Солнечная система. Сразу на двух спутниках планет найдены океаны

Это система планет, в центре которой находится яркая звезда, источник энергии, тепла и света - Солнце.
По одной из теорий Солнце образовалось вместе с Солнечной системой около 4,5 миллиардов лет назад в результате взрыва одной или нескольких сверхновых звезд. Изначально Солнечная система представляла собой облако из газа и частиц пыли, которые в движении и под воздействием своей массы образовали диск, в котором возникла новая звезда Солнце и вся наша Солнечная система.

В центра Солнечной системы находится Солнце, вокруг которого по орбитам вращаются девять крупных планет. Так как Солнце смещено от центра планетарных орбит, то за цикл оборота вокруг Солнца планеты то приближаются, то отдаляются по своим орбитам.

Различают две группы планет :

Планеты земной группы: и . Эти планеты небольшого размера с каменистой поверхностью, они находятся ближе других к Солнцу.

Планеты гиганты: и . Это крупные планеты, состоящие в основном из газа и им характерно наличие колец, состоящих из ледяной пыли и множества скалистых кусков.

А вот не попадает ни в одну группу, т.к., несмотря на свое нахождение в Солнечной системе, слишком далеко расположен от Солнца и имеет совсем небольшой диаметр, всего 2320 км, что в два раза меньше диаметра Меркурия.

Планеты Солнечной системы

Давайте начнем увлекательное знакомство с планетами Солнечной системы по порядку их расположения от Солнца, а также рассмотрим их основные спутники и некоторые другие космические объекты (кометы, астероиды, метеориты) в гигантских просторах нашей планетарной системы.

Кольца и спутники Юпитера: Европа, Ио, Ганимед, Каллисто и другие...
Планету Юпитер окружает целое семейство из 16 спутников, причем каждый из них имеет свои, непохожие на другие особенности...

Кольца и спутники Сатурна: Титан, Энцелад и другие...
Характерные кольца есть не только у планеты Сатурн, но и на других планетах-гигантах. Вокруг Сатурна кольца особенно четко видно, потому что состоят из миллиардов мелких частиц, которые вращаются вокруг планеты, помимо нескольких колец у Сатурна есть 18 спутников, один из которых Титан, его диаметр 5000км, что делает его самым большим спутником Солнечной системы...

Кольца и спутники Урана: Титания, Оберон и другие...
Планета Уран имеет 17 спутников и, как и другие планеты-гиганты, опоясывающие планету тонкие кольца, которые практически не имеют способности отражать свет, поэтому открыты были не так давно в 1977 году совершенно случайно...

Кольца и спутники Нептуна: Тритон, Нереида и другие...
Изначально до исследования Нептуна космическим аппаратом "Вояджер-2" было известно о двух спутников планеты - Тритон и Нерида. Интересный факт, что спутник Тритон имеет обратное направление орбитального движения, также на спутнике были обнаружены странные вулканы, которые извергали газ азот, словно гейзеры, расстилая массу темного цвета (из жидкого состояния в пар) на много километров в атмосферу. Во время своей миссии "Вояджер-2" обнаружил еще шесть спутников планеты Нептун...

Вода - вещество достаточно распространенное во Вселенной, обнаруживается и в обширных рассеянных облаках, и на далеких экзопланетах. Замерзшие ледники найдены на Луне и у марсианских полюсов, и даже в вечной тени глубоких кратеров на Меркурии. Однако чтобы вода стала той несущей жизнь влагой, какой мы ее привыкли видеть на Земле, она должна быть жидкой. И в этой форме она встречается гораздо реже.

Если не считать нашей планеты, до сих пор достоверно было известно о наличии жидкого океана лишь на одном теле Солнечной системы, спутнике Юпитера Европе. Однако на этой неделе воды в окрестностях Земли прибыло: наблюдения космических аппаратов показали, что глубоко под ледяными оболочками Ганимеда и Энцелада скрываются обширные и соленые океаны.

Энцелад исследовал работающий в системе Сатурна зонд Cassini, который обнаружил на его ледяной поверхности микроскопические - даже наноразмерные, величиной от 6 до 9 нм - гранулы силикатов. На анализ этих данных астрономам потребовалось несколько лет, за которые были проведены и компьютерные симуляции, и лабораторные эксперименты, позволившие отработать разные сценарии появления этих минералов на поверхности Энцелада.

В результате этой кропотливой работы ученые показали, что наиболее вероятный сценарий требует наличия обширного океана в южном полушарии этого спутника - океана, время от времени прорывающегося на поверхность. «Мы провели методический поиск возможных объяснений происхождению наногранул, но все указывает на единственный, наиболее вероятный сценарий», -пояснил работающий с данными Cassini немецкий астрофизик Франк Постберг.

Энцелад в разрезе: жидкий океан воды пробивается сквозь десятки километров льда горячими гейзерами. Изображение: NASA / JPL

Двигаясь в мощном гравитационном поле Сатурна, Энцелад подвергается интенсивному воздействию приливных сил, которые вызывают его деформацию и создают трение, разогревающее недра до весьма значительных температур. Этот нагрев и позволяет существовать океану, скрытому под 30–40 км ледяной корки, более того, по оценке ученых, температура воды в нем должна превышать 90 °С. Кипяток растворяет придонные минералы, становится соленым и иногда пробивается сквозь ледяную кору горячими гейзерами, вынося с собой и растворенные вещества. На поверхности вода быстро замерзает, а затем и испаряется, оставляя за собой лишь мельчайшие фрагменты силикатов.

Интересно, что аналогичная гидротермальная активность известна и на Земле. Подобные гейзеры создают весьма «богатую» химию, в которой высокая температура и активное перемешивание сочетается с разнообразием минеральных веществ и контактом разных сред. Это делает их многообещающими кандидатами на роль «колыбели жизни» - и, теоретически, ту же роль они могут играть и на Энцеладе. На фоне планируемой в США сложной миссии к Европе, где можно будет провести поиски возможной жизни, новые сведения об Энцеладе могут оказаться особенно полезными.

Впрочем, не менее перспективным может стать и Ганимед - крупнейший спутник у Юпитера и во всей Солнечной системе. Указания на то, что под его ледяной корой, толщина которой составляет около 150 км, скрывается обширный океан, имелись и раньше. Однако теперь его существование подтвердил самый зоркий глаз современной оптической астрономии, космический телескоп Hubble.

Диаметр Ганимеда превышает 5200 км, поэтому недра его дифференцировались под действием собственной гравитации. Более тяжелые элементы - прежде всего, железо - сумели сформировать полужидкое ядро, которое, как и на Земле и некоторых других планетах, создает на спутнике глобальное магнитное поле. Одним из проявлений этого магнитного поля являются знакомые всем полярные сияния, возникающие при взаимодействии магнитного поля с заряженными частицами, прилетающими на Ганимед из космоса. Эти полярные сияния и наблюдали немецкие и американские ученые с помощью Hubble.

Поведение полярных сияний здесь определяется не только собственным магнитным полем спутника, но и полем соседней гигантской планеты. И если под толстой ледяной корой Ганимеда имеется океан с растворенными в нем солями, магнитное поле Юпитера должно взаимодействовать с ним, и это взаимодействие должно проявляться в подавлении движения полярных сияний.

Проведя моделирование различных сценариев, ученые сравнили эти результаты с данными наблюдений Hubble, показав, что реальная картина подтверждает существование океана, причем весьма обширного. По их расчетам, глубина его должна составлять около 100 км, и в общей сложности он содержит больше воды, чем все океаны Земли, вместе взятые.

Никулин Олег

Геология планет Солнечной Системы.

Проект добыча полезных ископаемых вне Земли.

Никулин Олег Андреевич

Мурманская область, г. Мурманск, МОУ гимназия №2, 8Б класс.

Аннотация

Тема исследования для самого учащегося представляла большой интерес, поскольку перспектива всемирного кризиса связанного с дефицитом ресурсов ни кого не может оставить равнодушным. Люди с древности ищут залежи полезных ископаемых, в нашем веке таким месторождением может стать Солнечна система.

Целью работы является изучение промышленного потенциала Солнечной Системы и обобщение имеющихся знаний о геологии планет Солнечной Системы.

Для достижения поставленной цели были выполнены следующие задачи:

  1. Подобрать и проанализировать необходимый материал по данной теме,
  2. Изучить геологию планет Солнечной Системы, рассмотреть варианты использования полезных ископаемых Космоса на Земле,
  3. Рассмотреть геологический потенциал планет Солнечной системы,
  4. Доказать, что добыча полезных ископаемых вне Земли целесообразно и выгодно в экономическом и экологическом плане.

Объект исследования: геология планет Солнечной Системы - полезные ископаемые Космоса.

Предмет исследования: возможность добычи и использования полезных ископаемых Космоса.

При проведении работы была поставлена цель: обобщить все имеющиеся знания о геологии планет Солнечной системы.

Первая часть работы посвящена геологии планет Солнечной Системы.

Вторая часть работы посвящена перспективам освоения полезных ископаемых Солнечной Системы.

В работе используется аналитический (сравнение и анализ) метод исследования.

Данное исследование моет быть представлено как теоретический материал на уроках химии, физики и географии.

Работа состоит из введения, трех глав и заключения.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Предварительный просмотр:

Городская выставка-конференция школьников

«Юные исследователи – будущее Севера»

Секция: ГЕОГРАФИЯ

ГЕОЛОГИЯ ПЛЕНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

МБОУ г. Мурманска гимназия №2

Научные руководители:

Фельцан О.В.

учитель географии МБОУ

г. Мурманск гимназии № 2

Мурманск 2013

Введение ………………………………………………………………………………………..3

………………………………….………...4

  1. Образование Солнечной системы……………………………………………………..4
  2. Астероиды, метеориты и кометы……………………………………………………...4
  3. Планеты земной группы……………………………………………………………….5
  4. Планеты - гиганты Солнечной системы………………………………………………5

…………………………………………………………………………………………7

Заключение …………………………..……….………………………………………………...8

Литература ………………………………..……………………………………………………9

ВВЕДЕНИЕ

Спрос на минеральное сырье во всем мире постоянно возрастает как в количественном (примерно 5% в год), так и в ассортиментном отношении. В эпоху греческой эллинистической культуры и расцвета римского принципа человек использовал 19 химических элементов, в конце XVI века – 28, а начале ХХ века – 59. На рубеже второго и третьего тысячелетия человечество использует уже более 100 элементов, включая их искусственно созданные из природного материала литосферы.

Ежегодно из недр Земли извлекается более 100 млрд. т различного минерального сырья и топлива. Это руды черных и цветных металлов, уголь, нефть, газ.

Наиболее доступные месторождения полезных ископаемых истощаются, согласно последним прогнозам основных видов полезных ископаемых хватит до конца ХХI века, что рассматривается в качестве одной из глобальных проблем человечества.

В то же время, развитие космической отрасли промышленности в целом и технологий в различных отраслях науки позволяет не только ученым, но и правительствам различных государств, задумываясь о возможностях черпать ресурсы из космоса.

Технически возможность доставки таких ресурсов, как никель, золото, железо, уран и других, обсуждается специалистами на уровне теории уже много лет. Эксперты НАСА заявляют, что эксперименты по добыче полезных ископаемых вне Земли может иметь высокую стоимость по отношению к стоимости добытых ресурсов. Однако с развитием науки и техники соотношение может измениться и тогда экономическое лидерство получат государства, участвующие в развитии соответствующих технологий.

Например, в США уже создана компания для добычи полезных ископаемых в космосе.

Китай объявил об обширной перспективной космической программе, предусматривающей углубленное изучение Луны и проведение мероприятий по доставке на Землю и изучение грунтов, создание условий для добычи полезных ископаемых на Луне. Космическая программа России утверждена Распоряжением Правительства РФ от 28 декабря 2012 года № 2594.

В этих условиях возрастает роль геологии, включающей такой раздел как планетная геология, изучающая геологию небесных тел. В задачи планетной геологии в первую очередь входит изучение внутреннего строения планет земной группы, планетарного вулканизма, строение планет Солнечной системы, а также астероидов и комет.

Объект исследования : геология планет Солнечной Системы - полезные ископаемые Космоса.

Предмет исследования : возможность добычи и использования полезных ископаемых Космоса.

Цель настоящей работы – обобщение основных известных науке сведений о геологии планет Солнечной системы и перспектив развития этого научного направления, роль которого будет неизбежно возрастать с развитием космических технологий.

Для достижения поставленной цели были выполнены следующие задачи :

  1. Подобрать и проанализировать необходимый материал по данной теме,
  2. Изучить геологию планет Солнечной Системы, рассмотреть варианты использования полезных ископаемых Космоса на Земле,
  3. Рассмотреть геологический потенциал планет Солнечной системы,
  4. Доказать, что добыча полезных ископаемых вне Земли целесообразно и выгодно в экономическом и экологическом плане.

Методы исследования :

1) аналитический;

2) поисковый;

3) сравнительно-сопоставительный анализ полученной информации

Глава I. Геология планет Солнечной системы

  1. Образование Солнечной системы.

Луна вращается вокруг Земли, Земля вокруг Солнца, а Солнце вокруг ядра нашей Галактики, именуемой Млечным Путем.

Солнцу необходимо 220 миллионов лет чтобы совершить полный оборот вокруг центра Галактики. Млечный Путь образуют миллионы звезд и Солнце лишь одна из них.

Во Вселенной существуют миллиарды галактик. Они содержат большое количество материи. В них легко образуются яркие звезды. В ядре галактики расположены старые звезды. Молодые звезды, находятся в рукавах. Солнечная система находится в рукав Ориона. С Земли нельзя разглядеть форму Млечного Пути. Мы видим лишь яркую полосу соответствующую одному из рукавов.

Сложно точно сказать какой была Земля сразу после своего образования 4 млрд 600 млн лет назад. Перед нами предстала бы раскаленная планета, сотрясаемая вулканической деятельностью. Гравитация – фундаментальное свойство Вселенной. Благодаря ей газопылевое облако превратилось в Солнечную Систему. Породы и металлы плавились. Тяжелые вещества, в первую очередь, погрузились в центр планеты, а легкие, оставались на поверхности, и образовали земную кору. Из вулканов выходили газы и водяной пар. Они создавали зачаточную атмосферу. Водяной пар концентрировался и выпадал в форме осадков, порождая первые океаны.

  1. Астероиды, метеориты и кометы.

Часть материи, не образовала планет, а осталась в рассеянном состоянии. Частично оно превратилось в естественные спутники планет, другие обломки образуют пояса астероидов. Когда астероиды входят в земную атмосферу и сгорают в ней их называют метеорами, а если они достигают поверхности планеты – метеоритами.

Поверхность Земли постоянно изменяется, поэтому следов от метеоритов, упавших на Землю, остается крайне мало. На Луне дело обстоит иначе, ее поверхность испещрена кратерами, свидетельствующими о метеоритной активности. Отсутствие атмосферы и вулканической деятельности оставляет эти следы не тронутыми. Изучение метеоритов позволяет получить ценные данные о составе Солнечной системы

Наша Солнечная система образовалась из газопылевого облака. Его плотное ядро превратилось в Солнце, а из остального вещества образовались планеты, астероиды и кометы.

К возникновению Солнечной системы привело гравитационное сжатие газопылевого облака. С уменьшением его размеров росла его температура. В центре сформировалась протозвезда, а вокруг нее – протопланетный диск. Солнце относится к, так называемым, «желтым карликам» в составе которых, помимо водорода и гелия содержатся более тяжелые элементы.

  1. Планеты земной группы.

Меркурий, Венера, Земля и Марс относятся к планетам земной группы и имеют твердую поверхность. Они состоят преимущественно из силикатов и плотного железного ядра.

Геология внешних планет газово-ледяных гигантов отлична от геологии планет земной группы. Юпитер расположен так далеко от Солнца, что на нем замерзает углекислый газ. На орбитах Урана и Нептуна замерзают даже метан и аммиак. Мы живем на геологически активной и постоянно меняющейся планете. А что происходит на других планетах? Четыре ближайшие к Солнцу планеты имеют сходную с Землей структуру. Различия между ними сводятся к характеру атмосферы и наличию либо отсутствию воды.

Из всех планет земной группы у Меркурия наиболее пропорциональное соотношение железного ядра и силикатной оболочки. Геологические процессы прекратились на Меркурии около трех миллионов лет назад. Его поверхность покрыта множеством кратеров и разломов. Эти разломы образовались, при остывании ядра, в результате которого поверхность планеты сжималась и растрескивалась. На полюсах и в глубоких кратерах, могла сохраниться замерзшая вода. Поскольку атмосфера практически отсутствует, в них сохраняются очень низкие температуры, тогда как на солнечном свету температура достигает 500 градусов по Цельсию.

Венеру окутывает плотная атмосфера, создающая мощный парниковый эффект. Есть и необычные формы рельефа, которые называют «коронами». Они состоят из горных цепей, замыкающихся кругом, с долиной посередине. Возраст поверхности Венеры примерно одинаков и составляет от 200 до 800 млн лет. Тепло накапливалось в ее недрах в течение сотен миллионов лет, а затем высвободилось в форме мощного извержения, повлиявшего на характер всей поверхности.

Луна образовалась 4,5 млрд лет назад. Ученые придерживаются версии о вторичном происхождении спутника земли, отделившегося от нее при столкновении с метеоритами. Луна состоит из горных пород, сходных с земными. На спутнике Земли нет атмосферы, что способствует сильным перепадам температуры. Отсутствие атмосферы делает Луну беззащитной перед атаками метеоритов.

Из всех планет солнечной системы Марс больше всего похож на Землю. В прошлом его поверхность была покрыта водой, в которой существовали примитивные формы жизни.

По размеру Марс меньше земли. Диаметр марса в два раза меньше диаметра Земли, но геологические объекты марса гораздо больше земных. Высота вулкана Олимпус Монс составляет 23 тысячи метров, что в два раза больше высоты горы Эврест. А каньон Виллес, длина которого превышает 4000 км, является самой протяженной долиной такого типа в Солнечной системы. В стенах каньона четко прослеживаются границы геологических слоев. Толщина полярных шапок достигает в ряде мест 1500 км над поверхностью песчаных равнин окружающих их.

Существует множество свидетельств того, что раньше на Марсе была вода. На этой планете есть обширные долины и каналы и следы деятельности воды на камнях, есть свидетельства того, что Марс некогда пережил сильнейшее наводнение. Сейчас вся вода аккумулировалась в виде льда на полярных шапках и под поверхностью планеты.

  1. Планеты - гиганты Солнечной системы.

У самых удаленных планет солнечной системы вокруг небольшого плотного ядра расположены огромные массы газа и льда.

Для образования газовых гигантов, таких как Сатурн и Юпитер необходимо ядро сформированное из горных парод и льда. До сих пор рождаются новые гипотезы о происхождении планет - гигантов. Юпитер – самая массивная планета Солнечной системы. Он окутан тонким слоем облаков. Юпитер окружен тонкими кольцами. Ядро этой планеты состоит из твердого вещества и плотной жидкости находящийся под огромным давлением и окруженных жидким металлическим водородом, напоминающим ртуть в земных условиях.

Поверхность Сатурна также покрыта облаками. Его внутренняя структура напоминает структуру Юпитера.

По размеру Нептун и Уран уступают Юпитера и Сатурна. Это ледяные гиганты. Под их облаками покоятся льды из воды, аммиака и метана.

Плутон настолько мал и удален от солнца, что наблюдать его с земли достаточно сложно. Он имеет ядро, окруженное замерзшей водой. Блестящая поверхность Плутона указывает, на присутствие замороженного метана и азота. Когда планета приближается к Солнцу, лед тает, образуя временную атмосферу.

ГЛАВА II. Полезные ископаемые планет Солнечной системы и перспективы их освоения

Гигантские объемы разнообразных ресурсов, начиная с воды и газов, и заканчивая металлами, обнаруженные на Луне и дальше вглубь космоса, заставляют и государства и частный бизнес начать подготовку к деятельности по разведке, добыче и доставке на Землю этих минеральных богатств.

На Луне и в атмосферах таких планет как Юпитер обнаружены огромные количества изотопа Гелий-3, который потенциально интересен в качестве основного топлива для ядерного синтеза до сих пор недосягаемой мечты энергетиков

Отсутствие атмосферы у Луны означает, что она в течение миллиардов лет подвергалась бомбардировке заряженными частицами, часть из которых внедрилась в ее поверхность. Эти частицы, включая гелий-3, могут быть извлечены путем нагревания лунных пород и последующего сбора газа. Доступные объемы гелия-3 измеряются сотнями миллионов тонн при этом разработку можно вести открытым способом. Ядерный синтез – более экологичный процесс поскольку он не оставляет лишних нейронов. Энергии производиться значительно больше, чем при реакции деления в то же время без таких последствий как значительные радиоактивные отходы. До сих пор ученые могли поддержать термоядерную реакцию в течение лишь нескольких секунд. По мнению ученых, способ его достижения неизбежно будет усовершенствован - это скорее всего приведет к взрыву спроса на гелий-3.

В силу своей близости к Земле Луна уже давно рассматривается как кандидат для места нахождения космической колонии. Луна обладает разнообразием полезных ископаемых, в том числе ценными для промышленности металлами – железом, алюминием, титаном.

В 2006 году официально было объявлено, что главной целью российской космической программы будет добыча на Луне гелия 3. Станцию на Луне планируется создать к 2015 году, а с 2020 года может начаться промышленная добыча гелия-3.

При этом первый полет NASA планирует осуществить туда не ранее 2018 года, в 2012 годах запланировано создание лунных ба Китаем и Японией. До сих пор США остается единственным государством, представители которого побывали на Луне.

Чтобы обеспечить энергией все население Земли в течение года необходимо приблизительно 30 тонн гелия-3. При использовании гелия-3 не возникает долгоживущих радиоактивных отходов, так остро стоящая при делении тяжелых ядер отпадает.

ЗАКЛЮЧЕНИЕ

В современных условиях геологическая наука является одним из важнейших факторов, оказывающих влияние на мировую экономику и экономику отдельно взятых государств.

Доступ к энергоресурсам и стоимость энергоресурсов является одним из ключевых элементов себестоимости товаров, работ и услуг.

Государства, обладающие обширными запасами полезных ископаемых, в их числе Россия, безусловно, находятся в более выгодном положении по сравнению с теми государствами, которые запасами полезных ископаемых не обладают и вынуждены приобретать их на международном рынке.

В то же время развитие науки и техники создает предпосылки для освоения природных богатств, ранее недоступных человеку, в том числе, запасов полезных ископаемых, залежи которых находятся на планетах Солнечной системы.

По этой причине развитые государства в перспективе планируют освоение полезных ископаемых, находящихся за пределами Земли.

Можно предположить, что первым небесным телом, подлежащим освоению, станет Луна, поскольку она ближе всего расположена к Земле и у человечества имеется опыт экспедиций на Луну.

Перспективы освоения других планет Солнечной системы более отдаленные, но и в этом направлении ведется активная работа.

Например, Китай планирует не только освоение полезных ископаемых на Марсе, но и создание на этой планете колонии.

Таким образом, исследования в области геологии планет являются одним из перспективных направлений геологической науки, и в долговременной перспективе будут иметь важное значение в конкуренции за освоение полезных ископаемых Солнечной системы.

ЛИТЕРАТУРА

  1. Астрономия для детей. Москва. Росмэн. 1997
  2. Геология для детей. Москва. Аванта. 2011
  3. Геология. Н.В. Короновский, Н.А. Ясаманов. Москва.Академия. 2011
  4. Минералы//2011-2012
  5. Распоряжение Правительства РФ от 28.12.2012 № 2594-р «Об утверждении государственной программы Российской Федерации «Космическая деятельность России на 2013-2020 годы»
  6. Ресурсы Интернет: www/geowiki
  7. Ресурсы Интернет: ru/Wikipedia.org/wiki
  8. Ресурсы Интернет: www/ globaltrouble.ru
  9. Ресурсы Интернет: www/ceberstcurity.ru

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом становится очевидным, что главной задачей космонавтики является преодоление барьера удельного импульса тяги жидкостных реактивных двигателей (5-6 км/сек) для практического освоения космического пространства. Для решения всех этих проблем необходимы новые, радикальные изобретения, новые источники энергии, новые двигательные системы.

Поэтому очевидна назревшая необходимость использования неограниченной ядерной энергии для осуществления заветной мечты человечества о освоении бесконечных ресурсов Космоса. Для обеспечения безопасности при взлете и посадке наиболее целесообразно использование энергии управляемого термоядерного синтеза при отсутствии радиоактивных отходов. С этой целью автором спроектирован многоразовый космолет " Сокол " с термоядерным реактивным двигателем (ТЯРД), который позволяет развивать значительные скорости в необходимых пределах: 1000 км/сек - 150 000 км/сек и более в свободном космическом пространстве.

Освоение ресурсов Солнечной системы с помощью ТЯРД навсегда решит проблему защиты от загрязнения окружающей среды, безграничного жизненного пространства, изобильного энергообеспечения, сырья и их практического использования. За счет значительного увеличения удельного импульса тяги (более 2000км/сек) расход топлива значительно уменьшится, а это приведет к увеличению массы полезной нагрузки и значительному снижению стоимости выведения на орбиту единицы массы полезного груза.

ТЯРД решает главную проблему значительного сокращения времени межпланетных перелетов многоразовых космолетов и увеличивает их грузоподъемность. Затраты на разработку и создание экспериментального многоразового космолета с ТЯРД составят 5 млрд.долл.с последующим снижением затрат до 2млрд.долл.при серийном производстве. Для сравнения стоимость МТКК " Спейс Шаттл " свыше 2млрд.долл.Ожидаемая сверхприбыль за счет использования изобилия дешевой энергии управляемого термоядерного синтеза на реакторе " Прометей " значительно перекрывает все расходы и обеспечивает энергетическую независимость Украины (и других государств использующих эту эффективную технологию), заменяя энергоресурсы нефти и газа. Это перспективный путь развития мировой энергетики, который обеспечивает изобилие дешевой энергии. За счет многоразового использования вывод на орбиту 1кг полезной нагрузки обойдется примерно 1 долл.с последующим снижением в процессе эксплуатации.

Благодаря использованию мощного многоразового космолета специальной конструкции с ТЯРД возможно будет осуществлять регулярные пилотируемые полеты на Луну и транспортировку грузов по трассе Земля-Луна- Земля. Эти полеты будут подобны современным трансконтинентальным авиационным перелетам из Европы в США и станут экономически выгодными благодаря дешевизне таких перелетов. Луна станет межпланетной промышленной базой и экспериментальным полигоном ученых.

Транспортировка комет и астероидов из пояса между орбитами Марса и Юпитера с помощью ТЯРД позволит создавать из их вещества межпланетные базы и космические автономные системы производства (АСП) на основе роботов и компьютеров. Неизбежный вынос АСП в Космос с помощью ТЯРД диктуется необходимостью сохранить Землю от гибельного загрязнения промышленными отходами как уникальный космический заповедник, а также выгодой использования космических технологий в производстве. Космолеты с ТЯРД позволят осуществлять регулярные полеты людей на Марс вначале за несколько месяцев и создание на нем постоянных поселений вместе с АСП.

Используя безграничную энергию ТЯРД человечество сможет развить широкую астроинженерную деятельность, что дает возможность осуществить изменение климата Марса искусственным путем и преобразовать его в подобие Земли. Это позволит восстановить атмосферу и гидросферу, а также возродить жизнь на Марсе и заселить его земными растениями и животными, чтобы в дальнейшем превратить Марс в новое жилище для всего человечества. Изменение химического состава атмосферы Венеры (преобразование углекислого газа в кислород) с помощью микроорганизмов и растений позволит создать планету по природным условиям похожую на Землю и где смогут жить люди в будущем.

Создание гигантских космических поселений в околосолнечном пространстве сделает человечество практически бессмертным и безгранично могущественным при изобилии энергии Солнца и продуктов питания (которые будут выращиваться в больших оранжереях или синтезироваться на биохимических фабриках в Космосе).Таким образом в будущем люди будут жить на Марсе и Венере как на Земле, постепенно заселяя всю Солнечную систему - спутники Юпитера, Сатурна и других больших планет, а также астероиды. Спутники и кольца планет-гигантов станут легко доступны для освоения и использования. Очевидно, что Юпитер, Сатурн и другие большие планеты будут использоваться как топливные базы космолетов и источники сырья за счет химического состава их обширных атмосфер. Планеты Солнечной системы и их спутники станут надежным плацдармом человечества перед прыжком к звездам и расселением сперва по нашей Галактике, а в будущем и по всей Метагалактике.

Для этого на околоземной орбите можно будет собирать большие межзвездные звездолеты, которые с помощью ТЯРД смогут развивать релятивистскую скорость, сравнимую со скоростью света в вакууме. Гигантские богатства космических миров станут достоянием всего человечества. Таким образом ключ к Вселенной заключается в использовании энергии звезд.

Для примера приведу ряд расчетов межзвездных перелетов исходя из постоянного ускорения ракеты 20м/сек2 и Специальной теории относительности (СТО) А. Эйнштейна. Будущие космонавты смогут путешествовать не только в пространстве, но и во времени согласно СТО. Рассмотрим космический полет к ближайшей нашему Солнцу тройной системе звезд альфа Центавра (Толиман), находящейся на расстоянии 4,3 световых лет. Причем половину пути ракета ускоряется, а другую половину замедляется. К моменту достижения главной желтой звезды альфа Центавра А для космонавтов в ракете пройдет время 2,26 лет, а на Земле 5,16 лет. Эта звезда по своим параметрам (светимость, масса, размер) очень похожа на Солнце, а ее яркий оранжевый спутник альфа Центавра В имеет меньшую светимость - 0,28, тогда как третий спутник - звезда Проксима (Ближайшая) Центавра является холодным красным карликом. Согласно расчетам американского астронома С. Доула вероятно, что возле главных звезд альфы Центавра А и В существуют землеподобные планеты, на которых возможна жизнь и обитание разумных существ. А после обратного возвращения на Землю у космонавтов пройдет 4,52 года, но они убедятся в том, что на самой Земле прошло уже 10,32 года. Полет к центру нашей Галактики в созвездии Стрельца на расстоянии 10 кпк (1пк =3,263 св.лет) займет у космонавтов время 5,61 года, а на Земле пройдет 32 630 лет. На возвращение уйдет тоже время, а на весь полет для космонавтов 11,22 года, тогда как для Земли пройдет 65 260 лет.

Полет к спутникам нашей Галактики: Большому Магелланову Облаку в созвездии Тукана на расстоянии 52 кпк займет у космонавтов время 6,2 года, а на Земле пройдет время 170 000 лет. На возвращение уйдет тоже время, а на весь полет для космонавтов 12,4 года, тогда как для Земли пройдет 340 000 лет.

Полет к Малому Магелланову Облаку в созвездии Золотой Рыбки на расстоянии 71 кпк займет у космонавтов время 6,4года,а на Земле пройдет время 232 000 лет. На возвращение уйдет тоже время, а на весь полет для космонавтов 12,8 года, тогда как для Земли пройдет 464 000 лет.

Полет к знаменитой галактике-туманности Андромеды, находящейся на расстоянии 690 кпк займет по времени космонавтов 7,5 лет, а на Земле пройдет 2,26 миллионов лет. Вернувшись на Землю, космонавты по своим часам отметят 15 лет полета, а на Земле пройдет 4,52 миллионов лет с момента старта.

Соотношение двух факторов - длительность жизни и способности переносить ускорение у человека таково, что он в принципе мог бы совершить путешествие до любых, даже самых отдаленных из наблюдаемых галактик Вселенной! Так для достижения далеких скоплений галактик, расположенных на расстоянии 1000 Мпк, потребуется только 11,1 лет времени космонавтов, тогда как на Земле пройдет 3,263 миллиарда лет. Использование гидроамортизаторов и анабиоза позволит значительно увеличить ускорение, для достижения скорости света, следовательно сократит для космонавтов время межзвездных перелетов. Космические Колумбы и Магелланы на звездолетах покорят Вселенную и встретятся с братьями по разуму. Они найдут годные для обитания потомков новые прекрасные миры, когда наше Солнце исчерпает запасы ядерного топлива и неизбежно начнет угасать, а Солнечная система превратится в гибнущую пустыню.Таким образом решение проблемы межзвездных полетов обеспечивает бессмертие и бесконечное развитие человеческой цивилизации.

10. В космический полёт под солнечным парусом

Несмотря на быстрое развитие космической техники и появление все новых типов космических аппаратов, повсеместно возникают задачи, выходящие за рамки возможностей имеющихся средств. Особенно это касается таких специфических областей науки, как исследование солнечно-планетных связей, космическая астрометрия и другие. Исследование космической плазмы возможно, например, только при достаточной собственной «чистоте» КА, которая не обеспечивается на многопрофильных космических объектах. В космической астрометрии главный фактор, определяющий точность измерений,-- детерминированность собственного углового движения КА. Она достигается только при минимизации механических возмущений аппарата. В подобных случаях нужны малые и дешевые аппараты для решения задачи «одного эксперимента». Важные предпосылки создания таких космических аппаратов -- общий рост уровня техники, доступность современных конструкционных материалов, накопление опыта конструирования приборов, функционирующих в открытом космосе, развитие микроэлектроники и техники связи.

Ученые Института космических исследований АН СССР разрабатывают проект «Регата», предусматривающий создание Малой космической лаборатории, для ориентации и стабилизации которой в пространстве будет использоваться сила светового давления.

Пример КА «одного эксперимента» -- разрабатываемая в ИКИ АН СССР Малая космическая лаборатория (МКЛ). В ней для ориентации и стабилизации положения в пространстве КА используется сила давления солнечного света. Это позволило упростить служебные системы, уменьшить их массу по отношению к полезной нагрузке, повысить надежность и снизить стоимость. Полезная нагрузка МКЛ может достигать 50 % ее массы.

10.1 С истема стабилизации

Система пассивной ориентации, использующая силы светового давления, в значительной степени определяет облик КА и сферу его возможных применений. Взаимодействие со световым потоком осуществляет солнечный парус, включающий две части -- неподвижную (стабилизатор) и подвижную (рули).

Кроме паруса, в состав системы ориентации входит жидкостный демпфер нутационных колебаний. Продольная ось МКЛ ориентируется на Солнце. Остальные две оси могут оставаться неподвижными в орбитальной гелиоцентрической системе координат (постоянная солнечно-звездная ориентация) или медленно (до нескольких оборотов в сутки) вращаться вокруг направления на Солнце (постоянная солнечная ориентация). Оба режима в одинаковой степени благоприятны для поддержания постоянного теплового режима на борту и для работы системы электропитания. Со хранение солнечной ориентации обеспечивается одним стабилизатором (без помощи рулей). Изменяя геометрию паруса (при отклонении рулей), можно закручивать МКЛ с необходимой угловой скоростью. Рули используются также на участке начального успокоения, когда требуется погасить угловые скорости, полученные аппаратом при отделении от разгонного блока (РБ). Заметим, что изучение динамики космического аппарата, стабилизируемого давлением солнечного света, представляет собой самостоятельный научный интерес.

Специфика ориентации и стабилизации МКЛ позволяет использовать этот КА наиболее эффективно в областях космического пространства, где гравитационные воздействия на ориентацию МКЛ со стороны Земли и других небесных тел существенно ниже влияния давления солнечного света. В околоземном космическом пространстве такие условия надежно выполняются на расстояниях от Земли больше пяти ее радиусов.

Некоторые из планируемых на МКЛ экспериментов требуют быстрого вращения датчиков. Поэтому отдельные модификации МКЛ содержат массивную вращающуюся платформу с установленной на ней научной и служебной аппаратурой. Ось вращения платформы направлена на Солнце и совпадает с продольной осью космического аппарата. Масса полезной нагрузки на платформе составляет 35--45 кг. Скорость вращения до 15 об/мин. Действующий на КА со стороны платформы гироскопический момент компенсируется маховиком, вращающимся навстречу платформе.

10.2 « Регата-плазма »

На первом этапе использования МКЛ (1994--1997 гг.) наиболее важным будет проект «Регата-Плазма» (РП), Цель проекта -- исследование солнечно-планетных связей (солнечной активности, механизмов передачи солнечных влияний через межпланетную среду и реакций околопланетного пространства на солнечные возмущения).

Солнечная активность уже давно изучается наземными средствами, а в последние двадцать лет и с помощью космической аппаратуры, позволяющей исследовать ультрафиолетовую и рентгеновскую части спектра, непосредственно регистрировать корпускулярное излучение. Однако до сих пор неясен механизм цикличности активности Солнца, механизм солнечных вспышек и ускорения в них частиц до весьма больших энергий, не отработаны способы прогнозирования солнечных вспышек, только начинается экспериментальное изучение внутреннего строения Солнца. Немало задач предстоит решить экспериментаторам и в исследовании солнечной короны. Несмотря на крупные успехи в изучении солнечного ветра, его пространственная структура и ряд характеристик известны явно недостаточно.

Особый интерес представляют плазмофизические эксперименты для обеспечения программы исследования Марса. Необходимо, во-первых, накопить материал и создать задел для решения научных вопросов марсианской программы. Во-вторых, нужно обеспечить радиационную безопасность полетов к Марсу для будущих космонавтов.

(рис. 2) Общий вид МКЛ в проекте «Регата-Плазма» (РП). Основная особенность этого типа МКЛ -- наличие вращающейся платформы (1) и паруса (2) из отражающего «зеркального» материала. Продольная ось МКЛ направлена на Солнце солнечной панелью (3), являющейся основным источником питания. Вращающаяся платформа (15 об/мин) имеет свои солнечные панели (4). Научная и служебная аппаратура располагается на термостатированной раме (5), на которой укреплено жидкостное демпфирующее устройство (6), гасящее поперечные колебания МКЛ. Для компенсации ошибок наведения, а также для программных разворотов и вращения вокруг продольной оси МКЛ используются управляемые солнечные паруса (7), имеющие двухстороннее покрытие: «зеркальное» и «черное» (поглощающее).

Марс и Земля находятся очень близко друг от друга. Ясно, что закономерности, которые управляют солнечно-земными связями, определяют и связи Марса с Солнцем. Поэтому многие вопросы, связанные с обеспечением марсианской программы, могут быть решены в ходе экспериментов на околоземных орбитах. Нужно только, чтобы космические аппараты большую часть времени проводили вне магнитосферы Земли.

Концепция проекта «Регата-Плазма» предусматривает создание в 1994--1997 гг. экспериментальной спутниковой сети. Она будет включать 4--5 МКЛ, выстроенных вдоль линии «Земля-Солнце» (передняя точка либрации, экваториальная орбита, близкий хвост (20 R), средний хвост (60--70 R), задняя точка либрации). Эта сеть представит собой вытянутую цепочку спутников, которая обеспечит многозондовое исследование магнитосферы совместно с искусственными спутниками Земли Европейского космического агентства «КЛАСТЕР» и «СОХО», а также, возможно, и со спутниками НАСА «ПОЛЯРНЫЙ» и «ВИНД» и японским ИСЗ «ГЕОТАЙЛ». Коррекции измерений, которые будут получены на этих космических аппаратах, а также их совместный анализ, использующий одновременно наземные данные и данные низковысотных спутников, позволят существенно продвинуться в понимании природы солнечно-земных связей, физики магнитосферы и в решении физических проблем, с которыми исследователи встречаются в астрофизике, физике плазмы, термоядерных исследованиях.

10.3 « Регата-астро »

В тот же период (1994-- 1997 гг.) МКЛ предполагается использовать для реализации первого этапа проекта «Регата-Астро» (РА). Цель этого проекта -- проведение астрометрических и радиометрических космических исследований звезд и других небесных тел.

Решение астрометрических задач с космических платформ имеет ряд существенных преимуществ:

Исключается влияние земной атмосферы, вызывающей рефракцию, дисперсию и поглощение света;

Исключается влияние гравитационного поля Земли, вызывающего деформации как в конструкции КА, так и оптическом инструменте;

Появляется возможность получить все данные в единой системе координат;

Отпадает необходимость учета параметров вращения Земли, неточное знание которых ухудшает с течением времени точность опорной системы координат;

Наблюдения с КА можно вести практически непрерывно в течение многих суток, месяцев и даже лет.

Благодаря этому существенно повысится точность создаваемых звездных каталогов. Проведение прецизионных астрометрических измерений с КА позволит создать координатную основу для изучения развития кинематики и динамики Солнечной системы. Совокупность полученных данных о собственных движениях, параллаксах, радиометрических характеристиках разных типов звезд расширит наши знания в области звездной астрономии и астрофизики (уточнение шкалы расстояний во Вселенной, определение светимости и массы звезд, исследование структуры, динамики, возраста и эволюции Галактики). Проведение астрометрических измерений с точностью до тысячных долей угловой секунды (что недостижимо для наземных инструментов!) даст возможность изучить и некоторые релятивистские эффекты (в частности, релятивистское смещение перигелиев Венеры и Марса).

Прикладное значение данных космической астрометрии и радиометрии состоит, в первую очередь, в существенном повышении точности астроориентации и астронавигации космических аппаратов, а также в обеспечении прецизионного определения координат искусственных и естественных небесных объектов. В частности, при полетах к Марсу повышение точности наведения позволит эффективно использовать аэродинамическое торможение КА и увеличить вес полезной нагрузки за счет сокращения запаса горючего.

Идея использования МКЛ для размещения астрометрических инструментов базируется на следующих основных положениях:

Движение МКЛ относительно центра масс обеспечивает полный обзор звездного неба и оптимальные условия для определения годичных параллаксов и собственных движений звезд. Важно, что постоянная ориентация КА по отношению к Солнцу гарантирует постоянство теплового режима на борту и, следовательно, отсутствие тепловых деформаций измерительных инструментов.

Конструктивная схема МКЛ предусматривает модификации базовой конструкции. Благодаря выбору орбит и режима работы бортовых систем угловое движение МКЛ приобретает высокую детерминированность. Это, в свою очередь, открывает возможность использовать статистическую обработку больших массивов измерений, объединяющих далеко отстоящие по времени наблюдения одних и тех же звезд.

(рис.3) Общий вид МКЛ в проекте «Регата-Астро» В этом проекте для МКЛ необходимо обеспечить минимальные возмущающие факторы. Для этого выбираются орбиты, удаленные на несколько млн км от Земли, и вводятся некоторые конструктивные изменения. Основные паруса (1) делаются из поглощающих «черных» материалов, а в управляемых парусах (2) -- материал с двухсторонним покрытием («черным» и «зеркальным»).

На рисунке показаны: солнечная панель (3), блок телевизионных звездных камер (4), приборная рама (5), демпфирующее устройство (6). Медленное вращение МКЛ (1 об/сут) вокруг продольной оси (в направлении на Солнце) и использование четырех звездных камер (4) (установленных в плоскости, перпендикулярной направлению на Солнце) позволит получить карты звездного неба за полгода орбитального полета

При выполнении астрометрических измерений нужно точно знать положение инструмента в момент измерения или определить его в процессе обработки измерений. Традиционно в астрометрии используется первый подход. Высокая степень детерминированности углового движения МКЛ позволяет использовать второй подход, в котором положения звезд, параметры инструмента и ориентация КА определяются совместно, в едином процессе статистической обработки измерений.

Выбор орбиты МКЛ в проекте «Регата-Астро», в первую очередь, подчинен требованию минимизации возмущений в угловом движении. Учитываются, конечно, и условия организации связи с Землей. Поэтому требуется, чтобы во время своего активного существования (5 лет) КА не сближался с Землей до расстояний, меньших 1 млн км, и удалялся бы от нее более чем на 10 млн км. Выведение на рабочую орбиту с промежуточной должно осуществляться однократным включением разгонного блока, а дальнейший полет должен происходить без орбитальных коррекций. Этим и другим условиям удовлетворяют квазиспутниковые орбиты (КСО) в системе «Солнце-Земля». Они намного ближе к Земле, чем к Солнцу, но располагаются далеко за границами сферы действия Земли (движение по ним определяется в основном притяжением не к Земле, а к Солнцу). КСО в проекте «Регата-Астро» имеет малую полуось 5 млн км и наклонение к плоскости эклиптики 10°. Удаление КА от Земли меняется в пределах 2-- 10 млн км.

Основные характеристики астрометрической МКЛ, ее орбита и ориентация позволяют эффективно использовать этот тип КА для решения ряда других задач, в частности, для картографирования небесной сферы в тепловом ИК и миллиметровом диапазонах электромагнитных волн. Картографирование небесной сферы в тепловой ИК-области целесообразно провести в трех спектральных зонах (2--7, 10--12 и 15--20 мкм) с пространственным разрешением 6" с охватом звезд до 15-ой звездной величины. Составление радиояркостных карт небесной сферы может быть осуществлено на основе измерений в областях трех длин волн (1,0--1,5--3,0 мм) с пространственным разрешением не хуже 0,5."

Картографирование небесной сферы в тепловом ИК и миллиметровом диапазонах позволит обнаружить и исследовать не регистрируемые в видимой ближней ИК-области источники излучения, изучить процессы звездообразования, а также решать другие задачи астрофизики, звездной астрономии, космологии.

Для решения указанных астрофизических задач необходимы две МКЛ -- одна с радиометрической и вторая с ИК аппаратурой. Они могут функционировать на одинаковых орбитах и иметь тождественные режимы ориентации, принятые для МКЛ проекта «Регата-Астро».

10.4 П олеты к астероидам и кометам

На последующих этапах реализации проекта «Регата» (после 1997 г.) предполагается не только продолжить плазмофизические и астрометрические космические исследования, но также использовать МКЛ в качестве платформы для осуществления сближения и облета малых тел Солнечной системы и проведения их астрофизического исследования.

Для сопровождения малых тел (астероидов, ядер комет) и, тем более, посадки на них потребуется снабдить МКЛ реактивным двигателем, способным создавать импульс большой тяги. Собственно говоря, сблизить МКЛ с малым телом можно в принципе и с помощью солнечного паруса, но тогда практически исключается возможность оперативной коррекции орбиты. Поэтому осуществлять тесные сближения придется с помощью корректирующих реактивных двигателей.

Траекторию КА можно выбрать так, чтобы обеспечить в одном пуске облет нескольких малых тел. Для КА с парусным движителем их число, как правило, равно двум (старт -- облет первого астероида -- гравитационный маневр в поле Земли -- облет второго астероида). Продолжительность полета по таким траекториям составляет один-два года.

Интересно направить к малому телу космический аппарат, ранее выведенный на орбиту у границы сферы действия Земли, например, на гало-орбиту. Такая возможность впервые была продемонстрирована аппаратом ISEE-3, который с гало-орбиты был после нескольких гравитационных маневров в поле Луны переведен на траекторию полета к комете Джакобини-Циннера. Планируется в конце 1990-х годов осуществить подобные экспедиции к той же комете или к комете Хонда-Мркос-Пайдушаковой. Полет к последней из названных комет особенно привлекателен, потому что точка встречи располагается на расстоянии всего 0,18 а. е. от Земли, а на гало-орбитах в это время по программе реализации проекта РП должны находиться две МКЛ («Регата-В» и «Регата-C»). Можно будет запустить и специальную МКЛ для полета к комете. Заметим, что практически совместимы требования к участку выведения МКЛ на орбиту перехвата кометы и на орбиты МКЛ «Регата-В» и «Регата-С».

Литература

1.http://cloudland.ru

2. http://krugosvet.ru

3. http:// sunsystem.nm.ru

4. http:// kiam1.rssi.ru

5. http://evpagrad.org

6. http:// astrolab.ru

7. http://epizodsspace.testpilot.ru

Подобные документы

    Общая характеристика планет Солнечной системы. Солнце-центр Солнечной системы. Внутренняя или земная группа (расположенные ближе к Солнцу)-Меркурий, Венера, Земля, Марс. Внешняя группа (планеты-гиганты)-Юпитер, Сатурн, Уран, Нептун. Плутон.

    контрольная работа , добавлен 24.10.2007

    Гипотезы о происхождении солнечной системы. Современная теория происхождения солнечной системы. Солнце – центральное тело нашей планетной системы. Планеты-гиганты. Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.

    реферат , добавлен 21.03.2004

    Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

    доклад , добавлен 16.10.2002

    Жидкие озера на Титане. Самый крупный спутник Нептуна. Пересечение плоскости колец Сатурна Кассини. Пылевой хвост кометы МакНота в двух полушариях. Атмосфера на двух планетах не солнечной системы. Астрономическая характеристика планет солнечной системы.

    презентация , добавлен 28.06.2010

    История создания и развития Солнечной Системы. Звезды и их возраст. Характеристика и строение Солнца, планет нашей системы. Астероидное кольцо и планеты Гиганты: Юпитер, Сатурн, Уран, Нептун. Ледяной шар, вращающийся вокруг Солнца – Плутон и его спутник.

    реферат , добавлен 30.01.2011

    Общие сведения об астероидах: понятие, изучение, гипотезы. Астероидный пояс в Солнечной системе между Марсом и Юпитером. Обломки гипотетической планеты Фаэтон или "зародыши" планеты, не сумевшей сформироваться. Крупнейшие астероиды Солнечной системы.

    реферат , добавлен 20.08.2017

    Строение Солнечной системы. Солнце. Солнечный спектр. Положение Солнца в нашей Галактике. Внутреннее строение Солнца. Термоядерные реакции на Солнце. Фотосфера Солнца. Хромосфера Солнца. Солнечная корона. Солнечные пятна.

    реферат , добавлен 10.09.2007

    Общие сведения о Солнечной системе как планетарной системе, имеющей центральную звезду и естественные космические объекты, вращающиеся вокруг неё. Характеристика планет земной группы: Меркурий, Венера, Земля, Марс и планет: Юпитер, Сатурн, Уран, Нептун.

    презентация , добавлен 21.04.2011

    Планеты Солнечной системы, известные с древних времен и открытые недавно: Меркурий, Венера, Земля, Марс, планеты-гиганты Юпитер, Сатурн, Уран и Нептун. Происхождение их названий, расстояния от Солнца, размеры и массы, периоды обращения вокруг Солнца.

    реферат , добавлен 11.10.2009

    Состав Солнечной системы: Солнце, окруженное девятью планетами (одна из которых Земля), спутники планет, множество малых планет (или астероидов), метеоритов и комет, чьи появления непредсказуемы. Вращение вокруг Солнца планет, их спутников и астероидов.

Наша Галактика содержит около 100 млрд. звезд, а всего галактик, которые в принципе наблюдаемы, примерно 10 млрд. Почему же тогда надо тратить время на выяснение подробностей рождения Солн-ца? Оно представляет собой посредственную...

Вселенная и пути ее эволюции

Как и в случае со Вселенной, современное естествознание не дает точного описания этого процесса. Но современная наука решительно отвергает допущение о случайном образо-вании и исключительном характере образования планетных систем...

Зарождение Солнечной системы

В примечании к своему знаменитому трактату "Математические начала натуральной философии" Ньютон пишет: "… удивительное размещение Солнца, планет и комет может быть только творением всемогущего существа", однако...

Зарождение Солнечной системы

Звезды-сверхгиганты А и Звезды-сверхгиганты В в ходе своей эволюции постепенно расширяются, а звезды Главной Последовательности и звезды Белые карлики Д постепенно сжимаются...

Земля - планета Солнечной системы

Возраст наиболее древних пород, обнаруженных в образцах лунного грунта и метеоритах, составляет примерно 4,5 млрд лет. Расчеты возраста Солнца дали близкую величину - 5 млрд лет. Принято считать, что все тела...

Земля как планета солнечной системы. Проблемы целостного освоения Земли

Планеты - это небесные тела, обращающиеся вокруг звезды. Они, в отличие от звёзд, не испускают света и тепла, а светят отражённым светом звезды, к системе которой принадлежат. Форма планет близка к шарообразной...

Наша Солнечная система

Расширение спектрального диапазона наблюдений способствовало изучению планет и других объектов Солнечной системы...

Наша Солнечная система

В арсенале космической техники к настоящему времени появились достаточно отработанные (в том числе в летных испытаниях) средства, которые позволяют поднять на качественно новый уровень эксперименты по изучению Солнечной системы...

Происхождение Вселенной

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов)...

Современные представления о мегамире

Возраст Солнечной системы, зафиксированный по древнейшим метеоритам, около 5 млрд. лет. Общепринята гипотеза, по которой Земля и все планеты сконденсировались из космической пыли, расположенной в окрестностях Солнца. Предполагается...

Солнечная система

Происхождение Солнечной системы из газопылевого облака межзвездной среды является наиболее признанной концепцией. Высказывается мнение, что масса исходного для образования Солнечной системы облака была равна 10 массам Солнца...

Солнечная система и Земля

Характеристика планет земной группы

Солнечная система является для нас, жителей Земли, ближним космосом. Каждый человек, хотя бы раз в жизни, глядя на ночное небо, задавал себе вопрос: "Интересно, а что там дальше?"...

Эволюция Вселенной

Как и в случае со Вселенной, современное естествознание не дает точного описания этого процесса. Но современная наука решительно отвергает допущение о случайном образовании и исключительном характере образования планетных систем...

Ядерный синтез. Образование планетных систем

Решение вопроса о происхождении солнечной системы встречает основную трудность в том, что другие подобные системы в других стадиях развития мы не наблюдаем. Нашу солнечную систему не с чем сравнивать. Правда, около некоторых ближайших звезд...