Удельное электрическое сопротивление стали при 20 градусах. Расчет удельного сопротивления металлов, в частности, меди

  • проводники;
  • диэлектрики (с изоляционными свойствами);
  • полупроводники.

Электроны и ток

В основе современного представления об электрическом токе лежит предположение о том, что он состоит из материальных частиц - зарядов. Но различные физические и химические опыты дают основания утверждать, что эти носители заряда могут быть различного типа в одном и том же проводнике. И эта неоднородность частиц влияет на плотность тока. Для вычислений, которые связаны с параметрами электротока, применяются определенные физические величины. Среди них важное место занимают проводимость вместе с сопротивлением.

  • Проводимость связана с сопротивлением взаимной обратной зависимостью.

Известно, что при существовании некоторого напряжения, приложенного к электрической цепи, в ней появляется электрический ток, величина которого связана с проводимостью этой цепи. Это фундаментальное открытие сделал в свое время немецкий физик Георг Ом. С тех пор в ходу закон, называемый законом Ома. Он существует для разных вариантов цепей. Поэтому формулы для них могут быть непохожими друг на друга, поскольку соответствуют совсем разным условиям.

В любой электрической цепи имеется проводник. Если в нем находится один тип частиц-носителей заряда, ток в проводнике подобен потоку жидкости, который имеет определенную плотность. Она определяется по такой формуле:

Большинство металлов соответствуют однотипности заряженных частиц, благодаря которым существует электрический ток. Для металлов вычисление удельной электрической проводимости производится по такой формуле:

Поскольку можно вычислить проводимость, определить удельное электрическое сопротивление теперь труда не составит. Выше уже было упомянуто, что удельное сопротивление проводника - это величина, обратная проводимости. Следовательно,

В этой формуле буква греческого алфавита ρ (ро) используется для обозначения удельного электрического сопротивления. Такое обозначение наиболее часто используется в технической литературе. Однако можно встретить и несколько иные формулы, с помощью которых вычисляется удельное сопротивление проводников. Если для расчетов применять классическую теорию металлов и электронную проводимость в них, удельное сопротивление вычисляется по такой формуле:

Однако есть одно «но». На состояние атомов в металлическом проводнике влияет продолжительность процесса ионизации, которое осуществляется электрическим полем. При однократном ионизирующем воздействии на проводник атомы в нем получат однократную ионизацию, которая создаст баланс между концентрацией атомов и свободных электронов. И величины этих концентраций получатся равными. В этом случае имеют место такие зависимости и формулы:

Девиации удельных проводимостей и сопротивлений

Далее рассмотрим, от чего зависит удельная проводимость, связанная обратной зависимостью с удельным сопротивлением. Удельное сопротивление вещества - это довольно-таки абстрактная физическая величина. Каждый проводник существует в виде конкретного образца. Для него характерно наличие различных примесей и дефектов внутренней структуры. Они учитываются как отдельные слагаемые выражения, определяющего удельное сопротивление в соответствии с правилом Маттиссена. Это правило также учитывает рассеяние движущегося потока электронов на колеблющихся в зависимости от температуры узлах кристаллической решетки образца.

Наличие внутренних дефектов, таких как вкрапление различных примесей и микроскопические пустоты, также увеличивает удельное сопротивление. Для определения количества примесей в образцах удельное сопротивление материалов измеряется для двух значений температуры материала образца. Одна температурная величина - комнатная, а другая соответствует жидкому гелию. По отношению результата измерения при комнатной температуре к результату при температуре жидкого гелия получают коэффициент, который иллюстрирует структурное совершенство материала и его химическую чистоту. Коэффициент обозначается буквой β.

Если в качестве проводника электрического тока рассматривается металлический сплав со структурой твердого раствора, которая неупорядочена, величина остаточного удельного сопротивления может быть существенно больше удельного сопротивления. Такая особенность металлических сплавов из двух составляющих, не относящихся к редкоземельным элементам, так же, как и к переходным элементам, охватывается специальным законом. Его называют законом Нордгейма.

Современные технологии в электронике все больше стремятся в сторону миниатюризации. Причем настолько, что вскоре появится слово «наносхема» взамен микросхемы. Проводники в таких устройствах настолько тонкие, что правильным будет называть их пленками из металла. Вполне понятно то, что пленочный образец своим удельным сопротивлением будет отличаться в большую сторону от более крупного проводника. Малая толщина металла в пленке приводит к появлению в нем свойств полупроводников.

Начинает проявляться соразмерность толщины металла со свободным пробегом электронов в этом материале. Места для движения электронов остается мало. Потому они начинают мешать друг другу двигаться упорядоченно, что и приводит к увеличению удельного сопротивления. Для пленок из металла удельное сопротивление рассчитывают по специальной формуле, полученной на основе экспериментов. Формула названа именем Фукса - ученого, который изучал удельное сопротивление пленок.

Пленки - это весьма специфические образования, которые сложно повторить так, чтобы свойства нескольких образцов были одинаковыми. Для приемлемой точности в оценке пленок применяют специальный параметр - удельное поверхностное сопротивление.

Из металлических пленок на подложке микросхем формируются резисторы. По этой причине расчеты удельного сопротивления - это весьма востребованная задача в микроэлектронике. Величина удельного сопротивления, очевидно, имеет влияние со стороны температуры и связана с ней зависимостью прямой пропорциональности. Для большинства металлов эта зависимость имеет некоторый линейный участок в определенном температурном диапазоне. В таком случае удельное сопротивление определяется формулой:

В металлах электроток возникает по причине большого числа свободных электронов, концентрация которых относительно велика. Причем, электроны так же определяют и большую теплопроводность металлов. По этой причине между удельной электрической проводимостью и удельной теплопроводностью установлена связь особым законом, который был обоснован экспериментальным путем. Этот закон Видемана-Франца характерен такими формулами:

Заманчивые перспективы сверхпроводимости

Однако самые удивительные процессы происходят при минимальной технически достижимой температуре жидкого гелия. При таких условиях охлаждения все металлы практически утрачивают свое удельное сопротивление. Провода из меди, охлажденные до температуры жидкого гелия, оказываются способными проводить токи многократно большие по сравнению с обычными условиями. Если бы на практике такое стало возможным, экономический эффект получился бы неоценимо большим.

Еще более удивительным оказалось открытие высокотемпературных проводников. Эти разновидности керамики при обычных условиях были очень далеки по своему удельному сопротивлению от металлов. Но при температуре примерно на три десятка градусов выше жидкого гелия они становились сверхпроводниками. Открытие такого поведения неметаллических материалов стало мощным стимулом для исследований. Из-за величайших экономических последствий практического применения сверхпроводимости на это направление были брошены весьма значительные финансовые ресурсы, начались масштабные исследования.

Но пока что, как говорится, «воз и ныне там»… Керамические материалы оказались непригодными для практического применения. Условия поддержания состояния сверхпроводимости требовали таких больших расходов, что уничтожалась вся выгода от ее использования. Но эксперименты со сверхпроводимостью продолжаются. Прогресс налицо. Уже получена сверхпроводимость при температуре 165 градусов Кельвина, однако для этого требуется высокое давление. Создание и поддержание таких особых условий опять-таки отрицает коммерческое использование этого технического решения.

Дополнительные факторы влияния

В настоящее время все продолжает идти своим путем, и для меди, алюминия и некоторых других металлов удельное сопротивление продолжает обеспечивать их промышленное использование для изготовления проводов и кабелей. В заключение стоит добавить еще немного информации о том, что не только удельное сопротивление материала проводника и температура окружающей среды влияют на потери в нем при прохождении электротока. Весьма значима геометрия проводника при использовании его на повышенной частоте напряжения и при большой силе тока.

В этих условиях электроны стремятся сосредотачиваться вблизи поверхности провода, и его толщина как проводника утрачивает смысл. Поэтому можно оправданно уменьшить в проводе количество меди, изготовив из нее только наружную часть проводника. Еще одним фактором увеличения удельного сопротивления проводника является деформация. Поэтому, несмотря на высокие показатели некоторых электропроводящих материалов, в определенных условиях они могут не проявиться. Следует правильно подбирать проводники для конкретных задач. В этом помогут таблицы, показанные далее.

Содержание:

Появление электрического тока наступает при замыкании цепи, когда на зажимах возникает разность потенциалов. Перемещение свободных электронов в проводнике осуществляется под действием электрического поля. В процессе движения, электроны сталкиваются с атомами и частично передают им свою накопившуюся энергию. Это приводит к уменьшению скорости их движения. В дальнейшем, под влиянием электрического поля, скорость движения электронов снова увеличивается. Результатом такого сопротивления становится нагревание проводника, по которому течет ток. Существуют различные способы расчетов этой величины, в том числе и формула удельного сопротивления, применяющаяся для материалов с индивидуальными физическими свойствами.

Электрическое удельное сопротивление

Суть электрического сопротивления заключается в способности того или иного вещества превращать электрическую энергию в тепловую во время действия тока. Данная величина обозначается символом R, а в качестве единицы измерения используется Ом. Значение сопротивления в каждом случае связано со способностью того или иного .

В процессе исследований была установлена зависимость от сопротивления. Одним из основных качеств материала становится его удельное сопротивление, меняющееся в зависимости от длины проводника. То есть, с увеличением длины провода, возрастает и значение сопротивления. Данная зависимость определяется как прямо пропорциональная.

Другим свойством материала является площадь его поперечного сечения. Она представляет собой размеры поперечного среза проводника, независимо от его конфигурации. В этом случае получается обратно пропорциональная связь, когда с увеличением площади поперечного сечения уменьшается .

Еще одним фактором, влияющим на сопротивление, является сам материал. Во время проведения исследований была обнаружена различная сопротивляемость у разных материалов. Таким образом, были получены значения удельных электрических сопротивлений для каждого вещества.

Выяснилось, что самыми лучшими проводниками являются металлы. Среди них самой низкой сопротивляемостью и высокой проводимостью обладают и серебро. Они применяются в наиболее ответственных местах электронных схем, к тому же медь имеет сравнительно низкую стоимость.

Вещества, удельное сопротивление которых очень высокое, считаются плохими проводниками электрического тока. Поэтому они используются в качестве изоляционных материалов. Диэлектрические свойства более всего присущи фарфору и эбониту.

Таким образом, удельное сопротивление проводника имеет большое значение, поскольку с его помощью можно определить материал, из которого был изготовлен проводник. Для этого измеряется площадь сечения, определяется сила тока и напряжение. Это позволяет установить значение удельного электрического сопротивления, после чего, с помощью специальной таблицы можно легко определить вещество. Следовательно, удельное сопротивление относится к наиболее характерным признакам того или иного материала. Этот показатель позволяет определить наиболее оптимальную длину электрической цепи так, чтобы соблюдался баланс .

Формула

На основании полученных данных можно сделать вывод, что удельным сопротивлением будет считаться сопротивление какого-либо материала с единичной площадью и единичной длиной. То есть сопротивление, равное 1 Ом возникает при напряжении 1 вольт и силе тока 1 ампер. На этот показатель оказывает влияние степень чистоты материала. Например, если к меди добавить всего лишь 1% марганца, то ее сопротивляемость увеличится в 3 раза.

Удельное сопротивление и проводимость материалов

Проводимость и удельное сопротивление рассматриваются как правило при температуре 20 0 С. Эти свойства будут отличаться у различных металлов:

  • Медь . Чаще всего применяется для изготовления проводов и кабелей. Она обладает высокой прочностью, стойкостью к коррозии, легкой и простой обработкой. В хорошей меди доля примесей составляет не более 0,1%. В случае необходимости медь может использоваться в сплавах с другими металлами.
  • Алюминий . Его удельный вес меньше, чем у меди, однако у него более высокая теплоемкость и температура плавления. Чтобы расплавить алюминий, потребуется энергии значительно больше, чем для меди. Примеси в качественном алюминии не превышают 0,5%.
  • Железо . Наряду с доступностью и дешевизной, этот материал обладает высоким удельным сопротивлением. Кроме того, у него низкая устойчивость к коррозии. Поэтому практикуется покрытие стальных проводников медью или цинком.

Отдельно рассматривается формула удельного сопротивления в условиях низких температур. В этих случаях свойства одних и тех же материалов будут совершенно другими. У некоторых из них сопротивляемость может упасть до нулевой отметки. Такое явление получило название сверхпроводимости, при которой оптические и структурные характеристики материала остаются неизменными.

Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.

Недавно я изучал один очень интересный ГОСТ:

ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.

В этом документе приводится формула для расчета потери напряжения и указано:

р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм 2 /м для меди и 0,036 Ом · мм 2 /м для алюминия;

Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.

Стоит заметить, что все табличные значения приводят при температуре 20 градусов.

А какие нормальные условия? Я думал 30 градусов Цельсия.

Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.

R1=R0

R0 – сопротивление при 20 градусах Цельсия;

R1 — сопротивление при Т1 градусах Цельсия;

Т0 — 20 градусов Цельсия;

α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);

1,25=1+α (Т1-Т0)

Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.

Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.

Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.

В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм 2 /м, а для алюминия – 0,028 Ом · мм 2 /м.

Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.

А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.

Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице

Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?

Уде?льное электри?ческое сопротивле?ние, или просто удельное сопротивление вещества — физическая величина, характеризующая способность вещества препятствовать прохождению электрического тока .

Удельное сопротивление обозначается греческой буквой ρ. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.

Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется

Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м .

Из соотношения следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи , выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².

В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10 −6 от 1 Ом·м . Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом . Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил, то есть любых сил неэлектрического происхождения, действующих в квазистационарных цепях постоянногоили переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура .


По аналогии с напряжённостью электрического поля вводят понятие напряжённость сторонних сил , под которой понимают векторную физическую величину, равную отношению сторонней силы, действующей на пробный электрический заряд, к величине этого заряда. Тогда в замкнутом контуре ЭДС будет равна:

где — элемент контура.

ЭДС так же, как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Можно говорить об электродвижущей силе на любом участке цепи. Это удельная работа сторонних сил не во всем контуре, а только на данном участке. ЭДС гальванического элемента есть работа сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами тока вне самого? источника равна нулю.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)