не имеет решений тогда

и только тогда, когда D < 0.

Правило 2.1. Квадратное уравнение (1) имеет два различных корня тогда и только тогда,

когда D > 0.

Правило 2.2. Квадратное уравнение (1) имеет два, может быть, кратных корня тогда и

только тогда, когда D ≥ 0.

Правило 3.1. Квадратное уравнение (1) имеет два корня х1 < М и х2 > М тогда и только

https://pandia.ru/text/78/376/images/image007_15.gif" align="left" width="74 height=42" height="42"> только тогда, когда

Правило 4.1. Квадратное уравнение х2 + pх +q = 0 при а ≠ 0) имеет два

разных корня х1, х2 > М тогда и только тогда, когда

где =

Правило 4.2. Квадратное уравнение имеет два может быть кратных корня

х1,х2 > М тогда и только тогда, когда

Правило 4.3. Квадратное уравнение имеет два разных корня х1,х2 ≥ М тогда и

только тогда, когда

https://pandia.ru/text/78/376/images/image018_3.gif" width="162" height="74 src=">

Правило 4.4. Квадратное уравнение имеет 2, может быть кратных корня

х1, х2 ≥ М тогда и только тогда, когда

https://pandia.ru/text/78/376/images/image020_2.gif" width="166" height="74 src=">

Правило 5.1. Квадратное уравнение имеет 2 разных корня х1, х2 < М тогда и

только тогда, когда

Правило 6.1. < N < M < х2 тогда и

только тогда, когда

https://pandia.ru/text/78/376/images/image026_1.gif" width="137 height=48" height="48">

Правило 6.2. Квадратное уравнение имеет корни х1 = N < М < х2

тогда и только тогда, когда

Правило 6.3. Квадратное уравнение имеет корни х1< N < M = х2

тогда и только тогда, когда

Правило 7.1. Квадратное уравнение имеет корни х1 < m < x2 < M тогда и только

тогда, когда

https://pandia.ru/text/78/376/images/image032_0.gif" width="128 height=48" height="48">

Правило 7.2. К вадратное уравнение имеет корни N < x1 < M < x2 тогда и только

тогда, когда

Правило 8.1. N < x1 < x2 < M (может быть

кратные корни N < x1 ≤ x2 < M) тогда и только тогда, когда

https://pandia.ru/text/78/376/images/image039_1.gif" width="142" height="98">

Правило 8.3. Квадратное уравнение (1) имеет разные корни N ≤ x1 < x2 ≤ M (может

быть кратные корни N < x1 ≤ x2 ≤ M) тогда и только тогда, когда

Правило 8.4. Квадратное уравнение (1) имеет разные корни N ≤ x1 < x2 ≤ M (может

быть кратные корни N ≤ x1 ≤ x2 ≤ M) тогда и только тогда, когда

https://pandia.ru/text/78/376/images/image044_1.gif" width="144" height="98">

Правило 9. Квадратное уравнение имеет один корень внутри интервала (N; M),

а другой расположен вне этого интервала тогда и только тогда, когда

f (N) f (M) < 0.

Правило 10. Квадратное уравнение (1) имеет единственное решение х1 = х2 > М

(х1 = х2 < М) тогда и только тогда, когда

Практическая часть

3.1. Примеры решения задач.

Пример 1. При каких значениях а уравнение х² - 2ах + а² + 2а – 3 = 0

а) не имеет корней; б) имеет корни разных знаков;

в) имеет положительные корни; г) имеет два разных отрицательных корня?

Решение: а) По правилу 1 решений нет, когда дискриминант D= - 4(2а-3) < 0, откуда а > 3/2.

б) По правилу 3.1 для М = 0 имеем f(0)=а² + 2а – 3 < 0, откуда а(-3;1).

в) По правилу 4.2 для М=0

Откуда .

г) По правилу 5.1 для М=0

Откуда а < - 3.

3.2. Расположение корней относительно одной точки.

Пример 2. При каких значениях параметра а корни уравнения х² + 2(а+1)х + а² + а + 1 = 0 лежат на луче (-2;+∞).

Сделаем графический анализ задачи. По условию задачи возможны лишь следующие два случая расположения графика функции f(х) = х² + 2(а+1)х + а² + а + 1 относительно точки х = -2.

хв = - а – 1

Эти оба случая аналитически описываются условиями

Отсюда следует, что 0 ≤ а < .

Пример 3. Найти все значения параметра а, при которых корни квадратного трехчлена х ² + х + а различны и не больше а. (Приложение 1)

3.3. Расположение корней относительно двух и более точек.

Пример 4. При каких значениях параметра m корни уравнения х² - 2 mх + m² -1= 0 заключены между числами -2 и 4.

Дискриминант уравнения D = 4m² - 4m² + 4 = 4 есть полный квадрат. Найдем корни уравнения: х1= m+1, х2= m - 1. Эти корни удовлетворяют заданному условию, если

Ответ: при m(-1;3).

Пример 5. При каких значениях параметра а уравнение 2х² + (а-4)х + а + 2 = 0 имеет различные корни, удовлетворяющие неравенству ‌│х-1│>2. (Приложение 2)

Решение квадратных уравнений с параметрами можно записать в виде схемы исследования задач, связанных с расположением корней квадратного трехчлена Ах²+Вх+С.

Исследование случая А = 0 (если зависит от параметров).

1. Нахождение дискриминанта D в случае А≠0.

2. Если D – полный квадрат некоторого выражения, то нахождение корней х1, х2 и подчинение их условиям задачи.

3. Если корень квадратный из D не извлекается, то графический анализ задачи.

4. Аналитическое описание подходящих случаев расположения параболы, для чего учитываются:

Ø знак (значение) коэффициента при х²;

Ø знак (значение) дискриминанта;

Ø знаки (значения) квадратичной функции в изучаемых точках;

Ø расположение вершины параболы относительно изучаемых точек.

4. Объединение некоторых неравенств (систем).

5. Решение полученных систем.

Я нашла 10 правил расположения корней квадратного трехчлена. Решила задачи на расположение корней относительно одной точки; расположение корней относительно двух и более точек.

Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов математики, уровня математического и логического мышления, математической культуры.

Использованная литература

1. Мочалов, и неравенства с параметрами/ , .-

Чебоксары: Изд-во Чуваш. Ун-та, 200с.

2. Кожухов, способы решения задач с параметрами/ // Математика в школе.- 1998. - № 6.

3. Еженедельное учебно – методическое приложение к газете «Первое сентября» «Математика» № 18, 2002г

Приложение 1

Пример 3. Найти все значения параметра а, при которых корни квадратного трехчлена х ² + х + а различны и не больше а.

хв= -1/2

Найдем дискриминант D = 1 - 4а. учитывая, что не извлекается, решим пример графически.

Сделаем графический анализ. Так как корни х1, х2 функции f(х) = х² + х + а различны и х1≤ а, х2 ≤ а, то ее график может иметь лишь следующие расположения.

Опишем эти графики аналитически.

https://pandia.ru/text/78/376/images/image062_1.gif" width="149" height="48">

Узнаем, при каких а корни уравнения различны, т. е. дискриминант D=а²-16а положителен, и либо оба меньше -1, либо оба больше 3, либо один из них меньше -1, а другой больше 3. График функции f(х)=2х²+(а-4)х+а+2 в этих случаях имеет следующие расположения:

Аналитически эти графики описываются условиями

Данные об авторе

Стукалова Надежда Васильевна

Место работы, должность:

МБОУ СОШ №15,учитель математики

Тамбовская область

Характеристики урока (занятия)

Уровень образования:

Среднее (полное) общее образование

Целевая аудитория:

Учащийся (студент)

Целевая аудитория:

Учитель (преподаватель)

Класс(ы):

Предмет(ы):

Алгебра

Предмет(ы):

Математика

Цель урока:

Тип урока:

Комбинированный урок

Учащихся в классе (аудитории):

Используемые учебники и учебные пособия:

А. Г. Мордкович, алгебра,9 класс, учебник,2011

А. Г. Мордкович, алгебра,9 класс, задачник,2011

С.А. Теляковский, алгебра 9 класс, учебник, 2009

Используемая методическая литература:

Мирошин, В.В. Решение задач с параметрами: Теория и практика / В.В. Мирошин.- М.: Экзамен, 2009.

Л. В Кузнецова Сборник заданий для экзамена

Используемое оборудование:

Компьютер, кинопроектор

Краткое описание:

План урока: 1. Организационный момент. 2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой). 3. Решение задач с параметрами (работа в группах). 4. Самостоятельная работа с последующей проверкой. 5. Подведение итогов. 6. Домашнее задание.

Конспект урока

на тему

«Расположение корней квадратного трёхчлена

в зависимости от значений параметра»

учитель математики Стукалова Н.В. МБОУ СОШ №15

г. Мичуринск - наукоград РФ 2011г.

Цель урока:

Развивать практические умения и навыки учащихся по решению заданий с параметрами;

Подготовить учащихся к успешной сдачи ГИА по математике;

Развивать исследовательскую и познавательную деятельности учащихся;

Формировать интерес к математике;

Развивать математические способности учащихся.

План урока:

1. Организационный момент.

2. Обобщение и систематизация знаний (вспомнить необходимые и достаточные условия расположения корней квадратного трёхчлена на числовой прямой).

3. Решение задач с параметрами (работа в группах).

4. Самостоятельная работа с последующей проверкой.

5. Подведение итогов.

6. Домашнее задание.

Ход урока.

1. Организационный момент.

Учитель сообщает тему урока, ставит цели и задачи перед учащимися, сообщает план урока.

Задачи с параметрами вызывают большие затруднения. Это связано с тем, что решение таких задач требует не только знания свойств функций и уравнений, умения выполнять алгебраические преобразования, но также высокой логической культуры и хорошей техники исследования.

Наш урок посвящен решению задач по расположению корней квадратного трёхчлена на числовой прямой.

2. Обобщение и систематизация знаний:

Вспомнить необходимые и достаточные условия для выполнения различных требований расположения корней квадратного уравнения относительно заданных точек или промежутков.

После ответа учащихся демонстрируются слайды с правильным ответом.

1. Расположение корней по обе стороны от заданной на числовой прямой

точки.

условию х 1 < m<х 2, необходимо и достаточно выполнения неравенства аf(x)<0.

2. Расположение корней по обе стороны от заданного отрезка.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию х 1 < m, х 2 < n, где m

системы неравенств

3. Расположение корней с одной стороны от заданной на числовой прямой

Точки.

Для того чтобы корни квадратного уравнения при а ≠ 0 удовлетворяли

условию m<х 1 <х 2, т.е располагались на числовой прямой правее точки х = m,

необходимо и достаточно выполнения системы неравенств

Если левее точки х = m, необходимо и достаточно выполнения

системы неравенств

4. Принадлежность корней заданному интервалу.

интервалу (m;n), необходимо и достаточно выполнения системы

неравенств

5.Принадлежность корней заданному отрезку.

Для того чтобы корни квадратного уравнения при а ≠ 0 принадлежали

интервалу , необходимо и достаточно выполнения системы

неравенств

3. Решение задач с параметрами.

Учащиеся разделены на 4 группы. В каждой группе есть дети более успешные в алгебре. Каждая группа начинает решение задачи, совпадающей с номером своей группы. После обсуждения хода решения задачи, от каждой группы по одному представителю выходят к доске и оформляют решение задачи своей группы, и объясняет её решение (на откидных досках). В это время ребята должны решить задачи другой группы (можно получать консультацию у учителя).

Задача №1.

При каких значениях параметра а один корень уравнения (12а + 7)х 2 + (9а - 42)х + +11 - 3а = =0 больше 1, другой корень меньше 1?

Решение.

Графиком функции у = f(х), где f(х) = (12а + 7)х 2 + (9а - 42)х + +11 - 3а, при

а ≠ - 7/12 является параболой, ветви которой при а > - 7/12 направлены вверх, при а < - 7/12 - вниз. Тогда значения параметра а удовлетворяют неравенству

(12а +)f(1)< 0, где f(1) = 12а+7+9а-42+11-3а = 18а-24. Решив неравенство (12а+7)(18а-24)<0, получим, что - 7/12<а<4/3. Ответ: (-7/12; 4/3).

Задача № 2 .

Найдите значения параметра а, при которых корни уравнения (1+а)х 2 - 3ах +4а = 0 больше 1.

Решение.

При а≠-1 заданное уравнение является квадратным и D= -а(7а+16). Получим систему , откуда -16/7≤а≤ -1.

Значения параметра, при которых корни данного уравнения при а ≠ - 1 больше 1, принадлежат промежутку [-16/7; -1).

При а = -1 заданное уравнение имеет вид3х - 4 = 0 и единственный корень

Ответ: [-16/7; -1]

Задача № 3 .

При каких значениях параметра kкорни уравнения (k-2)х 2 -2kх+2k-3=0

принадлежат интервалу (0;1)?

Решение.

При k≠2 искомые значения параметра должны удовлетворять системе неравенств

ГдеD= 4k 2 -4(k-2)(2k-3) = -4(k 2 -7k+6), f(0) = 2k-3? F(1) = k-5, x в = k/(k-2).

Данная система не имеет решений.

При k = 2 заданное уравнение имеет вид -4х+1 = 0, его единственный корень

х = ¼, который принадлежит интервалу (0;1).

Задача №4 .

При каких значениях а оба корня уравнения х 2 -2ах+а 2 -а = 0 расположены на отрезке?

Искомые значения должны удовлетворять системе неравенств

где D= 4а 2 -4(а 2 -а) = 4а, f(2) = a 2 -5a+4, f(6) = a 2 -13a+36, х в = а.

Единственным решением системы является значение, а = 4.

4. Самостоятельная работа (контрольно - обучающая).

Учащиеся работают в группах, выполняют один и тот же вариант, так как материал очень сложный и не всем может быть по силам.

№1. При каких значениях параметра а оба корня уравнения х 2 -2ах+а 2 - 1 =0 принадлежит интервалу (-2;4)?

№2. Найдите все значения k, при которых один корень уравнения

(k-5)x 2 -2kx+k-4=0 меньше1, а другой корень больше 2.

№3. При каких значениях а число 1 находится между корнями квадратного трехчлена х 2 + (а+1)х - а 2 ?

По окончании времени демонстрируются ответы. Осуществляется самопроверка самостоятельной работы.

5. Итог урока. Закончить предложение.

«Сегодня на уроке…».

«Мне запомнилось …».

«Хотелось бы отметить …».

Учитель анализирует весь ход урока и его основные моменты, оценивает деятельность каждого ученика на уроке.

6. Домашнее задание

(из сборника заданий для подготовки к ГИА в 9 классе авт. Л. В. Кузнецова)

Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

МОУ «Средняя общеобразовательная школа №15»

г. Мичуринска Тамбовской области

Урок по алгебре в 9классе

«Расположение корней квадратного трехчлена в зависимости от значений параметра»

Разработала

учитель математики 1 категории

Бортникова М.Б.

Мичуринск - наукоград 201 6 год

Урок рассчитан на 2 часа.

Дорогие ребята! Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.

Цели урока: 1. Расширить представление о квадратных уравнениях 2.Научить находить все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям. 3. Развивать интерес к предмету.

Ход урока:

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним основные уравнения:
aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

    Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1 , (a – 2) х = a 2 4.

    Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например.

    a уравнение 4 х 2 4 aх + 1 = 0 имеет единственный корень?

    Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2) х 2 2 aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2 aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2 aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4
a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 <
а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств потребует от вас новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: у =
х 2 – 2 ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.

      Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <
      х о < 5.

      Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2 ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Примеры решения задач

3. Исследование расположения корней квадратного трехчлена в зависимости от искомых значений параметра а.

Задача № 2.

При каких значениях параметра а корни квадратного уравнения

х 2 – 4х – (а – 1)(а – 5) = 0 больше единицы?

Решение.

Рассмотрим функцию: у = х 2 – 4х – (а – 1)(а – 5)

Графиком функции является парабола. Ветви параболы направлены вверх.

Схематично изобразим параболу (геометрическую модель задачи).

Теперь от построенной геометрической модели перейдем к аналитической, т.е. опишем эту геометрическую модель адекватной ей системой условий.

    Имеются точки пересечения (или точка касания) параболы с осью х, следовательно, Д≥0, т.е. 16+4(а-1)(а-5)≥0.

    Замечаем, что вершина параболы расположена в правой полуплоскости относительно прямой х=1, т.е. ее абсцисса больше 1, т.е. 2>1 (выполняется при всех значениях параметра а).

    Замечаем, что у(1)>0, т.е. 1 – 4 – (а – 1)(а – 5)>0

В результате приходим к системе неравенств.

;

Ответ: 2<а<4.

Задача № 3.

Х 2 + ах – 2 = 0 больше единицы?

Решение.

Рассмотрим функцию: у = -х 2 + ах – 2

Графиком функции является парабола. Ветви параболы направлены вниз. Изобразим геометрическую модель рассматриваемой задачи.


У(1)

Составим систему неравенств.

, решений нет

Ответ. Таких значений параметра а нет.

Условия задачи № 2 и № 3, в которых корни квадратного трехчлена больше некоторого числа при искомых значениях параметра а, сформулируем следующим образом.

Общий случай № 1.

При каких значениях параметра а корни квадратного трехчлена

f (х) = ах 2 + вх + с больше некоторого числа к, т.е. к<х 1 ≤х 2 .

Изобразим геометрическую модель данной задачи и запишем соответствующую систему неравенств.

Таблица 1. Модель – схема.

Задача № 4.

При каких значениях параметра а корни квадратного уравнения

Х 2 +(а+1)х–2а(а–1) = 0 меньше единицы?

Решение.

Рассмотрим функцию: у = х 2 +(а+1)х–2а(а–1)

Графиком функции является парабола. Ветви параболы направлены вверх. По условию задачи корни меньше 1, следовательно, парабола пересекает ось х (или касается оси х левее прямой х=1).

Схематично изобразим параболу (геометрическая модель задачи).

у(1)

От геометрической модели перейдем к аналитической.

    Так как имеются точки пересечения параболы с осью ох, то Д≥0.

    Вершина параболы находится левее прямой х=1, т.е. ее абсцисса х 0 <1.

    Замечаем, что у(1)>0, т.е. 1+(а+1)-2а(а-1)>0.

Приходим к системе неравенств.

;

Ответ: -0,5<а<2.

Общий случай № 2.

При каких значениях параметра а оба корня трехчлена f (х) = ах 2 + вх + с будут меньше некоторого числа к: х 1 ≤х 2 <к.

Геометрическая модель и соответствующая система неравенств представлена в таблице. Необходимо учитывать тот факт, что существуют задачи, где первый коэффициент квадратного трехчлена зависит от параметра а. И тогда ветви параболы могут быть направлены как вверх, так и вниз, в зависимости от значений параметра а. Этот факт будем учитывать при создании общей схемы.

Таблица № 2.

f(k)

Аналитическая модель

(система условий).

Аналитическая модель

(система условий).

Задача № 5.

При каких значениях параметра а 2 -2ах+а=0 принадлежат интервалу (0;3)?

Решение.

Рассмотрим квадратный трехчлен у(х) = х 2 -2ах+а.

Графиком является парабола. Ветви параболы направлены вверх.

На рисунке представлена геометрическая модель рассматриваемой задачи.

У

У(0)

У(3)

0 х 1 х 0 х 1 3 х

От построенной геометрической модели перейдем к аналитической, т.е. опишем ее системой неравенств.

    Имеются точки пересечения параболы с осью х (или точка касания), следовательно, Д≥0.

    Вершина параболы находится между прямыми х=0 и х=3, т.е. абсцисса параболы х 0 принадлежит промежутку (0;3).

    Замечаем, что у(0)>0, а также у(3)>0.

Приходим к системе.

;

Ответ: а

Общий случай № 3.

При каких значениях параметра а корни квадратного трехчлена принадлежат интервалу (k ; m ), т.е. k <х 1 ≤х 2 < m

Таблица № 3. Модель – схема.

f (x )

f (k )

f (m )

k х 1 х 0 х 2 m x

f(x)

0 k x 1 x 0 x 2 m

f(k)

f(m)

Аналитическая модель задачи

Аналитическая модель задачи

ЗАДАЧА № 6.

При каких значениях параметра а только меньший корень квадратного уравнения х 2 +2ах+а=0 принадлежит интервалу Х(0;3).

Решение.

2 -2ах+а

Графиком является парабола. Ветви параболы направлены вверх. Пусть х 1 меньший корень квадратного трехчлена. По условию задачи х 1 принадлежит промежутку (0;3). Изобразим геометрическую модель задачи, отвечающую условиям задачи.

Y (x )

Y (0)

0 x 1 3 x 0 x 2 x

Y (3)

Перейдем к системе неравенств.

1) Замечаем, что у(0)>0 и у(3)<0. Так как ветви параболы направлены вверх и у(3)<0, то автоматически Д>0. Следовательно, это условие записывать в систему неравенств не нужно.

Итак, получаем следующую систему неравенств:

Ответ: а >1,8.

Общий случай № 4.

При каких значениях параметра а меньший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. k <х 1 < m <х 2 .

Таблица № 4 . Модель – схема.

f(k)

k x 1 0 m x 2

f(m)

F(x)

f(m)

k x 1 m x 2 x

f(k)

Аналитическая модель

Аналитическая модель

ЗАДАЧА № 7.

При каких значениях параметра а только больший корень квадратного уравнения х 2 +4х-(а+1)(а+5)=0 принадлежит промежутку [-1;0).

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 +4х-(а+1)(а+5).

Графиком является парабола. Ветви направлены вверх.

Изобразим геометрическую модель задачи. Пусть х 2 – больший корень уравнения. По условию задачи только больший корень принадлежит промежутку.


y (х)

y (0)

x 1 -1 х 2 0 х

y (-1)

Замечаем, что у(0)>0, а у(-1)<0. Кроме этого ветви параболы направлены вверх, значит, при этих условиях Д>0.

Составим систему неравенств и решим ее.

Ответ:

Общий случай № 5.

При каких значениях параметра а больший корень квадратного трехчлена принадлежит заданному интервалу (k ; m ), т.е. х 1 < k <х 2 < m .

Таблица № 5. Модель – схема.

f(x)

f(m)

0 x 1 k x 2 m x

f(k)

f(x)

f(k)

x 1 0 k x 2 m

f(m)

Аналитическая модель

Аналитическая модель

З АДАЧА № 8.

При каких значениях параметра а отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+а-11

Графиком является парабола.

Геометрическая модель данной задачи представлена на рисунке.

Y (x )

X 1 -1 0 3 x 2 x

Y (-1)

Y (3)

При этих условиях Д>0, так как ветви параболы направлены вверх.

Ответ: а

Общий случай № 6.

При каких значениях параметра а корни квадратного трехчлена находятся вне заданного интервала (k ; m ), т.е. х 1 < k < m <х 2 .

х 2 -(2а+1)х+4-а=0 лежат по разные стороны числа от числа 3?

Решение.

Рассмотрим квадратный трехчлен у(х)= х 2 -(2а+1)х+4-а.

Графиком является парабола, ветви направлены вверх (первый коэффициент равен 1). Изобразим геометрическую модель задачи.


X 1 3 x 2 x

Y (3)

Перейдем от геометрической модели к аналитической.

  1. Замечаем, что у(3)<0, а ветви параболы направлены вверх. При этих условиях Д>0 автоматически. +вх+с меньше некоторого числа к: х 1 ≤ х 2

    3. При каких значениях параметра а корни квадратного трехчлена ах 2 +вх+с принадлежат интервалу (к,т) к<х 1 ≤х 2

    4. При каких значениях параметра а только меньший корень квадратного трехчлена ах 2 +вх+с принадлежит заданному интервалу (к,т),т.е.к<х 1 <т<х 2

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Корни квадратного уравнения х 2 -4х-(а-1)(а-5)=0, больше чем 1.

    Ответ: 2<а<4

    Корни квадратного уравнения х 2 +(а+1)х-2а(а-1)=0, меньше чем 1.

    Ответ:

    -0,5<а<2

    Корни квадратного уравнения х 2 -2ах+а=0, принадлежат интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    Только меньший корень уравнения х 2 -2ах+а=0, принадлежит интервалу (0;3).

    Ответ: 1≤а< 9 / 5

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    1.Изобразить геометрическую модель данной задачи.

    2. Записать систему условий, к которой сводится решение данной задачи

    Только больший корень уравнения х 2 +4х-(а+1)(а+5)=0, принадлежит промежутку [-1;0).

    Ответ:(-5;-4]U[-2;-1)

    Отрезок [-1;3] целиком находится между корнями квадратного уравнения х 2 -(2а+1)х+а-11=0.

    Ответ:-1 <а<3

    Корни квадратного уравнения х 2 -2(а+1)х+4-а=0, лежат по разные стороны от числа 3.

    Ответ( 10 / 7 ;∞)

    Спасибо за урок ребята!



При каком значении параметра a один корень уравнения

больше 1, а другой меньше 1?

Рассмотрим функцию -


Цель работы:

  • Исследование всевозможных особенностей расположения корней квадратного трехчлена относительно заданной точки и относительно заданного отрезка на основе свойств квадратичной функции и графических интерпретаций.
  • Применение изученных свойств при решении нестандартных задач с параметром.

Задачи:

  • Изучить различные приемы решения задач на основе исследования расположения корней квадратного трехчлена графическим методом.
  • Обосновать всевозможные особенности расположения корней квадратного трехчлена, разработать теоретические рекомендации для решения нестандартных задач с параметром.
  • Овладеть рядом технических и интеллектуальных математических умений, научится их использовать при решении задач.

Гипотеза:

Использование графического метода в нетрадиционных задачах с параметром упрощает математические выкладки и является рациональным способом решения.


тогда и только тогда:

1. Оба корня меньше числа А,

2. Корни лежат по разные стороны от числа А,

тогда и только тогда:

  • тогда и только тогда:

тогда и только тогда:

3. Оба корня больше числа А, то есть


Найти все значения параметра а, для которых один корень уравнения

больше 1, а другой меньше 1.


При каких значениях параметра уравнение

имеет два различных корня одного знака?

-6

-2

3

a


1. Оба корня лежат между точками A и B , то есть

тогда и только тогда:

2. Корни лежат по разные стороны от отрезка

тогда и только тогда:

3. Один корень лежит вне отрезка, а другой на нем, то есть

тогда и только тогда:


Исследуйте уравнение

на количество корней в зависимости от параметра.

уравнение не имеет решений.

имеет одно решение.


Исследуйте уравнение

на количество корней в

зависимости от параметра.


Если один корень лежит на отрезке, а другой слева от него.

Если один корень лежит на отрезке, а другой справа от него.

первоначальное уравнение будет иметь два различных корня.

при которых

уравнение имеет три различных корня.

Ответ: при

при которых

первоначальное уравнение будет иметь два

различных корня.

уравнение имеет четыре различных корня.