Что означает понятие золотое сечение. Что такое золотое сечение. Применение золотого сечения в кибернетике и технике

Золотое сечение - это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Однажды познакомившись с золотым правилом, человечество больше ему не изменяло.

ОПРЕДЕЛЕНИЕ

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая - ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Современная наука рассматривает золотое сечение как «ассиметричную симметрию», называя его в широком смысле универсальным правилом, отражающим структуру и порядок нашего мироустройства.

ИСТОРИЯ

Представление о золотых пропорциях имели древние египтяне, знали о них и на Руси, но впервые научно золотое сечение объяснил монах Лука Пачоли в книге «Божественная пропорция» (1509), иллюстрации к которой предположительно сделал Леонардо да Винчи. Пачоли усматривал в золотом сечении божественное триединство: малый отрезок олицетворял Сына, большой – Отца, а целое – Святой дух.

Непосредственным образом с правилом золотого сечения связано имя итальянского математика Леонардо Фибоначчи. В результате решения одной из задач ученый вышел на последовательность чисел, известную сейчас как ряд Фибоначчи: 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. На отношение этой последовательности к золотой пропорции обратил внимание Кеплер: «Устроена она так, что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности». Сейчас ряд Фибоначчи - это арифметическая основа для расчетов пропорций золотого сечения во всех его проявлениях.

Леонардо да Винчи также много времени посвятил изучению особенностей золотого сечения, скорее всего, именно ему принадлежит и сам термин. Его рисунки стереометрического тела, образованного правильными пятиугольниками, доказывают, что каждый из полученных при сечении прямоугольников дает соотношения сторон в золотом делении.

Со временем правило золотого сечения превратилось в академическую рутину, и только философ Адольф Цейзинг в 1855 году вернул ему вторую жизнь. Он довел до абсолюта пропорции золотого сечения, сделав их универсальными для всех явлений окружающего мира. Впрочем, его «математическое эстетство» вызывало много критики.

ПРИРОДА

Даже не вдаваясь в расчеты, золотое сечение можно без труда обнаружить в природе. Так, под него попадают соотношение хвоста и тела ящерицы, расстояния между листьями на ветке, есть золотое сечение и в форме яйца, если условную линию провести через его наиболее широкую часть.

Белорусский ученый Эдуард Сороко, который изучал формы золотых делений в природе, отмечал, что все растущее и стремящееся занять свое место в пространстве, наделено пропорциями золотого сечения. По его мнению, одна из самых интересных форм это закручивание по спирали.

Еще Архимед, уделяя внимание спирали, вывел на основе ее формы уравнение, которое и сейчас применяется в технике. Позднее Гете отмечал тяготение природы к спиральным формам, называя спираль «кривой жизни». Современными учеными было установлено, что такие проявления спиральных форм в природе как раковина улитки, расположение семян подсолнечника, узоры паутины, движение урагана, строение ДНК и даже структура галактик заключают в себе ряд Фибоначчи.

ЧЕЛОВЕК

Модельеры и дизайнеры одежды все расчеты делают, исходя из пропорций золотого сечения. Человек – это универсальная форма для проверки законов золотого сечения. Конечно, от природы далеко не у всех людей пропорции идеальны, что создает определенные сложности с подбором одежды.

В дневнике Леонардо да Винчи есть рисунок вписанного в окружность обнаженного человека, находящегося в двух наложенных друг на друга позициях. Опираясь на исследования римского архитектора Витрувия, Леонардо подобным образом пытался установить пропорции человеческого тела. Позднее французский архитектор Ле Корбюзье, используя «Витрувианского человека» Леонардо, создал собственную шкалу «гармонических пропорций», повлиявшую на эстетику архитектуры XX века.

Адольф Цейзинг, исследуя пропорциональность человека, проделал колоссальную работу. Он измерил порядка двух тысяч человеческих тел, а также множество античных статуй и вывел, что золотое сечение выражает среднестатистический закон. В человеке ему подчинены практически все части тела, но главный показатель золотого сечения это деление тела точкой пупа.
В результате измерений исследователь установил, что пропорции мужского тела 13:8 ближе к золотому сечению, чем пропорции женского тела – 8:5.

ИСКУССТВО ПРОСТРАНСТВЕННЫХ ФОРМ

Художник Василий Суриков говорил, «что в композиции есть непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика». Долгое время художники следовали этому закону интуитивно, но после Леонардо да Винчи процесс создания живописного полотна уже не обходится без решения геометрических задач. Например, Альбрехт Дюрер для определения точек золотого сечения использовал изобретенный им пропорциональный циркуль.

Искусствовед Ф.В.Ковалев, подробно исследовав картину Николая Ге «Александр Сергеевич Пушкин в селе Михайловском», отмечает, что каждая деталь полотна, будь то камин, этажерка, кресло или сам поэт, строго вписаны в золотые пропорции.

Исследователи золотого сечения без устали изучают и замеряют шедевры архитектуры, утверждая, что они стали таковыми, потому что созданы по золотым канонам: в их списке Великие пирамиды Гизы, Собор Парижской Богоматери, Храм Василия Блаженного, Парфенон.

И сегодня в любом искусстве пространственных форм стараются следовать пропорциям золотого сечения, так как они, по мнению искусствоведов, облегчают восприятие произведения и формируют у зрителя эстетическое ощущение.

СЛОВО, ЗВУК И КИНОЛЕНТА

Формы временно?го искусства по-своему демонстрируют нам принцип золотого деления. Литературоведы, к примеру, обратили внимание, что наиболее популярное количество строк в стихотворениях позднего периода творчества Пушкина соответствует ряду Фибоначчи – 5, 8, 13, 21, 34.

Действует правило золотого сечения и в отдельно взятых произведениях русского классика. Так кульминационным моментом «Пиковой дамы» является драматическая сцена Германа и графини, заканчивающаяся смертью последней. В повести 853 строки, а кульминация приходится на 535 строке (853:535=1,6) – это и есть точка золотого сечения.

Советский музыковед Э.К.Розенов отмечает поразительную точность соотношений золотого сечения в строгих и свободных формах произведений Иоганна Себастьяна Баха, что соответствует вдумчивому, сосредоточенному, технически выверенному стилю мастера. Это справедливо и в отношении выдающихся творений других композиторов, где на точку золотого сечения обычно приходится наиболее яркое или неожиданное музыкальное решение.

Кинорежиссер Сергей Эйзенштейн сценарий своего фильма «Броненосец Потёмкин» сознательно согласовывал с правилом золотого сечения, разделив ленту на пять частей. В первых трех разделах действие разворачивается на корабле, а в последних двух – в Одессе. Переход на сцены в городе и есть золотая середина фильма.

Эта гармония поражает своими масштабами...

Здравствуйте, друзья!

Вы что-нибудь слышали о Божественной гармонии или Золотом сечении? Задумывались ли о том, почему нам что-то кажется идеальным и красивым, а что-то отталкивает?

Если нет, то вы удачно попали на эту статью, потому что в ней мы обсудим золотое сечение, узнаем что это такое, как оно выглядит в природе и в человеке. Поговорим о его принципах, узнаем что такое ряд Фибоначчи и многое многое другое, включая понятие золотой прямоугольник и золотая спираль.

Да, в статье много изображений, формул, как-никак, золотое сечение - это еще и математика. Но все описано достаточно простым языком, наглядно. А еще, в конце статьи, вы узнаете, почему все так любят котиков =)

Что такое золотое сечение?

Если по-простому, то золотое сечение - это определенное правило пропорции, которое создает гармонию ?. То есть, если мы не нарушаем правила этих пропорций, то у нас получается очень гармоничная композиция.

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому.

Но, кроме этого, золотое сечение - это математика: у него есть конкретная формула и конкретное число. Многие математики, вообще, считают его формулой божественной гармонии, и называют «асимметричной симметрией».

До наших современников золотое сечение дошло со времен Древней Греции, однако, бытует мнение, что сами греки уже подсмотрели золотое сечение у египтян. Потому что многие произведения искусства Древнего Египта четко построены по канонам этой пропорции.

Считается, что первым ввел понятие золотого сечения Пифагор. До наших дней дошли труды Евклида (он при помощи золотого сечения строил правильные пятиугольники, именно поэтому такой пятиугольник назван «золотым»), а число золотого сечения названо в честь древнегреческого архитектора Фидия. То есть, это у нас число «фи» (обозначается греческой буквой φ), и равно оно 1.6180339887498948482… Естественно, это значение округляют: φ = 1,618 или φ = 1,62, а в процентном соотношении золотое сечение выглядит, как 62% и 38%.

В чем же уникальность этой пропорции (а она, поверьте, есть)? Давайте для начала попробуем разобраться на примере отрезка. Итак, берем отрезок и делим его на неравные части таким образом, чтобы его меньшая часть относилась к большей, как большая ко всему целому. Понимаю, не очень пока ясно, что к чему, попробую проиллюстрировать наглядней на примере отрезков:


Итак, берем отрезок и делим его на два других, таким образом, чтобы меньший отрезок а, относился к большему отрезку b, так же, как и отрезок b относится к целому, то есть ко всей линии (a + b). Математически это выглядит так:


Этот правило работает бесконечно, вы можете делить отрезки сколь угодно долго. И, видите, как это просто. Главное один раз понять и все.

Но теперь рассмотрим более сложный пример, который попадается очень часто, так как золотое сечение еще представляют в виде золотого прямоугольника (соотношение сторон которого равно φ = 1,62). Это очень интересный прямоугольник: если от него «отрезать» квадрат, то мы снова получим золотой прямоугольник. И так бесконечно много раз. Смотрите:


Но математика не была бы математикой, если бы в ней не было формул. Так что, друзья, сейчас будет немножко «больно». Решение золотой пропорции спрятала под спойлер, очень много формул, но без них не хочу оставлять статью.

Ряд Фибоначчи и золотое сечение

Продолжаем творить и наблюдать за магией математики и золотого сечения. В средние века был такой товарищ - Фибоначчи (или Фибоначи, везде по-разному пишут). Любил математику и задачи, была у него и интересная задачка с размножением кроликов =) Но не в этом суть. Он открыл числовую последовательность, числа в ней так и зовутся «числа Фибоначчи».

Сама последовательность выглядит так:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233... и дальше до бесконечности.

Если словами, то последовательность Фибоначчи - это такая последовательность чисел, где каждое последующее число, равно сумме двух предыдущих.

Причем здесь золотое сечение? Сейчас увидите.

Спираль Фибоначчи

Чтобы увидеть и прочувствовать всю связь числового ряда Фибоначчи и золотого сечения, нужно снова взглянуть на формулы.

Иными словами, с 9-го члена последовательности Фибоначчи мы начинаем получать значения золотого сечения. И если визуализировать всю эту картину, то мы увидим, как последовательность Фибоначчи создает прямоугольники все ближе и ближе к золотому прямоугольнику. Вот такая вот связь.

Теперь поговорим о спирали Фибоначчи, ее еще называют «золотой спиралью».

Золотая спираль - логарифмическая спираль, коэффициент роста которой равен φ4, где φ - золотое сечение.

В общем и целом, с точки зрения математики, золотое сечение - идеальная пропорция. Но на этом ее чудеса только начинаются. Принципам золотого сечения подчинен почти весь мир, эту пропорцию создала сама природа. Даже эзотерики, и те, видят в ней числовую мощь. Но об этом точно не в этой статье будем говорить, поэтому, чтобы ничего не пропустить, можете подписаться на обновления сайта.

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» - это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

    от плеч до макушки к размеру головы = 1:1.618

    от пупка до макушки к отрезку от плеч до макушки = 1:1.618

    от пупка до коленок и от коленок до ступней = 1:1.618

    от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618


Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

    в завитках человеческого уха мы можем увидеть золотую спираль;

    ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

    и в молекуле ДНК;

    по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, - спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

    Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

    Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел - звук человеческого крика.

    Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

    Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Абсолютно во всем живом и не живом можно прочесть высшую красоту и гармонию.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет. Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил.

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

    Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

    В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

    В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

    Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

    Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

Золотые котики Фибоначчи

Ну и, наконец, о котиках! Вы задумывались о том, почему все так любят котеек? Они же ведь заполонили Интернет! Котики везде и это чудесно =)

А все дело в том, что кошки - идеальны! Не верите? Сейчас докажу вам это математически!

Видите? Тайна раскрыта! Котейки идеальны с точки зрения математики, природы и Вселенной =)

* Я шучу, конечно. Нет, кошки, действительно, идеальны) Но математически их никто не измерял, наверное.

На этом, в общем-то, все, друзья! Мы увидимся в следующих статьях. Удачи вам!

P. S. Изображения взяты с сайта medium.com.

18.04.2011 А. Ф. Афанасьев Обновлено 16.06.12

Размеры и пропорции - одна из главных задач в поисках художественного образа любого произведения пластического искусства. Понятно, что вопрос о размерах решается с учетом помещения, где оно будет находиться, и окружающих его предметов.

Говоря о пропорциях (соотношении размерных величин), мы учитываем их в формате плоского изображения (картина, маркетри), в соотношениях габаритных размеров (длина, высота, ширина) объемного предмета, в соотношении двух различных по высоте или длине предметов одного ансамбля, в соотношении размеров двух явно выделяющихся частей одного и того же предмета и т. д.

В классике изобразительного искусства на протяжении многих веков прослеживается прием построения пропорций, называемый золотым сечением, или золотым числом (этот термин введен Леонардо да Винчи). Принцип золотого сечения, или динамичной симметрии, заключается в том, что «отношение между двумя частями единого целого равно отношению ее большей части к целому» (или соответственно целого к большей части). Математически это

число выражается как - 1 ± 2 ?5 - что дает 1,6180339... или 0,6180339... В искусстве за золотое число принимается 1,62, т. е. приближенное выражение отношения большей величины в пропорции к ее меньшей величине.
От приближенного к более точному это отношение может быть выражено: и т. д., где: 5+3=8, 8+5=13 и т. д. Или: 2,2:3,3:5,5:8,8 и т. д., где 2,2+3,3-5,5 и т. д.

Графически золотое сечение можно выразить соотношением отрезков, получающихся различными построениями. Удобнее, на наш взгляд, построение, показанное на рис. 169: если к диагонали полуквадрата добавить его короткую сторону, то получится величина в отношении золотого числа к его длинной стороне.

Рис. 169. Геометрическое построение прямоугольника в золотом сечении 1,62: 1. Золотое число 1,62 в отношении отрезков (а и Ь)

Рис. 170. Графическое построение функции золотой пропорции 1,12: 1


Пропорция двух величин золотого сечения

создает зрительное ощущение гармонии и равновесия. Есть и другое гармоничное соотношение двух смежных величин, выражаемое числом 1,12. Оно является функцией золотого числа: если взять разность двух величин золотого сечения, разделить ее также в золотой пропорции и каждую долю добавить к меньшей величине исходного золотого сечения, то получится соотношение 1,12 (рис. 170). В таком отношении, например, проводится средний элемент (полочка) в буквах Н, Р, Я и т. д. в некоторых шрифтах, берутся пропорции высоты и ширины для широких букв, также встречается это отношение и в природе.

Золотое число наблюдается в пропорциях гармонично развитого человека (рис. 171): длина головы делит в золотом сечении расстояние от талии до макушки; коленная чашечка также делит расстояние от талии до подошвы ног; кончик среднего пальца вытянутой вниз руки делит в золотой пропорции весь рост человека; отношение фалангов пальцев - тоже золотое число. Это же явление наблюдается и в иных конструкциях природы: в спиралях моллюсков, в венчиках цветков и др.

Рис. 172. Золотые пропорции резного листа герани (пеларгонии). Построение: 1) С помощью масштабного графика (см. рис. 171) строим? ABC, Рис. 173. Пятилепестковый и трехлепестковый лист винограда. Отношение длины к ширине составляет 1,12. Золотой пропорцией выражается

На рис. 172 и 173 показано построение рисунка листа герани (пеларгонии) и листа винограда в пропорциях золотых чисел 1,62 и 1,12. В листе герани базой построения являются два треугольника: ABC и CEF, где отношение высоты и основания каждого из них выражается числами 0,62 и 1,62, а расстояния между тремя парами наиболее удаленных точек листа равны: AB=CE=SF. Построение указано на чертеже. Конструкция такого листа является типичной для герани, имеющей подобные резные листья.

Обобщенный лист платана (рис. 173) имеет пропорции так же, как и лист винограда, в отношении 1,12, но большую долю у листа винограда составляет его длина, а у листа платана - его ширина. Лист платана имеет три пропорциональных размера в отношении 1,62. Такое соответствие в архитектуре называется триадой (для четырех пропорций - тетрада и далее: пектада, гексода).

На рис. 174 показан способ построения в пропорциях золотого сечения листа клена. При соотношении ширины к длине в 1,12 он имеет несколько пропорций с числом 1,62. За основу построения взяты две трапеции, у которых отношение высоты и длины основания выражается золотым числом. Построение показано на чертеже, также приведены варианты формы листа клена.

В произведениях изобразительного искусства художник или скульптор осознанно или подсознательно, доверяя своему тренированному глазу, часто применяет соотношение размеров в золотой пропорции. Так, работая над копией с головы Христа (по Микеланджело), автор данной книги заметил, что смежные завитки в прядях волос по своим размерам отражают отношение золотого сечения, а по форме - спираль Архимеда, эвольвенту. Читатель сам может убедиться, что в ряде картин художников-классиков центральная фигура расположена от сторон формата на расстояниях, образующих пропорцию золотого сечения (например, размещение головы как по вертикали, так и по горизонтали в портрете М. И. Лопухиной В. Боровиковского; положение по вертикали центра головы в портрете А. С. Пушкина кисти О. Кипренского и др.). То же самое иногда можно видеть и с размещением линии горизонта (Ф. Васильев: «Мокрый луг», И. Левитан: «Март», «Вечерний звон»).

Конечно, указанное правило не всегда есть решение проблемы композиции, и оно не должно подменять в творчестве художника интуицию ритма и пропорций. Известно, например, что некоторые художники применяли для своих композиций отношения «музыкальных чисел»: терции, кварты, квинты (2:3, 3:4 и др.). Искусствоведы не без основания отмечают, что конструкцию любого классического памятника архитектуры или скульптуры при желании можно подогнать под какое угодно отношение чисел. Нашей же задачей в данном случае и особенно задачей начинающего художника или резчика по дереву является научиться строить обдуманную композицию своего произведения не по случайным соотношениям, а по гармоничным пропорциям, проверенным практикой. Эти гармоничные пропорции надо уметь выявить и подчеркнуть конструкцией и формой изделия.

Рассмотрим в качестве примера поиска гармоничной пропорции определение размеров рамки к работе, показанной на рис. 175. Формат помещаемого в нее изображения задан в пропорции золотого сечения. Внешние размеры рамки при одинаковой ширине ее сторон золотой пропорции не дадут. Поэтому отношение длины и ширины ее (ЗЗ0X220) принято несколько меньше золотого числа, т. е. равным 1,5, а ширина поперечных звеньев соответственно увеличена по сравнению с боковыми сторонами. Это позволило выйти на размеры рамки в свету (для картины), дающие пропорции золотого сечения. Отношение же ширины нижнего звена рамки к ширине его верхнего звена подогнано к другому золотому числу, т. е. к 1,12. Также отношение ширины нижнего звена к ширине бокового (94:63) близко к 1,5 (на рисунке - вариант слева).

Теперь сделаем эксперимент: увеличим длинную сторону рамки до 366 мм за счет ширины нижнего звена (она будет 130 мм) (на рисунке - вариант справа), чем приблизим не только отношение но и к золотому
числу 1,62 вместо 1,12. В результате получилась новая композиция, которая может быть применена в каком-либо ином изделии, но для рамки возникает желание сделать ее короче. Закройте нижнюю часть ее линейкой настолько, чтобы глаз «принял» получившуюся пропорцию, и мы получим ее длину 330 мм, т. е. подойдем к исходному варианту.

Так, анализируя различные варианты (могут быть и другие кроме двух разобранных), мастер останавливается на единственно возможном с его точки зрения решении.

Применение принципа золотого сечения в поисках нужной композиции лучше делать, используя несложный прибор, принципиальная схема конструкции которого показана на рис. 176. Две линейки этого прибора могут, вращаясь вокруг шарнира В, образовывать произвольный угол. Если при любом растворе угла разделить точкой К расстояние АС в золотом сечении и смонтировать еще две линейки: КМ\\ВС и КЕ\\АВ с шарнирами в точках К, Е и М, то при любом растворе АС это расстояние будет делиться точкой К в отношении золотого сечения.

Реферат выполнила ученица 8 класса МОУ гимназия №9 Вьюшина Вероника

Екатеринбург

1. Введение. Пропорция золотого сечения. Ф и φ.

"Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении"

Иоганн Кеплер

Правильные многоугольники привлекали внимание древнегреческих учёных ещё задолго да Архимеда. Пифагорейцы, выбравшие эмблемой своего союза пентаграмму - пятиконечную звезду, придавали очень большое значение задаче о делении окружности на равные части, то есть о построении правильного вписанного многоугольника. Альбрехт Дюрер (1471-1527гг), ставший олицетворением Возрождения в Германии приводит теоретически точный способ построения правильного пятиугольника, заимствованный из великого сочинения Птолемея "Альмагест".

Интерес Дюрера к построению правильных многоугольников отражает использование их в Средние века в арабских и готических орнаментах, а после изобретения огнестрельного оружия - в планировке крепостей.

Средневековые способы построения правильных многоугольников носили приближенный характер, но были (или не могли не быть) простыми: предпочтение отдавалось способам построения, не требующим даже изменять раствор циркуля. Леонардо да Винчи также много писал о многоугольниках, но именно Дюрер, а не Леонардо, передал средневековые способы построения потомкам. Дюрер, конечно, был знаком с " Началами" Евклида, но не привел в своем "Руководстве к измерению" (о построениях при помощи циркуля и линейки) предложенный Евклидом способ построения правильного пятиугольника, теоретически точный, как и все евклидовы построения. Евклид не пытается разделить заданную дугу окружности на три равные части, и Дюрер знал, хотя доказательство было найдено лишь в XIX веке, что эта задача неразрешима.

Предложенное Евклидом построение правильного пятиугольника включает в себя деление отрезка прямой в среднем и крайнем отношении, названное впоследствии золотым сечением и привлекавшим к себе внимание художников и архитекторов на протяжении нескольких столетий.

Точка В делит отрезок АВЕ в среднем и крайнем отношении или образует золотое сечение, если отношение большей части отрезка к меньшей равно отношению всего отрезка к большей части.

Записанное в виде равенства отношений золотое сечение имеет вид

АВ/ВЕ= АВ/АЕ

Если положить АВ=а, а ВЕ=а/Ф так, чтобы золотое отношение было равно АВ/ВЕ=Ф, то получается соотношение

То есть Ф удовлетворяет уравнению

Это уравнение имеет один положительный корень

Ф=(√5+1)/2=1.618034….

Заметим, что 1/Ф = (√5 -1)/2, так как (√5-1)(√5+1) =5-1=4. За 1/Ф принято считать φ=0.618034….

Ф и φ - прописная и строчная формы греческой буквы "фи".

Такое обозначение принято в честь древнегреческого скульптора Фидия (V век до н. э.) Фидий руководил строительством храма Парфенон в Афинах. В пропорциях этого храма многократно присутствует число φ .

2.История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамсеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.


Греки же были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог "Тимей" посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.


В дошедшей до нас античной литературе золотое деление впервые упоминается в "Началах" Евклида. Во 2-й книге "Начал" дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др.. В средневековой Европе с золотым делением познакомились по арабским переводам "Начал" Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением, как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что в итальянских художниках большой эмпирический опыт, но недостаток знаний. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли "Божественная пропорция" с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее "божественную суть" как выражение божественного триединства: бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет: "Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать".

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера.

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Кандидат технических наук В. БЕЛЯНИН, ведущий научный сотрудник РНЦ "Курчатовский институт", Е. РОМАНОВА, студентка МАДИ (ГТУ)

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Золотую пропорцию в школе не "проходят". И когда один из авторов предлагаемой ниже статьи (кандидат технических наук В. Белянин) рассказал о золотом сечении абитуриентке, собравшейся поступать в МАДИ, в процессе подготовки к экзаменам в институт, задача неожиданно вызвала живой интерес и массу вопросов, на которые "с ходу" не было ответов. Решили искать их вместе, и тогда обнаружились тонкости в золотой пропорции, ускользавшие от исследователей ранее. Совместное творчество привело к работе, которая лишний раз подтверждает созидательные возможности молодежи и вселяет надежду, что язык науки утерян не будет.

Узоры математики, как и узоры художника или узоры поэта, должны быть красивы; идеи, как и краски или слова, должны сочетаться гармонически. Красота является первым критерием: в мире нет места для безобразной математики.
Дж. Х. Харди

Красота математической задачи служит одним из важнейших стимулов ее нескончаемого развития и причиной порождения многочисленных приложений. Порой проходят десятки, сотни, а иногда и тысячи лет, но люди вновь и вновь находят неожиданные повороты в хорошо известном решении и его интерпретации. Одной из таких долгоживущих и увлекательных задач оказалась задача о золотом сечении (ЗС), отражающая элементы изящества и гармонии окружающего нас мира. Нелишне напомнить, кстати, что, хотя сама пропорция была известна еще Евклиду, термин "золотое сечение" ввел Леонардо да Винчи (см. "Наука и жизнь" ).

Геометрически золотое сечение подразумевает деление отрезка на две неравные части так, чтобы большая часть была средним пропорциональным между всем отрезком и меньшей частью (рис. 1).

Алгебраически это выражается следующим образом:

Исследование этой пропорции еще до ее решения показывает, что между отрезками a и b существуют по крайней мере два удивительных соотношения. Например, из пропорции (1) легко получается выражение,

которое устанавливает пропорцию между отрезками a , b , их разностью и суммой. Поэтому о золотом сечении можно сказать иначе: два отрезка находятся в гармоничном соотношении, если их разность относится к меньшему отрезку так, как больший отрезок относится к их сумме.

Второе соотношение получается, если исходный отрезок принять равным единице: a + b = 1, что очень часто используется в математике. В таком случае

a 2 - b 2 = a - b = ab .

Из этих результатов следуют два удивительных соотношения между отрезками а и b :

a 2 - b 2 = a - b = ab ,(2)

которые будут использованы в дальнейшем.

Перейдем теперь к решению пропорции (1). На практике используют две возможности.

1. Обозначим отношение a /b через. Тогда получим уравнение

x 2 - x - 1 = 0, (3)

Обычно рассматривают только положительный корень x 1 , дающий простое и наглядное деление отрезка в заданной пропорции. Действительно, если принять целый отрезок за единицу, то, используя значение этого корня x 1 , получим a ≈ 0,618, b ≈ 0,382.

Именно положительный корень x 1 уравнения (3) наиболее часто называют золотой пропорцией или пропорцией золотого сечения. Соответствующее геометрическое деление отрезка называют золотым сечением (точка С на рис. 1).

Для удобства дальнейшего изложения обозначим x 1 = D . Общепризнанного обозначения для золотого сечения до сих пор нет. Обусловлено это, видимо, тем, что под ним понимают иногда и другое число, о чем будет сказано ниже.

Оставляемый по обыкновению в стороне отрицательный корень x 2 приводит к менее наглядному делению отрезка на две неравные части. Дело в том, что он дает делящую точку С , которая лежит вне отрезка (так называемое внешнее деление). Действительно, если a + b = 1, то, используя корень x 2 , получим a ≈ -1,618, b ≈ 2,618. Поэтому отрезок a необходимо откладывать в отрицательном направлении (рис. 2).

2. Второй вариант решения пропорции (1) принципиально не отличается от первого. Будем считать неизвестным отношение b /a и обозначим его через y . Тогда получим уравнение

y 2 + y -1 = 0 , (4)

которое имеет иррациональные корни

Если a + b = 1, то, используя корень y 1 , получим a = y 1 ≈ 0,618, b ≈ 0,382. Для корня y 2 получим a ≈ -1,618, b ≈ 2,618. Геометрическое деление отрезка в пропорции золотого сечения с использованием корней y 1 и y 2 полностью идентично предыдущему варианту и соответствует рис. 1 и 2.

Положительный корень y 1 непосредственно дает искомое решение задачи, и его также называют золотой пропорцией .

Для удобства обозначим значение корня y 1 = d.

Таким образом, в литературе золотую пропорцию математически выражают числом D 1,618 или числом d 0,618, между которыми существуют две изумительные связи:

Dd = 1 и D - d = 1. (5)

Доказано, что другой подобной пары чисел, обладающих этими свойствами, не существует.

Используя оба обозначения для золотой пропорции, запишем решения уравнений (3) и (4) в симметричном виде: = D , = -d , = d , = -D .

Необычные свойства золотого сечения достаточно подробно описаны в литературе . Они настолько удивительны, что покоряли разум многих выдающихся мыслителей и создали вокруг себя ореол таинственности.

Золотая пропорция встречается в конфигурации растений и минералов, строении частей Вселенной, музыкальном звукоряде. Она отражает глобальные принципы природы, пронизывая все уровни организации живых и неживых объектов. Ее используют в архитектуре, скульптуре, живописи, науке, вычислительной технике, при проектировании предметов быта. Творения, несущие в себе конфигурацию золотого сечения, представляются соразмерными и согласованными, всегда приятны взгляду, да и сам математический язык золотой пропорции не менее изящен и элегантен.

Кроме равенств (5) из соотношения (2) можно выделить три интересные соотношения, которые обладают определенным совершенством, выглядят вполне привлекательно и эстетично:

(6)

Величие и глубину природы можно ощущать не только, например, при созерцании звезд или горных вершин, но и вглядываясь в некоторые удивительные формулы, очень ценимые математиками за их красоту. К ним можно отнести изящные соотношения золотой пропорции, фантастическую формулу Эйлера e iπ = -1 (где i = √-1), формулу, определяющую знаменитое число Непера (основание натуральных логарифмов): e = lim(1 + 1/n ) n = 2,718 при n → ∞, и многие другие.

После решения пропорции (1) ее идея кажется довольно простой, но, как это часто бывает со многими на первый взгляд простыми задачами, в ней скрыто немало тонкостей. Одной из таких замечательных тонкостей, мимо которой до сих пор проходили исследователи, является связь корней уравнений (3) и (4) с углами трех замечательных треугольников.

Чтобы убедиться в этом, рассмотрим, каким образом одномерный отрезок, разделенный в пропорции золотого сечения, может быть легко преобразован в двумерный образ в виде треугольника. Для этого, используя вначале рис. 1, отложим на отрезке АВ длину отрезка a дважды - от точки А в сторону точки В и, наоборот, от точки В в сторону А . Получим две точки С 1 и С 2 , делящие отрезок АВ с разных концов в пропорции золотого сечения (рис. 3). Считая равные отрезки АС 1 и ВС 2 радиусами, а точки А и В центрами окружностей, проведем две дуги до их пересечения в верхней точке С . Соединив точки А и С , а также В и С, получим равнобедренный треугольник АВС со сторонами АВ = a + b = 1, АС = = ВС = a = d ≈ 0,618. Величину углов при вершинах А и В обозначим α, при вершине С - β. Вычислим эти углы.

По теореме косинусов

(АВ ) 2 = 2(АС ) 2 (1 - cos β).

Подставив численные значения отрезков АВ и АС в эту формулу, получим

Аналогично получаем

(8)

Выход золотой пропорции на двумерный образ позволил связать корни уравнений (3) и (4) с углами треугольника АВС , который можно назвать первым треугольником золотой пропорции.

Выполним аналогичное построение, используя рис. 2. Если на продолжении отрезка АВ отложить от точки В вправо отрезок, равный по величине отрезку a , и повернуть вокруг центров А и В вверх оба отрезка как радиусы до их соприкосновения, то получим второй треугольник золотой пропорции (рис. 4). В этом равнобедренном треугольнике сторона АВ = a + b = 1, сторона АС = ВС = D ≈1,618, и поэтому по формуле теоремы косинусов получаем

(9)

Угол a при вершине С равен 36 о и связан с золотой пропорцией соотношением (8). Как и в предыдущем случае, углы этого треугольника связаны с корнями уравнений (3) и (4).

Второй треугольник золотой пропорции служит основным составляющим элементом правильного выпуклого пятиугольника и задает пропорции правильного звездчатого пятиугольника (пентаграммы), свойства которых подробно рассмотрены в книге .

Звездчатый пятиугольник - фигура симметричная, и в то же время в соотношениях ее отрезков проявляется асимметрическая золотая пропорция. Подобное сочетание противоположностей всегда притягивает глубоким единством, познание которого позволяет проникнуть в скрытые законы природы и понять их исключительную глубину и гармонию. Пифагорейцы, покоренные созвучием отрезков в звездчатом пятиугольнике, выбрали его символом своего научного сообщества.

Со времен астронома И. Кеплера (XVII век) иногда высказываются различные точки зрения относительно того, что обладает большей фундаментальностью - теорема Пифагора или золотая пропорция. Теорема Пифагора лежит в основании математики, это один из ее краеугольных камней. Золотое сечение лежит в основании гармонии и красоты мироздания. На первый взгляд оно несложно для понимания и не обладает значительной основательностью. Тем не менее некоторые его неожиданные и глубокие свойства постигаются только в последнее время , что говорит о необходимости с почтением относиться к его скрытой тонкости и возможной универсальности. Теорема Пифагора и золотая пропорция в своем развитии тесно переплетаются одна с другой и геометрическими и алгебраическими свойствами. Между ними нет ни пропасти, ни принципиальных различий. Они не конкурируют, у них разные предназначения.

Вполне возможно, что обе точки зрения равноправны, так как существует прямоугольный треугольник, содержащий в себе разнообразные особенности золотой пропорции. Другими словами, существует геометрическая фигура, достаточно полно объединяющая два математических восхитительных факта - теорему Пифагора и золотую пропорцию.

Чтобы построить такой треугольник, достаточно продолжить сторону ВС треугольника АВС (рис. 4) до пересечения в точке Е с перпендикуляром, восстановленным в точке А к стороне АВ (рис. 5).

Во внутреннем равнобедренном треугольнике АСЕ угол φ (угол АСЕ ) равен 144 о, а угол ψ (углы ЕАС и АЕС ) равен 18 о. Сторона АС = СЕ = СВ = D . Используя теорему Пифагора, легко получить, что длина катета

Используя этот результат, легко приходим к соотношению

Итак, найдена непосредственная связь корня y 2 уравнения (4) - последнего из корней уравнений (3) и (4) - с углом 144 о. В связи с этим треугольник АСЕ можно назвать третьим треугольником золотой пропорции.

Если в замечательном прямоугольном треугольнике АВЕ провести биссектрису угла САВ до пересечения со стороной ЕВ в точке F , то увидим, что вдоль стороны АВ располагаются четыре угла: 36 о, 72 о, 108 о и 144 о, с которыми корни уравнений золотой пропорции имеют непосредственную связь (соотношения (7) - (10)). Таким образом, в представленном прямоугольном треугольнике содержится вся плеяда равносторонних треугольников, обладающих особенностями золотого сечения. Кроме того, весьма примечательно то, что на гипотенузе любые два отрезка, ЕС = D и СF = 1,0 находятся в соотношении золотой пропорции с = d . Угол ψ связан с корнями D и d уравнений (3) и (4) соотношениями

.

В основу представленных выше построений равнобедренных треугольников, углы которых связаны с корнями уравнений золотой пропорции, положены исходный отрезок АВ и его части a и b . Однако золотое сечение позволяет моделировать не только описанные выше треугольники, но и различные другие геометрические фигуры, несущие в себе элементы гармоничных отношений.

Приведем два примера подобных построений. В первом - рассмотрим отрезок АВ , представленный на рис. 1. Пусть точка С - центр окружности, отрезок b - радиус. Проведем радиусом b окружность и касательные к ней из точки А (рис. 6). Соединим точки касания E и F с точкой С . В результате получим асимметричный ромб АЕСF , в котором диагональ АС делит его на два равных прямоугольных треугольника АСЕ и АСF .

Обратим более пристальное внимание на один из них, например на треугольник АСЕ . В этом треугольнике угол АЕС - прямой, гипотенуза АС = a , катет СЕ = b и катет АЕ = √ab ≈ 0,486, что следует из соотношения (2). Следовательно, катет АЕ является средним геометрическим (пропорциональным) между отрезками a и b , то есть выражает геометрический центр симметрии между числами a ≈ 0,618 и b ≈ 0,382.

Найдем значения углов этого треугольника:

Как и в предыдущих случаях, углы δ и ε связаны через косинус с корнями уравнений (3) и (4).

Заметим, что асимметричный ромб, подобный ромбу AECF , получается при проведении касательных из точки В к окружности радиуса a и c центром в точке А .

Асимметричный ромб AECF получен иным путем в книге при анализе формообразования и явлений роста в живой природе. Прямоугольный треугольник АЕС назван в этой работе "живым" треугольником, так как способен порождать наглядные образы, соответствующие различным структурным элементам природы, и служить ключом при построении геометрических схем начала развития некоторых живых организмов.

Второй пример связан с первым и третьим треугольниками золотого сечения. Образуем из двух равных первых треугольников золотой пропорции ромб с внутренними углами 72 о и 108 о. Аналогично объединим два равных третьих треугольника золотой пропорции в ромб с внутренними углами 36 о и 144 о. Если стороны этих ромбов равны между собой, то ими можно заполнить бесконечную плоскость без пустот и перекрытий. Соответствующий алгоритм заполнения плоскости разработал в конце 70-х годов ХХ века физик-теоретик из Оксфордского университета Р. Пенроуз. Причем выяснилось, что в получающейся мозаике невозможно выделить элементар ную ячейку с целым числом ромбов каждого вида, трансляция которой позволяла бы получить всю мозаику. Но самым замечательным оказалось то, что в бесконечной мозаике Пенроуза отношение числа "узких" ромбов к числу "широких" точно равно значению золотой пропорции d = 0,61803...!

В этом примере удивительным образом соединились все корни золотого сечения, выраженные через углы, с одним из случаев нетривиального заполнения бесконечной плоскости двумя элементарными фигурами - ромбами.

В заключение отметим, что приведенные выше разнообразные примеры связи корней уравнений золотой пропорции с углами треугольников иллюстрируют тот факт, что золотая пропорция более емкая задача, чем это представлялось ранее. Если прежде сферой приложения золотой пропорции считались в конечном итоге соотношения отрезков и различные последовательности, связанные с численными значениями ее корней (числа Фибоначчи), то теперь обнаруживается, что золотая пропорция может генерировать разнообразные геометрические объекты, а корни уравнений имеют явное тригонометрическое выражение.

Авторы отдают себе отчет, что высказанная выше точка зрения относительно изящества математических соотношений, связанных с золотой пропорцией, отражает личные эстетические переживания. В современной философской литературе понятия эстетики и красоты трактуются довольно широко и используются скорее на интуитивном уровне. Эти понятия отнесены главным образом к искусству. Содержание научного творчества в эстетическом плане в литературе практически не рассматривается. В первом приближении к эстетическим параметрам научных исследований можно отнести их сравнительную простоту, присущую им симметрию и способность порождать наглядные образы. Всем этим эстетическим параметрам отвечает задача, получившая название "золотая пропорция". В целом же проблемы эстетики в науке далеки от своего решения, хотя и представляют большой интерес.

Интуитивно чувствуется, что золотая пропорция все еще скрывает свои тайны. Некоторые из них, вполне возможно, лежат на поверхности, ожидая необычного взгляда своих новых исследователей. Знание свойств золотой пропорции может служить творческим людям хорошим фундаментом, придавать им уверенность и в науке и в жизни .

ЛИТЕРАТУРА

1. Шевелев И. Ш., Марутаев И. А., Шмелев И. П. Золотое сечение: Три взгляда на природу гармонии. - М.: Стройиздат, 1990. - 343 с.

2. Стахов А. П. Коды золотой пропорции. - М.: Радио и связь, 1984. - 152 с.

3. Васютинский Н. А. Золотая пропорция. - М.: Молодая гвардия, 1990. - 238 с.

4. Коробко В. И. Золотая пропорция: Некоторые философские аспекты гармонии. - М. - Орел: 2000. - 204 с.

5. Урманцев Ю. А. Золотое сечение // Природа, 1968, № 11.

6. Попков В. В., Шипицын Е. В. Золотое сечение в цикле Карно // УФН, 2000, т. 170, № 11.

7. Константинов И. Фантазии с додекаэдром // Наука и жизнь, 2001, № 2.

8. Шевелев И. Ш. Геометрическая гармония // Наука и жизнь, 1965, № 8.

9. Гарднер М. От мозаик Пенроуза к надежным шифрам . - М. : Мир, 1993.