В радиолокации используется способность радиоволн к. Диапазоны длин волн, используемые в радиолокации. Средние и длинные волны

Радиоволны, посланные в пространство, распространяются в нём со скоростью света. Но как только они встречают на своём пути какой-нибудь объект, например, самолёт или корабль, они отражаются от него и возвращаются обратно. Следовательно, с их помощью можно обнаруживать различные удалённые объекты, наблюдать за ними и определять их координаты и параметры.

Обнаружение местоположения объектов с помощью радиоволн называют радиолокацией .

Как появилась радиолокация

Александр Степанович Попов

В 1897 г. во время опытных сеансов радиосвязи между морским транспортом «Европа» и крейсером «Африка», проводимых русским физиком Александром Степановичем Поповым , обнаружили интересное явление. Оказалось, что правильность распространения электромагнитной волны искажали все металлические предметы – мачты, трубы, снасти как на корабле, с которого сигнал отправлялся, так и на корабле, где его принимали. Когда же между этими кораблями появился крейсер «Лейтенант Ильин», радиосвязь между ними нарушилась. Так было открыто явление отражения радиоволн от корпуса корабля.

Но если радиоволны способны отражаться от корабля, то с их помощью корабли можно и обнаруживать. А заодно и другие цели.

И уже в 1904 г. немецкий изобретатель Кристиан Хюльсмайер подал заявку на первый радиолокатор, а в 1905 г. получил патент на использование эффекта отражения радиоволн для поиска кораблей. А ещё через год, в 1906 г., он предложил использовать этот эффект, чтобы определять расстояние до объекта, отражающего радиоволны.

Кристиан Хюльсмайер

В 1934 г. шотландский физик Роберт Александр Уотсон-Уотт получил патент на изобретение системы для обнаружения воздушных объектов и уже в следующем году продемонстрировал одно из первых таких устройств.

Роберт Александр Уотсон-Уотт

Как работает радиолокатор

Определение местонахождения чего-либо называют локацией . Для этого в технике применяют устройство, называемое локатором . Локатор излучает какой-либо вид энергии, например, звук или оптический сигнал, в сторону предполагаемого объекта, а затем принимает отражённый от него сигнал. Радиолокатор использует для этой цели радиоволны.

На самом деле радиолокатор, или радиолокационная станция (РЛС), - сложная система. Конструкции различных радиолокаторов могут различаться, но принцип их работы одинаков. Радиопередатчик посылает в пространство радиоволны. Достигнув цели, они отражаются от неё, как от зеркала, и возвращаются назад. Такая радиолокация называется активной.

Основные узлы радиолокатора (РЛС) – передатчик, антенна, антенный переключатель, приёмник, индикатор.

По способу излучения радиоволн РЛС делятся на импульсные и непрерывного действия.

Как работает импульсная радиолокационная станция?

Передатчик радиоволн включается на короткое время, поэтому радиоволны излучаются импульсами. Они поступают в антенну, которая располагается в фокусе зеркала параболоидной формы. Это нужно для того, чтобы радиоволны распространялись в определённом направлении. Работа радиолокатора похожа на работу светового прожектора, лучи которого подобным образом направляются в небо и, освещая его, ищут нужный объект. Но работа прожектора этим и ограничивается. А радиолокатор не только посылает радиоволны, но и принимает сигнал, отражённый от найденного объекта (радиоэхо). Эту функцию выполняет приёмник.

Антенна импульсного радиолокатора работает то на передачу, то на приём. Для этого в ней есть переключатель. Как только радиосигнал послан, отключается передатчик и включается приёмник. Наступает пауза, во время которой радиолокатор как бы «слушает» эфир и ждёт радиоэхо. И как только антенна улавливает отражённый сигнал, тут же отключается приёмник и включается передатчик. И так далее. Причём время паузы может во много раз превышать длительность импульса. Таким образом излучаемый и принимаемый сигнал разделяются во времени.

Принятый радиосигнал усиливается и обрабатывается. На индикаторе, который в простейшем случае представляет собой дисплей, отображается обработанная информация, например, размеры объекта или расстояние до него, или сама цель и окружающая её обстановка.

Радиоволны распространяются в пространстве со скоростью света. Поэтому, зная время t от излучения импульса радиосигнала до его возвращения, можно определить расстояние до объекта.

R = t/2 ,

где с – скорость света.

Радиолокатор непрерывного действия высокочастотные радиоволны излучает непрерывно. Поэтому антенной улавливается также непрерывный отражённый сигнал. В своей работе такие РЛС используют эффект Доплера . Суть этого эффекта в том, что частота сигнала, отражённого от объекта, движущегося по направлению к радиолокатору, выше частоты сигнала, отражённого от объекта, удаляющегося от него, несмотря на то, что частота излучаемого сигнала постоянна. Поэтому такие РЛС используют для определения параметров движущегося объекта. Пример радиолокатора, в основе работы которого лежит эффект Доплера – радар, используемый сотрудниками ГИБДД для определения скорости движущегося автомобиля.

В поисках объекта направленный луч антенны РЛС сканирует пространство, описывая полный круг, либо выбирая определённый сектор. Он может быть направлен по винтовой линии, по спирали. Обзор также может быть коническим или линейным. Всё зависит от задачи, которую он должен выполнить.

Если необходимо постоянно следить за выбранной движущейся целью, антенна радиолокатора всё время направлена на неё и поворачивается вслед за ней с помощью специальных следящих систем.

Применение радиолокаторов

Впервые радиолокационные станции начали применяться во время Второй мировой войны для обнаружения военных самолётов, кораблей и подводных лодок.

Так в конце декабря 1943 г. радиолокаторы, установленные на английских кораблях, помогли обнаружить фашистский линкор, вышедший ночью из порта Альтенфиорд в Норвегии, чтобы перехватить военные суда. Огонь по линкору вёлся очень точно, и вскоре он пошёл ко дну.

Первые РЛС были не очень совершенными, в отличие от современных, надёжно защищающих воздушное пространство от воздушных налётов и ракетного нападения, распознающих практически любые военные объекты на суше и на море. Радиолокационное наведение применяется в самонаводящихся ракетах для распознавания местности. РЛС осуществляют слежение за полётами межконтинентальных ракет.

РЛС нашли своё применение и в мирной жизни. Без них не могут обходиться лоцманы, проводящие корабли через узкие проливы, диспетчеры в аэропортах, руководящие полётами гражданских самолётов. Они незаменимы при плавании в условиях ограниченной видимости – ночью или при плохой погоде. С их помощью определяют рельеф дна морей и океанов, исследуют загрязнения их поверхностей. Их используют метеорологи для определения грозовых фронтов, измерения скорости ветра и облаков. На рыболовных судах радиолокаторы помогают обнаруживать косяки рыбы.

Очень часто радиолокаторы, или радиолокационные станции (РЛС), называют радарами . И хоть сейчас это слово стало самостоятельным, на самом деле это аббревиатура, возникшая из английских слов «radio detection and ranging » , что означает «радиообнаружение и дальнометрия» и отражает суть радиолокации.

Радиолокация (от «радио» и латинского слова locatio - расположение) - область науки и техники, занимающаяся наблюдением различных объектов в воздухе, на воде, на земле, определением их местоположения и расстояния до них при помощи радио. Всем хорошо знакомо эхо. Мы слышим звук, когда говорим, и слышим вторично, когда он возвращается после отражения от стены здания или утеса. В радиолокации происходит то же самое, но с той только разницей, что вместо звуковых волн действуют радиоволны. Радиолокатор посылает импульс радиоволн в сторону объекта и принимает его после отражения. Зная скорость распространения радиоволн и время прохождения импульса до отражающего объекта и обратно, нетрудно определить расстояние между ними.

Любой радиолокатор состоит из радиопередатчика, радиоприемника, работающего на той же волне, направленной антенны и индикаторного устройства (см. Индикатор).

Передатчик радиолокатора посылает в антенну сигналы короткими очередями - импульсами. Антенна радиолокатора, обычно имеющая форму вогнутого прожекторного зеркала, фокусирует радиоволны в узкий луч и направляет его на объект (рис. 1). Она может вращаться и изменять угол наклона, посылая радиоволны в различных направлениях. Одна и та же антенна попеременно автоматически с частотой импульсов подключается то к радиопередатчику, то к радиоприемнику (рис. 2). В промежутках между излучениями импульсов радиопередатчика работает радиоприемник. Он принимает отраженные радиоволны, а включенное на его выходе индикаторное устройство показывает расстояние до объекта.

Роль индикаторного устройства выполняет электроннолучевая трубка (см. Кинескоп). Электронный луч перемещается по экрану трубки с точно заданной скоростью, создавая движущуюся светящуюся линию. В момент посылки радиопередатчиком импульса радиоволн светящаяся линия на экране трубки делает всплеск. Аналогичный всплеск на светящейся линии трубки появляется и по возвращении «радиоэха». Поскольку скорость распространения радиоволн известна - она равна скорости света (300 000 км/с), то по интервалу между всплесками электронного луча на экране трубки можно определить расстояние до объекта. Радиоволны отражаются землей, водой, деревьями, металлическими и другими предметами. Наилучшее отражение происходит тогда, когда длина излучаемых радиоволн меньше отражающего их предмета. Поэтому радиолокаторы работают в диапазоне ультракоротких волн (см. Радио).

Радиолокаторы, установленные на судах, позволяют получить картину береговой линии, «прощупать» водные просторы, они предупреждают о приближении других судов и плавающих ледяных гор - айсбергов. По сигналам на экранах радиолокаторов диспетчеры аэропортов (см. Диспетчерское управление) контролируют движение самолетов по воздушным трассам, а пилоты точно определяют высоту полета и наблюдают очертания местности, над которой они летят (см. Навигационные приборы). Используя радиолокационные средства, синоптики следят за образованием и передвижением облаков, развитием и прохождением ураганов и тайфунов (см. Метеорологическая техника).

Широкое применение радиоволн для обнаружения целей и измерения координат обусловлено следующими важными свойствами э/м колебаний:

    Радиоволны распространяются со скоростью с распространения света как днем, так и ночью, в простых и сложных метеорологических условиях.

    Скорость распространения радиоволн является постоянной величиной. Это свойство радиоволн лежит в основе всех методов измерения как расстояний, так и угловых координат, скоростей движения целей.

    Радиоволны обладают свойством отражения от любых объектов, которые встречаются на пути их распространения.

    Радиоволны распространяются прямолинейно в однородной среде, что и позволяет использовать их для определения угловых координат и расстояния до целей.

Свойство отражения радиоволн от объектов позволяет решать задачу обнаружения и измерения параметров целей. Радиоволны отражаются от границ раздела участков среды с неоднородными свойствами. Например, с различной электрической проводимостью, электрической или магнитной проницаемостью. По структуре отраженного сигнала можно судить о типе цели, ее размерах (ЭОП цели), определять параметры ее движения. При отражении от целей происходит как бы «естественная модуляция» радиоволн: на отражаемые э/м колебания в том или ином виде «накладывается» информация о цели. Т.о., отражение радиоволн от объектов позволяет получить принципиальную возможность обнаружения по наличию в приемном устройстве отраженных э/м колебаний и получить необходимую информацию о цели.

Передача информации с помощью лазера Оптические квантовые генераторы

Для источников света характерна некогерентность излучения, а именно, излучение источников в целом слагается из некогерентных между собой потоков, испускаемых микроскопическими элементами. Примерами некогерентного излучения могут служить: свечение газового разряда, тепловое свечение естественных и искусственных источников, люминесценция. В начале 60-х годов были созданы источники света иного типа, получившие название лазеров. В противоположность некогерентным источникам, э/м волны, зарождающиеся в разных частях лазера (удаленных друг от друга на макроскопические расстояния), оказываются когерентными между собой. В этом отношении лазеры аналогичны источникам когерентных радиоволн. Когерентность излучения проявляется практически во всех свойствах лазера. Энергия излучения зависит от подводимой энергии. Особенностью лазерного излучения является способность к концентрации энергии во времени, в пространстве, в направлении излучения, в спектре. Для нескольких лазеров характерна высокая монохроматичность излучения. В других лазерах используются очень короткий импульсы (10 -12 сек), поэтому мгновенная мощность такого излучения может быть очень большой. Световой поток, выходящий из лазера, обладает очень высокой направленностью. Такое излучение можно сфокусировать на ничтожно малой площади и создать большую мощность. Напряженность электрического поля лазерного излучения составляет порядка 10 4 В/см, напряженность электрического поля солнечного света на экваторе – 10 В/см.

Рассмотрим физические принципы, лежащие в основе работы лазера и свойства излучения последних.

Если бы Максвелл не предсказал существование радиоволн, а Герц не открыл их на практике, наша действительность была бы совсем другой. Мы не могли бы быстро обмениваться информацией при помощи радио и мобильных телефонов, исследовать далёкие планеты и звёзды с помощью радиотелескопов, наблюдать за самолётами, кораблями и другими объектами с помощью радиолокаторов.

Каким же образом радиоволны помогают нам в этом?

Источники радиоволн

Источниками радиоволн в природе являются молнии – гигантские электрические искровые разряды в атмосфере, сила тока в которых может достигать 300 тысяч ампер, а напряжение – миллиарда вольт. Молнии мы наблюдаем во время грозы. Кстати, они возникают не только на Земле. Вспышки молний были обнаружены на Венере, Сатурне, Юпитере, Уране и других планетах.

Практически все космические тела (звёзды, планеты, астероиды, кометы и др.) также являются естественными источниками радиоволн.

В радиовещании, радиолокации, спутниках связи, стационарной и мобильной связи, различных системах навигации применяются радиоволны, полученные искусственным путём. Источником таких волн служат высокочастотные генераторы электромагнитных колебаний, энергия которых передаётся в пространство с помощью передающих антенн.

Свойства радиоволн

Радиоволны – это электромагнитные волны, частота которых находится в интервале от 3 кГц до 300 ГГц, а длина - от 100 км до 1 мм соответственно. Распространяясь в среде, они подчиняются определённым законам. При переходе из одной среды в другую наблюдается их отражение и преломление. Присущи им и явления дифракции и интерференции.

Дифракция , или огибание, происходит, если на пути радиоволн встречаются препятствия, размеры которых меньше длины радиоволны. Если же их размеры оказываются бόльшими, то радиоволны отражаются от них. Препятствия могут иметь искусственное (сооружения) или природное (деревья, облака) происхождение.

Отражаются радиоволны и от земной поверхности. Причём, поверхность океана отражает их примерно на 50% сильнее, чем сýша.

Если препятствие является проводником электрического тока, то какую-то часть своей энергии радиоволны отдают ему, а в проводнике создаётся электрический ток. Часть энергии расходуется на возбуждение электротоков на поверхности Земли. Кроме того, радиоволны расходятся от антенны кругами в разные стороны, подобно волнам от брошенного в воду камешка. По этой причине радиоволны со временем теряют энергию и затухают. И чем дальше от источника находится приёмник радиоволн, тем слабее сигнал, дошедший до него.

Интерференция, или наложение, вызывает взаимное усиление или ослабление радиоволн.

Радиоволны распространяются в пространстве со скоростью, равной скорости света (кстати, свет – это тоже электромагнитная волна).

Как и любые электромагнитные волны, радиоволны характеризуются длиной и частотой волны. С длиной волны частота связана соотношением:

f = c/ λ ,

где f – частота волны;

λ - длина волны;

c - скорость света.

Как видим, чем больше длина волны, тем меньше её частота.

Радиоволны разбиваются на следующие диапазоны : сверхдлинные, длинные, средние, короткие, ультракороткие, миллиметровые и децимиллиметровые волны.

Распространение радиоволн

Радиоволны разной длины распространяются в пространстве не одинаково.

Сверхдлинные волны (длина волны от 10 км и более) легко огибают большие препятствия вблизи поверхности Земли и очень слабо поглощаются ею, поэтому энергии они теряют меньше других радиоволн. Следовательно, затухают они также гораздо медленнее. Поэтому в пространстве такие волны распространяются на расстояния до нескольких тысяч километров. Глубина их проникновения в среду очень велика, и их используют для связи с подводными лодками, находящимися на большой глубине, а также для различных исследований в геологии, археологии и инженерном деле. Способность сверхдлинных волн легко огибать Землю позволяет исследовать с их помощью земную атмосферу.

Длинные , или километровые , волны (от 1 км до 10 км, частота 300 кГц – 30 кГц) также подвергаются дифракции, поэтому способны распространяться на расстояния до 2 000 км.

Средние , или гектометровые , волны (от 100 м до 1 км, частота 3000 кГц – 300 кГц) хуже огибают препятствия на поверхности Земли, сильнее поглощаются, поэтому гораздо быстрее затухают. Они распространяются на расстояния до 1 000 км.

Короткие волны ведут себя иначе. Если мы настроим автомобильный радиоприёмник в городе на короткую радиоволну и начнём двигаться, то по мере удаления от города приём радиосигнала будет всё хуже, а на расстоянии примерно 250 км он прекратится совсем. Однако спустя некоторое время радиотрансляция возобновится. Почему так происходит?

Всё дело в том, что радиоволны короткого диапазона (от 10 м до 100 м, частота 30 МГц – 3 МГц) у поверхности Земли затухают очень быстро. Однако волны, уходящие под большим углом к горизонту, отражаются от верхнего слоя атмосферы – ионосферы, и возвращаются обратно, оставляя позади себя сотни километров «мертвой зоны». Далее эти волны отражаются уже от земной поверхности и снова направляются к ионосфере. Многократно отражаясь, они способны несколько раз обогнуть земной шар. Чем короче волна, тем больше угол отражения от ионосферы. Но ночью ионосфера теряет отражательную способность, поэтому в тёмное время суток связь на коротких волнах хуже.

А ультракороткие волны (метровые, дециметровые, сантиметровые с длиной волны короче 10 м), не могут отражаться от ионосферы. Распространяясь прямолинейно, они пронизывают её и уходят выше. Это их свойство используют для определения координат воздушных объектов: самолётов, стай птиц, уровня и плотности облаков и др. Но и огибать земную поверхность ультракороткие волны тоже не могут. Из-за того что они распространяются в пределах прямой видимости, их применяют для радиосвязи на расстоянии 150 – 300 км.

По своим свойствам ультракороткие волны близки к световым волнам. Но световые волны можно собрать в пучок и направить его в нужное место. Так устроены прожектор и фонарик. Точно так же поступают и с ультракороткими волнами. Их собирают специальными зеркалами-антеннами и узкий пучок посылают в нужном направлении, что особенно важно, например, в радиолокации или спутниковой связи.

Миллиметровые волны (от 1 см до 1 мм), самые короткие волны радиодиапазона, схожи с ультракороткими волнами. Они также распространяются прямолинейно. Но серьёзной помехой для них являются атмосферные осадки, туман, облака. Кроме радиоастрономии, высокоскоростной радиорелейной связи они нашли применение в СВЧ технике, используемой в медицине и в быту.

Субмиллиметровые , или децимиллиметровые, волны (от 1 мм до 0,1 мм) по международной классификации также относятся к радиоволнам. В природных условиях они почти не существуют. В энергии спектра Солнца занимают ничтожно малую долю. Поверхности Земли не достигают, так как поглощаются парами воды и молекулами кислорода, находящимися в атмосфере. Созданные искусственными источниками, применяются в космической связи, для исследования атмосфер Земли и других планет. Высокая степень безопасности этих волн для организма человека позволяет применять их в медицине для сканирования органов.

Субмиллиметровые волны называют «волнами будущего». Вполне возможно, что они дадут учёным возможность изучать строение молекул веществ совершенно новым способом, а в будущем, может быть, даже позволят управлять молекулярными процессами.

Как видим, каждый диапазон радиоволн применяется там, где особенности его распространения используются с максимальной пользой.

Физической основой радиолокации является рассеяние радиоволн объектами, отличающимися своими электрическими характеристиками (электрической проницаемостью диэлектрической проницаемостью и электропроводностью а) от соответствующих характеристик окружающей среды при их облучении.

Интенсивность рассеяния или отражения радиоволн (интенсивность вторичного поля) зависит от степени отличия электрических характеристик объекта и среды, от формы объекта, от соотношения его размеров I и длины волны А. и от поляризации радиоволн. Результирующее вторичное электромагнитное поле состоит из поля отражения, распространяющегося в сторону облучающего первичного поля, и теневого поля, распространяющегося за объект (в ту же сторону, что и первичное поле).

С помощью приемной антенны и приемного устройства можно принять часть рассеянного сигнала, преобразовать и усилить его для последующего обнаружения. Таким образом, простейшая РЛС может состоять из передатчика, формирующего и генерирующего радиосигналы, передающей антенны, излучающей эти радиосигналы, приемной антенны, принимающей отраженные сигналы, радиоприемника, усиливающего и преобразующего сигналы и, наконец, выходного устройства, обнаруживающего отраженные сигналы (рис. 1.1).

Рис. 1.1. Принцип действия простейшей РЛС

Как правило, амплитуда (или мощность) принимаемого сигнала мала, а сам сигнал имеет случайный характер. Малая мощность сигнала объясняется большим расстоянием до объекта (цели) и поглощением энергии сигнала при его распространении. Кроме того, на интенсивность отраженного сигнала существенно влияют размеры целей. Случайный характер сигнала является следствием флуктуации отраженного сигнала за счет: случайного перемещения элементов цели сложной формы при отражении радиоволн; многолучевого распространения радиоволн; хаотических изменений амплитуды сигнала при распространении и ряда других факторов. В результате принимаемый сигнал по виду, интенсивности и характеру изменения похож в приемном тракте на шумы и помехи. Поэтому первой и основной задачей РЛС является обнаружение полезного радиосигнала, т.е. вынесение решения о присутствии полезного сигнала в поступающей на вход приемного тракта смеси полезного сигнала с помехами, называемой входной реализацией. Эта статистическая задача решается входящим в РЛУ специальным устройством - обнаружителем, в котором стараются использовать алгоритм оптимального (наилучшего) обнаружения. Качество процесса обнаружения характеризуют вероятностью правильного обнаружения когда присутствующий во входной реализации сигнал обнаруживается, и вероятностью ложной тревоги когда за полезный сигнал принимается помеха, а сам сигнал отсутствует. Обнаружитель тем лучше, чем больше и меньше

Большинство параметров принимаемого сигнала априори неизвестны, поэтому при обнаружении приходится осуществлять поиск нужного параметра радиосигнала, отличающего его от сопутствующих шумов и помех.

Построение РЛС на базе современных технологий обработки информации заключается в использовании в качестве антенн фазированной антенной решетки (ФАР), в качестве генератора пусковых импульсов синтезатора частоты - синхронизатора, в качестве выходного устройства - цифрового процессора. Передатчик в зависимости от того, какая антенна используется в РЛС, может быть реализован в модульном варианте и встроен в активную ФАР, либо в виде модулятора и однокаскадного или многокаскадного генератора радиочастоты для пассивной ФАР или зеркальной антенны. Таким образом, перспективная РЛС (рис. 1.2) состоит из ФАР,

Рис. 1.2. Построение современной импульсной

синтезатора-синхронизатора, аналогового процессора (приемника), цифрового процессора и устройства отображения информации.

Антенна по сигналам от ЭЦВМ осуществляет формирование лучей и их перемещение для обзора пространства. Радиопередатчик формирует зондирующие сигналы, которые излучаются антенной. Радиоприемник усиливает слабые отраженные целью и принятые антенной сигналы. Поскольку эти сигналы приходят в смеси с шумами и помехами, то их выделение осуществляется с помощью согласованных фильтров сосредоточенной селекции и цифровых фильтров. Обычно процессор сигналов (приемник) выдает электрические сигналы в цифровом коде. Дальнейшая обработка сигналов выполняется в процессоре данных по заложенным в него программам алгоритмов обработки. Рабочие частоты и временные интервалы в РЛС задаются с помощью синтезатора-синхронизатора. Устройство отображения информации выполняется обычно на индикаторе с электроннолучевой трубкой или на дисплее процессора.

Количество одновременно обнаруживаемых и сопровождаемых целей определяется быстродействием систем обработки информации - выходного устройства, в качестве которого обычно используется цифровой процессор. На рис. 1.3 изображен диспетчерский пункт регулирования воздушного движения в зоне аэропорта.

Рис. 1.3. Диспетчерский путсг УВД

Типичное изображение на экране индикатора кругового обзора (ИКО) РЛС УВД показано на рис. 1.4, а. Здесь можно различить светящиеся радиальные и круговые метки. В центре экрана «находится» РЛС. Яркие точки - отметки целей. По радиусу можно отсчитать дальность, а по углу поворота радиуса, проходящего через отметку цели, относительно вертикали, проходящей через центр экрана, можно измерить пеленг цели. К каждой отметке на экране «прикреплен» формуляр, который содержит необходимую информацию о бортовом номере, высоте, дальности и азимуте самолета (рис. 1.4, б). На рис. 1.4 для лучшей различимости проведено инвертирование изображения.

Рис. 1.4. Вид экрана РЛС управления воздушным движением: а - общий вид экрана; б - укрупненное изображение фрагмента экрана с формуляром