Закон кулона выполняется для. Закон кулона простыми словами

В 1785 году французский физик Шарль Огюст Кулон экспериментально установил основной закон электростатики – закон взаимодействия двух неподвижных точечных заряженных тел или частиц.

Закон взаимодействия неподвижных электрических зарядов – закон Кулона – основной (фундаментальный) физический закон. Ни из каких других законов природы он не вытекает.

Если обозначить модули зарядов через |q 1 | и |q 2 |, то закон Кулона можно записать в следующей форме:

где k – коэффициент пропорциональности, значение которого зависит от выбора единиц электрического заряда. В системе СИ Н·м 2 /Кл 2 , где ε 0 – электрическая постоянная, равная 8,85·10 -12 Кл 2 /Н·м 2

Формулировка закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Закон Кулона в данной формулировке справедлив только для точечных заряженных тел, так как только для них понятие расстояния между зарядами имеет определенный смысл. Точечных заряженных тел в природе нет. Но если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно, как показывает опыт, не влияют на взаимодействие между ними. В этом случае тела можно рассматривать как точечные.

Легко обнаружить, что два заряженных шарика, подвешенные на нитях, либо притягиваются друг к другу, либо отталкиваются. Отсюда следует, что силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Подобные силы называют центральными. Если через обозначить силу действующую на первый заряд со стороны второго, а через – силу, действующую на второй заряд со стороны первого (рис. 1), то, согласно третьему закону Ньютона, . Обозначим через радиус-вектор, проведенный от второго заряда к первому (рис. 2), тогда

Если знаки зарядов q 1 и q 2 одинаковы, то направление силы совпадает с направлением вектора ; в противном случае векторы и направлены в противоположные стороны.

Зная закон взаимодействия точечных заряженных тел, можно вычислить силу взаимодействия любых заряженных тел. Для этого тела нужно мысленно разбить на такие малые элементы, чтобы каждый из них можно было считать точечным. Складывая геометрически силы взаимодействия всех этих элементов друг с другом, можно вычислить результирующую силу взаимодействия.

Открытие закона Кулона – первый конкретный шаг в изучении свойств электрического заряда. Наличие электрического заряда у тел или элементарных частиц означает, что они взаимодействуют друг с другом по закону Кулона. Никаких отклонений от строгого выполнения закона Кулона в настоящее время не обнаружено.

Опыт Кулона

Необходимость проведения экспериментов Кулона была вызвана тем, что в середине XVIII в. накопилось много качественных данных об электрических явлениях. Возникла потребность дать им количественную интерпретацию. Поскольку силы электрического взаимодействия были относительно невелики, возникла серьезная проблема в создании метода, который позволил бы произвести замеры и получить необходимый количественный материал.

Французский инженер и ученый Шарль Кулон предложил метод измерения малых сил, который основывался на следующем экспериментальном факте, обнаруженном самим ученым: сила, возникающая при упругой деформации металлической проволоки, прямо пропорциональна углу закручивания, четвертой степени диаметра проволоки и обратно пропорциональна ее длине:

где d – диаметр, l – длина проволоки, φ – угол закручивания. В приведенном математическом выражении коэффициент пропорциональности k находился опытным путем и зависел от природы материала, из которого изготавливалась проволока.

Данная закономерность была использована в так называемых крутильных весах. Созданные весы позволили измерить ничтожно малые силы порядка 5·10 -8 Н.

Крутильные весы (рис. 3, а) состояли из легкого стеклянного коромысла 9 длиной 10,83 см, подвешенного на серебряной проволоке 5 длиной около 75 см, диаметром 0,22 см. На одном конце коромысла располагался позолоченный бузиновый шарик 8, а на другом – противовес 6 – бумажный кружок, смоченный в скипидаре. Верхний конец проволоки прикреплялся к головке прибора 1. Здесь же имелся указатель 2, с помощью которого отсчитывался угол закручивания нити по круговой шкале 3. Шкала была проградуирована. Вся эта система размещалась в стеклянных цилиндрах 4 и 11. В верхней крышке нижнего цилиндра имелось отверстие, в которое вставлялась стеклянная палочка с шариком 7 на конце. В опытах применялись шарики с диаметрами в пределах 0,45 – 0,68 см.

Перед началом эксперимента указатель головки устанавливался на нулевой отметке. Затем шарик 7 заряжался от предварительно наэлектризованного шарика 12. При соприкосновении шарика 7 с подвижным шариком 8 происходило перераспределение заряда. Однако из-за того, что диаметры шариков были одинаковыми, одинаковыми были и заряды на шариках 7 и 8.

Вследствие электростатического отталкивания шариков (рис. 3, б) коромысло 9 поворачивалось на некоторый угол γ (по шкале 10 ). С помощью головки 1 это коромысло возвращалось в исходное положение. По шкале 3 указатель 2 позволял определять угол α закручивания нити. Общий угол закручивания нити φ = γ + α . Сила же взаимодействия шариков была пропорциональна φ , то есть по углу закручивания можно судить о величине этой силы.

При неизменном расстоянии между шариками (оно фиксировалось по шкале 10 в градусной мере) исследовалась зависимость силы электрического взаимодействия точечных тел от величины заряда на них.

Для определения зависимости силы от заряда шариков Кулон нашел простой и остроумный способ изменения заряда одного из шариков. Для этого он соединял заряженный шарик (шарики 7 или 8 ) с таким же по размерам незаряженным (шарик 12 на изолирующей ручке). Заряд при этом распределялся поровну между шариками, что и уменьшало исследуемый заряд в 2, 4 и т. д. раз. Новое значение силы при новом значении заряда опять определялось экспериментально. При этом выяснилось, что сила прямо пропорциональна произведению зарядов шариков :

Зависимость силы электрического взаимодействия от расстояния была обнаружена следующим образом. После сообщения шарикам заряда (он был у них одинаковый) коромысло отклонялось на некоторый угол γ . Затем поворотом головки 1 уменьшался этот угол до γ 1 . Общий угол закручивания φ 1 = α 1 + (γ - γ 1)(α 1 – угол поворота головки). При уменьшении углового расстояния шариков до γ 2 общий угол закручивания φ 2 = α 2 + (γ - γ 2) . Было замечено, что, если γ 1 = 2γ 2 , ТО φ 2 = 4φ 1 , т. е. при уменьшении расстояния в 2 раза сила взаимодействия возрастала в 4 раза. Во столько же раз увеличился момент силы, так как при деформации кручения момент силы прямо пропорционален углу закручивания, а значит, и сила (плечо силы оставалось неизменным). Отсюда вытекает вывод: сила взаимодействия двух заряженных шариков обратно пропорциональна квадрату расстояния между ними:

Дата: 29.04.2015



Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке. Точечный заряд – это электрический заряд , когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона . Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила взаимодействия называется кулоновская сила , и формула закона Кулона будет следующая:

F = k · (|q 1 | · |q 2 |) / r 2

Где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

K = 1 / (4πε 0 ε)

Где ε 0 = 8,85 * 10 -12 Кл/Н*м 2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 10 9 Н*м/Кл 2 .

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = · [(|q 1 | · |q 2 |) / r 2 ]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = · [(|q 1 | · |q 2 |) / r 2 ] = k · (1 /π) · [(|q 1 | · |q 2 |) / r 2 ]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F 1,2 = -F 2,1

Кулоновская сила является центральной силой. Как показывает опыт , одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F 2,1 , действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с , на одном конце которой закреплён металлический шарик а , а на другом противовес d . Верхний конец нити закреплён на вращающейся головке прибора е , угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b , неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Известно, что каждое заряженное тело имеет электрическое поле. Можно также утверждать, что если есть электрическое по-ле, то есть заряженное тело, которому при-надлежит это поле. Итак, если рядом нахо-дятся два заряженных тела с электриче-скими зарядами, то можно сказать, что каж-дое из них находится в электрическом поле соседнего тела. А в таком случае на первое тело будет действовать сила

F 1 = q 1 E 2 ,

где q 1 — заряд первого тела; E 2 — напря-женность поля второго тела. На второе те-ло, соответственно, будет действовать сила

F 2 = q 2 E 1 ,

где q 2 — заряд первого тела; E 1 — напря-женность поля второго тела.

Электрически заряженное те-ло взаимодействует с элект-рическим полем другого заря-женного тела.

Если эти тела небольшие (точечные), то

E 1 = k . q 1 / r 2 ,

E 2 = k . q 2 / r 2 ,

Силы, действующие на каждое из взаимодействующих заря-женных тел, можно рассчи-тать, зная лишь их заряды и расстояние между ними.

Подставим значения напряженности и получим

F 1 = k . q 1 q 2 / r 2 и F 2 = k . q 2 q 1 / r 2 .

Значение каждой силы выражается лишь через значение зарядов каждого тела и рас-стояние между ними. Таким образом, опре-делять силы, действующие на каждое тело, можно, пользуясь лишь знаниями об элект-рических зарядах тел и расстоянии между ними. На этом основании можно сформу-лировать один из фундаментальных законов электродинамики — закона Кулона .

Закон Кулона . Сила, действующая на неподвижное то-чечное тело с электрическим зарядом в поле другого неподвижного точечного тела с элект-рическим зарядом, пропорциональна произве-дению значений их зарядов и обратно пропор-циональна квадрату расстояния между ними.

В общем виде значение силы, о которой идет речь в формулировке закона Кулона , можно записать так:

F = k . q 1 q 2 / r 2 ,

В формуле для расчета силы взаимодей-ствия записаны значения зарядов обоих тел. Поэтому можно сделать вывод, что по мо-дулю обе силы равны. Тем не менее, по направлению — они противоположные. В слу-чае если заряды тел одноименные, тела от-талкиваются (рис. 4.48). Если заряды тел раз-ноименные, то тела притягиваются (рис. 4.49). Окончательно можно записать:

F̅ 1 = - F̅ 2 .

Записанное равенство подтверждает спра-ведливость III закона динамики Ньютона для электрических взаимодействий. Поэтому в одной из распространенных формулиро-вок закона Кулона говорится, что

сила взаи-модействия двух заряженных точечных тел пропорциональна произведению значений их за-рядов и обратно пропорциональна квадрату расстояния между ними.

Если заряженные тела находятся в ди-электрике, то сила взаимодействия будет зависеть от диэлектрической проницаемости этого диэлектрика

F = k . q 1 q 2 / ε r 2 .

Для удобства расчетов, базирующихся на законе Кулона, значение коэффициента k записывают иначе:

k = 1 / 4 πε 0 .

Величина ε 0 называется электрической по-стоянной . Ее значение вычисляется в соот-ветствии с определением:

9 . 10 9 Н.м 2 /Кл 2 = 1 / 4πε 0 ,

ε 0 = (1 / 4π) . 9 . 10 9 Н.м 2 /Кл 2 = 8,85 . 10 -12 Кл 2 /Н.м 2 . Материал с сайта

Таким образом, закон Кулона в общем случае можно выразить формулой

F = (1 / 4πε 0 ) . q 1 q 2 / ε r 2 .

Закон Кулона является одним из фунда-ментальных законов природы. На нем бази-руется вся электродинамика, и не отмечено ни единого случая, когда бы нарушался закон Кулона . Существует единственное ог-раничение, которое касается действия за-кона Кулона на различных расстояниях. Счи-тается, что закон Кулона действует на рас-стояниях больше 10 -16 м и меньше несколь-ких километров.

При решении задач необходимо учиты-вать, что закон Кулона касается сил вза-имодействия точечных неподвижных заря-женных тел. Это сводит все задачи к задачам о взаимодействии неподвижных заряженных тел, в которых применяется два положения статики:

  1. равнодействующая всех сил, действую-щих на тело, равна нулю;
  2. сумма моментов сил равна нулю.

В подавляющем большинстве задач на применение закона Кулона достаточно учи-тывать лишь первое положение.

На этой странице материал по темам:

  • Элзапишите формулу закона кулона

  • Закон кулона реферат

  • Доклад по физике на тему закон кулона

  • Так же как в ньютоновой механике гравитационное взаимодействие всегда имеет место между телами обладающими массами, аналогичным образом в электродинамике электрическое взаимодействие свойственно телам, обладающим электрическими зарядами. Обозначается электрический заряд символом «q» или «Q».

    Можно даже сказать, что понятие электрического заряда q в электродинамике чем-то схоже с понятием гравитационной массы m в механике. Но в отличие от гравитационной массы, электрический заряд характеризует свойство тел и частиц вступать в силовые электромагнитные взаимодействия, и эти взаимодействия, как вы понимаете, не являются гравитационными.

    Электрические заряды

    Человеческий опыт исследования электрических явлений содержит множество экспериментальных результатов, и все эти факты позволили физикам прийти к следующим однозначным выводам относительно электрических зарядов:

    1. Электрические заряды бывают двух родов - условно их можно разделить на положительные и отрицательные.

    2. От одного заряженного предмета к другому электрические заряды можно передавать: допустим, путем соприкосновения тел друг с другом - заряд между ними можно разделить. При этом электрический заряд вовсе не является обязательной составной частью тела: в различных условиях один и тот же предмет может обладать разным по величине и по знаку зарядом, либо заряд может отсутствовать. Таким образом, заряд не является чем-то неотъемлемым для носителя, и в то же самое время заряд не может существовать без носителя заряда.

    3. В то время как гравитирующие тела всегда притягиваются друг к другу, электрические заряды могут как взаимно притягиваться, так и взаимно отталкиваться. Разноименные заряды взаимно притягиваются, одноименные - друг от друга отталкиваются.

    Закон сохранения электрического заряда - фундаментальный закон природы, он звучит так: «алгебраическая сумма зарядов всех тел внутри изолированной системы остается постоянной». Это значит, что внутри замкнутой системы невозможно появление или исчезновение зарядов лишь одного знака.

    Сегодня научная точка зрения такова, что изначально носители заряда - это элементарные частицы. Элементарные частицы нейтроны (электрически нейтральные), протоны (положительно заряженные) и электроны (заряженные отрицательно) образуют атомы.

    Из протонов и нейтронов состоят ядра атомов, а электроны образуют оболочки атомов. Модули зарядов электрона и протона равны по величине элементарному заряду е, но по знаку заряды этих частиц противоположны между собой.

    Что касается непосредственно взаимодействия электрических зарядов друг с другом, то в 1785 году французский физик Шарль Кулон экспериментально установил и описал этот основной закон электростатики, фундаментальный закон природы, ни из каких других законов не вытекающий. Ученый в своей работе изучал взаимодействие неподвижных точечных заряженных тел, и измерял силы их взаимного отталкивания и притяжения.



    Кулон экспериментально установил следующее: "Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей и обратно пропорциональны квадрату расстояния между ними".

    Это и есть формулировка Закона Кулона. И хотя точечных зарядов в природе не существует, только применительно к точечным зарядам и можно говорить о расстоянии между ними, в рамках данной формулировки Закона Кулона.

    На самом же деле, если расстояния между телами сильно превосходят их размеры, то ни размер, ни форма заряженных тел, особо не повлияют на их взаимодействие, а значит тела для данной задачи справедливо можно будет считать точечными.

    Рассмотрим такой пример. Подвесим на нитках пару заряженных шаров. Поскольку они как-то заряжены, то станут либо отталкиваться друг от друга, либо притягиваться друг к другу. Так как силы направлены вдоль прямой, соединяющей данные тела, - силы эти центральные.

    Для обозначения сил, действующих со стороны каждого из зарядов на другой, запишем: F12 – сила действия второго заряда на первый, F21 – сила действия первого заряда на второй, r12 – радиус-вектор от второго точечного заряда к первому. Если заряды имеют одинаковый знак, то сила F12 будет сонаправлена радиусу-вектору, если же у зарядов разные знаки - F12 будет направлена противоположно радиусу-вектору.

    При помощи закона взаимодействия точечных зарядов (Закона Кулона) можно теперь находить силу взаимодействия для любых точечных зарядов или точечных заряженных тел. Если же тела не точечные, то их мысленно разбивают на мелке элементы, каждый из которых можно было бы принять за точечный заряд.

    После нахождения сил, действующих между всеми мелкими элементами, силы эти геометрически складывают, - находят результирующую силу. Элементарные частицы тоже взаимодействуют друг с другом согласно Закону Кулона, и по сей день не замечено никаких нарушений этого фундаментального закона электростатики.

    В современной электротехнике нет области, где в том или ином виде не работал бы Закон Кулона. Начиная с электрического тока, заканчивая просто заряженным конденсатором. Особенно те области, которые касаются электростатики, - они на 100% связаны с Законом Кулона. Рассмотрим только несколько примеров.

    Простейший случай - введение диэлектрика. Сила взаимодействия зарядов в вакууме всегда больше силы взаимодействия тех же зарядов в условиях, когда между ними расположен какой-то диэлектрик.

    Диэлектрическая проницаемость среды - это как раз та величина, которая позволяет количественно определить значения сил, независимо от расстояния между зарядами и от их величин. Достаточно силу взаимодействия зарядов в вакууме разделить на диэлектрическую проницаемость внесенного диэлектрика - получим силу взаимодействия в присутствии диэлектрика.


    Сложное исследовательское оборудование - ускоритель заряженных частиц. Базируется работа ускорителей заряженных частиц на явлении взаимодействия электрического поля и заряженных частиц. Электрическое поле совершает в ускорителе работу увеличивая энергию частицы.

    Если рассмотреть здесь ускоряемую частицу как точечный заряд, а действие ускоряющего электрического поля ускорителя - как суммарную силу со стороны других точечных зарядов, то и в этом случае полностью соблюдается Закон Кулона. Магнитное поле лишь направляет частицу силой Лоренца, но не изменяет её энергии, только задаёт траекторию для движения частиц в ускорителе.

    Защитные электротехнические сооружения. Важные электроустановки всегда оснащаются такой простой на первый взгляд вещью, как молниеотвод. А молниеотвод в своей работе тоже не обходится без соблюдения Закона Кулона. Во время грозы на Земле появляются большие индуцированные заряды - согласно Закону Кулона притягиваются в направлении грозового облака. На поверхности Земли возникает в результате сильное электрическое поле.

    Напряжённость этого поля особенно велика возле острых проводников, и поэтому на заостренном конце молниеприемника зажигается коронный разряд - заряд из Земли стремится, повинуясь Закону Кулона, притянуться к противоположному заряду грозового облака.

    Воздух вблизи молниеотвода в результате коронного разряда сильно ионизируется. Вследствие этого напряжённость электрического поля вблизи острия уменьшается (как и внутри любого проводника), индуцированные заряды не могут накапливаться на здании и вероятность возникновения молнии снижается. Если же молния, так случится, ударит в молниеотвод, то заряд просто уйдет в Землю, не повредит установку.

    Самые часто задаваемые вопросы

    Возможно ли, изготовить печать на документе по предоставленному образцу? Ответ Да, возможно. Отправьте на наш электронный адрес скан-копию или фото хорошего качества, и мы изготовим необходимый дубликат.

    Какие виды оплаты вы принимаете? Ответ Вы можете оплатить документ во время получения на руки у курьера, после того, как проверите правильность заполнения и качество исполнения диплома. Также это можно сделать в офисе почтовых компаний, предлагающих услуги наложенного платежа.
    Все условия доставки и оплаты документов расписаны в разделе «Оплата и доставка». Также готовы выслушать Ваши предложения по условиям доставки и оплаты за документ.

    Могу ли я быть уверена, что после оформления заказа вы не исчезнете с моими деньгами? Ответ В сфере изготовления дипломов у нас достаточно длительный опыт работы. У нас есть несколько сайтов, который постоянно обновляются. Наши специалисты работают в разных уголках страны, изготавливая свыше 10 документов день. За годы работы наши документы помогли многим людям решить проблемы трудоустройства или перейти на более высокооплачиваемую работу. Мы заработали доверие и признание среди клиентов, поэтому у нас совершенно нет причин поступать подобным образом. Тем более, что это просто невозможно сделать физически: Вы оплачиваете свой заказ в момент получения его на руки, предоплаты нет.

    Могу я заказать диплом любого ВУЗа? Ответ В целом, да. Мы работаем в этой сфере почти 12 лет. За это время сформировалась практически полная база выдаваемых документов почти всех ВУЗов страны и за разные года выдачи. Все, что Вам нужно – выбрать ВУЗ, специальность, документ, и заполнить форму заказа.

    Что делать при обнаружении в документе опечаток и ошибок? Ответ Получая документ у нашего курьера или в почтовой компании, мы рекомендуем тщательно проверить все детали. Если будет обнаружена опечатка, ошибка или неточность, Вы имеете право не забирать диплом, при этом нужно указать обнаруженные недочеты лично курьеру или в письменном виде, отправив письмо на электронную почту.
    В кратчайшие сроки мы исправим документ и повторно отправим на указанный адрес. Разумеется, пересылка будет оплачена нашей компанией.
    Чтобы избежать подобных недоразумений, перед тем, как заполнять оригинальный бланк, мы отправляем на почту заказчику макет будущего документа, для проверки и утверждения окончательного варианта. Перед отправкой документа курьером или почтой мы также делаем дополнительное фото и видео (в т. ч. в ультрафиолетовом свечении), чтобы Вы имели наглядное представление о том, что получите в итоге.

    Что нужно сделать, чтобы заказать диплом в вашей компании? Ответ Для заказа документа (аттестата, диплома, академической справки и др.) необходимо заполнить онлайн-форму заказа на нашем сайте или сообщить свою электронную почту, чтобы мы выслали вам бланк анкеты, который нужно заполнить и отправить обратно нам.
    Если вы не знаете, что указать в каком-либо поле формы заказа/анкеты, оставьте их незаполненными. Всю недостающую информацию мы потому уточним в телефонном режиме.

    Последние отзывы

    Валентина:

    Вы спасли нашего сына от увольнения! Дело в том что недоучившись в институте, сын пошел в армию. А вернувшись, восстанавливаться не захотел. Работал без диплома. Но недавно начали увольнять всех, кто не имеет «корочки. Поэтому решили обратиться к вам и не пожалели! Теперь спокойно работает и ничего не боится! Спасибо!