Что такое липиды химический состав. Что такое эмульгирование липидов? Основные показатели биохимического анализа крови

Липиды – совокупность органических веществ. Находящиеся в живых организмах и делятся на классы липидов. Липиды не растворимы в воде, но могут растворится в эфире, хлорофоре и бензоле. В строении и функции липидов входят множество химических соединений, они обладают функцией запасов энергии. Стероиды и Фосфо липиды входят в , другие липиды, которых немного меньше, могут быть коферментами, переносчиками электронов, свето поглощающими пигментами, гормонами, гидрофобными «якорями» которые содержат белки у мембран.

Организм человека имеет свойства расщеплению липидов, хотя многие из этих веществ обязаны поступать в организм, это (омега-3, омега-6)

Группы липидов

Липиды разделяются на простые и сложные. В простые входят эфиры жирных кислот, в сложные липиды кроме жирных кислот и спирта содержат в себе углеводороды, фосфатные, липопротеиды и прочие. Каждая группа обозначается двумя английскими буквами:

Глицерофосфолипиды (GP)

Глицеролипиды (GL)

Поликетиды (PK).

Сфинголипиды (SP);

Стероидные липиды (ST)

Пренольни липиды (PR);

Жирные кислоты (FA)

Сахаролипиды (SL);

Химический состав липидов

Гликолипиды

Гликолипиды - это класс липидов, содержащих остатки моно- или олигосахаридов. Они могут быть как производными глицерина, так и сфингозина.

(ТГ) Ацилглицериды-глицериды, это эфиры трехатомного спирта и жирных кислот. Гидроксильные классы в малекуле делятся еще на группы:

  1. триглицериды
  2. диглицериды
  3. моноглицериды

Самые распространенные это триглицериды. Их так же называют жиры. Жиры бывают простыми содержащими в себе жирные кислоты, но чаще встречаются смешанные жиры, они так же содержат жирные кислоты. Свойства триглицеридов зависят от его жирнокислотного состава, например, чем больше ненасыщенных кислот, тем больше у них температура плавления. Взять в пример масла, оно содержит в себе почти 95 % ненасыщенных жирных кислот и при комнатной температуре оно тает. Животные жиры в пример сало, при комнатной температуре сохраняют массу, по этому у них все с точностью до наоборот (содержание насыщенных жирных кислот)

Глицерофосфолипиды

Формула глицерофосфолипидов это R1 и R2 жирных кислот, Х это остаток вещества азтмисноя. Глицерофосфолипиды по другому называют фосфоглицериды, они производятфосфатидные кислоты, которые в свою очередь состоят из глицерина . В нем в первую и вторую группу входят R1, R2, а в третью фосфатные кислоты, к нему уже присоединяется радикал Х (азото содержащий)

Жирные кислоты образуют в молекуле гидрофобную часть глицерофосфолипидов. Фосфатная часть в нейтральной среде несет в себе отрицательный заряд, а азотосодержащие соединения, несут положительный разряд, в азотосодержащей среде может быть отрицательно заряженный, по этому ее иногда называют полярной. В водной среде фосфоглицерины вырабатывают мицеллы, головы их повернуты на ружу, а хвостики внутрь.

Распространненые мембраны фосфоглицеридамы – летицин, в нем радикал Х является остатком холина и фосфатидилэтаноламина. Так же есть еще безазотистые глицерофосфолипиды, в него входят Х, инозитол и спирт. Двойные фосфоглицериды были обнаружены во внутренней мембране митохондрии. У животных эфирные липиды обогащают сердце, так же к этой группе соединений относят активные вещества активации тромбоцитов .

Глицерогликолипиды


Глицерогликолипиды – это класс диацилглицеролив атома углерода к которому присоединен гликозильмин. Самым распространенным классом липидов является галактолипиды, в них содержатся остатки галактозы. Они составляют 80% липидов мембран. Вместе с галактолипидами в растительных мембранах можно встретить остаток глюкозы

Сфингогликолипиды


Цереброзидов - это сфингогликолипиды, гидрофильная часть которых представлена остатком моносахарида, обычно глюкозы или галактозы. Галактоцереброзиды распространены в мембранах нейронов.

Глобозиды - олигосахаридных производные церамидов. Вместе с цереброзидов их называют нейтральными гликолипидами, поскольку при pH 7 они незаряженные.

Ганглиозиды - сложные с гликолипидов, их гидрофильная часть представлена олигосахариды, на конце которого всегда находится один или несколько остатков N-ацетилнейраминовои (сиаловой) кислоты, через что они кислотные свойства. Ганглиозиды наиболее распространенные в мембранах ганглионарных нейронов.

Сфингофосфолипиды


Структурная формула сфингомиелина в часть ее составляющей входят церамида которая содержит в себе длинноцепочковые аминоспирты и 1 остаток жирной кислоты, гидрофильного радикала, он в свою очередь соединен с сфингозином. встречается в мембранных клетках, но самой богатой считается нервная ткань. Так же большое их содержания находится в аксонах, от туда и произошло их названия.

Фосфолипиды

Структурные классы липидов это фосфолипиды, общем признаком фосфолипидов это их амфифильность, а она имеет гидрофильную и гидрофобную часть. По этому Они могут образовывать в водной среде мицеллы и би слои.

Стероиды


Стероид это класс природных липидов, в его состав входит циклопентан пергидрофенантреновое ядро. К ним относят спирты с гидроксильным классом в 3-ем положении стеролы с жировыми кислотами – стеридами. У зверей самым распространенным из стеролов это холестерол, что так же входит в состав мембран.

Стероиды выполняют множество функций у различных организмов. Для Половых гормонов, надпочечников , витаминные функции и прочие.

  1. Функции липопротеинов в крови и плазме крови
  2. Разница между липопротеинами и липопротеидами
  3. Нарушение транспорта липидов

Липопротеины – это комплекс транспортных форм липидов (жиров и жироподобных веществ). Если не углубляться в химические термины, то в нестрогом смысле липопротеины – это сложные соединения, создавшиеся на основе жиров и белков с гидрофобными и электростатическими взаимодействиями.

Липиды не растворяются в воде, по сути являются молекулами с гидрофобным ядром, потому не могут переноситься кровью в чистом виде. Жир синтезируется в тканях организма – печени, кишечника, но для его транспорта необходимо включение жиров с помощью белков в состав липопротеинов.

Наружный слой или оболочка липопротеина состоит из белков, холестерина и фосфолипидов; она гидрофильная, поэтому липопротеин легко связывается с плазмой крови. Внутренняя часть или ядро состоит из эфиров холестерина, триглицеридов, высших жирных кислот и витаминов.

Липопротеины в стабильной концентрации поддерживают синтез и секрецию жировых и апобелковых компонентов (апобелками называют белки-стабилизаторы в составе липопротеинов).

Классификация липопротеинов проводится по разным основаниям с учетом химических, биологических и физических свойств и различий. Самая распространенная и имеющая практическое применение в медицине классификация основана на выявлении соотношения липидов и белков и, как следствие, плотности. Плотность определяется по результатам ультрацентрифугирования.

По плотности и поведению в гравитационном поле выделяют следующие липопротеиновые классы:

  1. Хиломикроны - самые легкие и крупные частицы; образуются в клетках кишечника и имеют в составе до 90 процентов липидов;
  2. Липопротеины очень низкой плотности; образуются в печени из углеводов;
  3. Липопротеины низкой плотности; образуются в русле крови из липопротеинов очень низкой плотности через стадию липопротеинов промежуточной плотности.
  4. Липопротеины высокой плотности – самые мелкие частицы; образуются в печени и имеют в составе до 80 процентов белков.
  5. Химический состав всем липопротеинов одинаков; разнятся пропорции – соотношения составляющих липопротеин веществ относительно друг друга.

По другой классификации липопротеины делятся на свободные, которые растворяются в воде, и несвободные, которые в воде не растворяются. Липопротеины плазмы, сыворотки крови растворимы в воде. Липопротеины мембранных стенок клеток, нервных волокон нерастворимы в воде.

Биохимический анализ крови назначается для сбора сведений об обмене веществ в организме, качестве работы внутренних органов и систем человека, уровне макроэлементов – белков, жиров, углеводов. Биохимический анализ делают в рамках медицинского обследования на скрытые заболевания и патологии. Он позволяет выявить проблему еще до появления первых симптомов болезни.

Один из рассматриваемых параметров биохимического анализа крови – липопротеины различной плотности – компоненты жирового обмена.

Если выявлено, что в крови повышено содержание липопротеинов низкой плотности, это означает, что в организме есть «плохой» холестерин и требуется дополнительное обследование на предмет выявления атеросклероза.

По показателям липопротеинов различной плотности выводят значение содержания в крови общего холестерина. Для оценки состояния сосудов важнее показатели отдельного взятых липопротеинов низкой плотности, чем общего холестерина.

Чтобы результаты биохимического анализа крови были достоверными, необходимо за 24 часа прекратить прием алкоголя, сильнодействующих лекарственных средств, за 12 часов не есть ничего и не пить подслащенные напитки, за 6 часов – не курить и не пить ничего, кроме воды.

Результаты анализа могут сильно отличаться от номы при отсутствии заболеваний внутренних органов на фоне беременности, в течение полутора-двух месяцев после родов, перенесенного недавнего инфекционного заболевания, сильного отравления, острой респираторной инфекции. В этом случае показана повторная сдача анализа после устранения препятствующих факторов.

Для получения более развернутого результата по показателям содержания липопротеинов в рамках диагностики сердечно-сосудистых заболеваний назначают липидограмму крови. Она показывает, сколько и какие липопротеины содержатся в крови, а также говорит об уровне холестерина и триглицеридов.

Функции липопротеинов в крови и плазме крови

Общая функция всех липопротеинов – транспорт липидов. Они переносят насыщенные мононенасыщенные жирные кислоты для получения их них энергии; полиненасыщенные жирные кислоты для синтеза гормонов – стероидов, эйкозаноидов; холестерин и фосфолипиды для использования их в качестве важного составного элемента клеточных мембран.

Поступающие жиры и углеводы обязательно должны расщепляться и транспортироваться по системам организма для усвоения или накопления.

  • Хиломикроны переносят экзогенный жир из кишечника в слои разной ткани, преимущественно в жировую ткань и экзогенный холестерин из кишечника в печень.
  • Липопротеины очень низкой плотности переносят эндогенный жир из печени в жировую ткань.
  • Липопротеины низкой плотности транспортируют эндогенный холестерин в ткани.
  • Липопротеины высокой плотности удаляют (выводят) холестерин из тканей в печень, из клеток печени холестерин выводится с желчью.

Липопротеины очень низкой и низкой плотности считаются атерогенными, то есть вызывающими при повышении их концентрации в крови атеросклероз. При атеросклерозе излишек жира, «плохого» холестерина выстилают сосудистые стенки изнутри, слипаются и прикрепляются к стенкам сосудов. Это приводит к повышение кровяного давления за счет сужения сосудистого просвета, снижению упругости стенок сосудов, образованию тромбов.

Эндогенные жиры синтезируются в организме, экзогенные жиры организм получает с пищей.

Разница между липопротеинами и липопротеидами

Липопротеины и липопротеиды – разные варианты написания одного и того же слова, обозначающего транспортную форму липидов. Оба варианта являются правильными, но чаще встречается написание «липопротеины».

Нарушение транспорта липидов

При нарушениях транспорта липидов и липидного обмена снижается энергетический потенциал организма, ухудшается терморегуляционная способность. Помимо этого, ухудшается передача нервных импульсов, снижается скорость ферментивных реакций.

Нарушение липидного обмена происходит либо на стадии образования, либо на стадии утилизации липопротеинов: в первом случае говорят о гипопротеинемии, во втором – о гиперпротеинемии.

Первичные причины нарушения липидного обмена – генетическое мутации. Вторичные причины – цирроз (дистрофия с последующим некрозом тканей печени), гипертиреоз (гиперфункция щитовидной железы), пиелонефрит или почечная недостаточность, сахарный диабет, желчекаменная болезнь, ожирение.

Временные нарушения вызываются приемом некоторых медицинских препаратов и их групп: инсулин, фенитоин, глюкокортикоиды, - а также большого количества алкоголя.

Спасибо

Что за вещества липиды?

Липиды представляют собой одну из групп органических соединений, имеющую огромное значение для живых организмов. По химической структуре все липиды делятся на простые и сложные. Молекула простых липидов состоит из спирта и желчных кислот, в то время как в состав сложных липидов входят и другие атомы или соединения.

В целом, липиды имеют огромное значение для человека. Эти вещества входят в значительную часть продуктов питания , используются в медицине и фармации, играют важную роль во многих отраслях промышленности. В живом организме липиды в том или ином виде входят в состав всех клеток. С точки зрения питания – это очень важный источник энергии.

Какая разница между липидами и жирами?

В принципе, термин «липиды» происходит от греческого корня, означающего «жир», однако эти определения все же имеют некоторые отличия. Липиды являются более обширной группой веществ, в то время как под жирами понимают лишь некоторые виды липидов. Синонимом «жиров» являются «триглицериды », которые получаются из соединения спирта глицерина и карбоновых кислот. Как липиды в целом, так и триглицериды в частности играют значительную роль в биологических процессах.

Липиды в организме человека

Липиды входят в состав практически всех тканей организма. Их молекулы есть в любой живой клетке, и без этих веществ попросту невозможна жизнь. В организме человека встречается очень много различных липидов. Каждый вид или класс этих соединений имеет свои функции. От нормального поступления и образования липидов зависит множество биологических процессов.

С точки зрения биохимии, липиды принимают участие в следующих важнейших процессах:

  • выработка организмом энергии;
  • деление клеток;
  • передача нервных импульсов;
  • образование компонентов крови, гормонов и других важных веществ;
  • защита и фиксация некоторых внутренних органов;
  • клеточное деление, дыхание и др.
Таким образом, липиды являются жизненно важными химическими соединениями. Значительная часть этих веществ поступает в организм с пищей. После этого структурные компоненты липидов усваиваются организмом, и клетки вырабатывают новые молекулы липидов.

Биологическая роль липидов в живой клетке

Молекулы липидов выполняют огромное количество функций не только в масштабах всего организма, но и в каждой живой клетке в отдельности. По сути, клетка представляет собой структурную единицу живого организма. В ней происходит усвоение и синтез (образование ) определенных веществ. Часть из этих веществ идет на поддержание жизнедеятельности самой клетки, часть – на деление клетки, часть – на потребности других клеток и тканей.

В живом организме липиды выполняют следующие функции:

  • энергетическая;
  • резервная;
  • структурная;
  • транспортная;
  • ферментативная;
  • запасающая;
  • сигнальная;
  • регуляторная.

Энергетическая функция

Энергетическая функция липидов сводится к их распаду в организме, в процессе которого выделяется большое количество энергии. Живым клеткам эта энергия необходима для поддержания различных процессов (дыхание, рост, деление, синтез новых веществ ). Липиды поступают в клетку с притоком крови и откладываются внутри (в цитоплазме ) в виде небольших капель жира. При необходимости эти молекулы расщепляются, и клетка получает энергию.

Резервная (запасающая ) функция

Резервная функция тесно связана с энергетической. В форме жиров внутри клеток энергия может откладываться «про запас» и выделяться по мере необходимости. За накопление жиров ответственны особые клетки – адипоциты. Большая часть их объема занята крупной каплей жира. Именно из адипоцитов состоит жировая ткань в организме. Наибольшие запасы жировой ткани находятся в подкожно-жировой клетчатке, большом и малом сальнике (в брюшной полости ). При длительном голодании жировая ткань постепенно распадается, так как для получения энергии используются резервы липидов.

Также жировая ткань, отложенная в подкожно-жировой клетчатке, осуществляет теплоизоляцию. Ткани, богатые липидами, в целом хуже проводят тепло. Это позволяет организму поддерживать постоянную температуру тела и не так быстро охлаждаться или перегреваться в различных условиях внешней среды.

Структурная и барьерная функции (мембранные липиды )

Огромную роль играют липиды в строении живых клеток. В человеческом организме эти вещества образуют особый двойной слой, который формирует клеточную стенку. Благодаря этому живая клетка может выполнять свои функции и регулировать обмен веществ с внешней средой. Липиды, образующие клеточную мембрану, также позволяют сохранять форму клетки.

Почему липиды-мономеры образуют двойной слой (бислой )?

Мономерами называются химические вещества (в данном случае – молекулы ), которые способны, соединяясь, формировать более сложные соединения. Клеточная стенка состоит из двойного слоя (бислоя ) липидов. Каждая молекула, образующая эту стенку, имеет две части – гидрофобную (не контактирующую с водой ) и гидрофильную (контактирующую с водой ). Двойной слой получается из-за того, что молекулы липидов развернуты гидрофильными частями внутрь клетки и кнаружи. Гидрофобные же части практически соприкасаются, так как находятся между двумя слоями. В толще липидного бислоя могут располагаться и другие молекулы (белки, углеводы, сложные молекулярные структуры ), которые регулируют прохождение веществ через клеточную стенку.

Транспортная функция

Транспортная функция липидов имеет второстепенное значение в организме. Ее выполняют лишь некоторые соединения. Например, липопротеины, состоящие из липидов и белков, переносят в крови некоторые вещества от одного органа к другому. Однако эту функцию редко выделяют, не считая ее основной для данных веществ.

Ферментативная функция

В принципе, липиды не входят в состав ферментов, участвующих в расщеплении других веществ. Однако без липидов клетки органов не смогут синтезировать ферменты , конечный продукт жизнедеятельности. Кроме того, некоторые липиды играют значительную роль в усвоении поступающих с пищей жиров. В желчи содержится значительное количество фосфолипидов и холестерина . Они нейтрализуют избыток ферментов поджелудочной железы и не дают им повредить клетки кишечника . Также в желчи происходит растворение (эмульгирование ) экзогенных липидов, поступающих с пищей. Таким образом, липиды играют огромную роль в пищеварении и помогают в работе других ферментов, хотя сами по себе ферментами не являются.

Сигнальная функция

Часть сложных липидов выполняет в организме сигнальную функцию. Она заключается в поддержании различных процессов. Например, гликолипиды в нервных клетках принимают участие в передаче нервного импульса от одной нервной клетки к другой. Кроме того, большое значение имеют сигналы внутри самой клетки. Ей необходимо «распознавать» поступающие с кровью вещества, чтобы транспортировать их внутрь.

Регуляторная функция

Регуляторная функция липидов в организме является второстепенной. Сами липиды в крови мало влияют на течение различных процессов. Однако они входят в состав других веществ, имеющих огромное значение в регуляции этих процессов. Прежде всего, это стероидные гормоны (гормоны надпочечников и половые гормоны ). Они играют важную роль в обмене веществ, росте и развитии организма, репродуктивной функции, влияют на работу иммунной системы. Также липиды входят в состав простагландинов . Эти вещества вырабатываются при воспалительных процессах и влияют на некоторые процессы в нервной системе (например, восприятие боли ).

Таким образом, сами липиды не выполняют регуляторной функции, но их недостаток может отразиться на многих процессах в организме.

Биохимия липидов и их связь с другими веществами (белки, углеводы, АТФ, нуклеиновые кислоты, аминокислоты, стероиды )

Обмен липидов тесно связан с обменом других веществ в организме. В первую очередь, эта связь прослеживается в питании человека. Любая пища состоит из белков, углеводов и липидов, которые должны попадать в организм в определенных пропорциях. В этом случае человек будет получать и достаточно энергии, и достаточно структурных элементов. В противном случае (например, при недостатке липидов ) для выработки энергии будут расщепляться белки и углеводы.

Также липиды в той или иной степени связаны с обменом следующих веществ:

  • Аденозинтрифосфорная кислота (АТФ ). АТФ является своеобразной единицей энергии внутри клетки. При расщеплении липидов часть энергии идет на производство молекул АТФ, а эти молекулы принимают участие во всех внутриклеточных процессах (транспорт веществ, деление клетки, нейтрализация токсинов и др. ).
  • Нуклеиновые кислоты. Нуклеиновые кислоты являются структурными элементами ДНК и находятся в ядрах живых клеток. Энергия, вырабатываемая при расщеплении жиров, идет отчасти и на деление клеток. Во время деления происходит образование новых цепочек ДНК из нуклеиновых кислот.
  • Аминокислоты. Аминокислоты – это структурные компоненты белков. В соединении с липидами они образуют сложные комплексы, липопротеины, отвечающие за транспорт веществ в организме.
  • Стероиды. Стероиды – это вид гормонов, содержащих значительное количество липидов. При плохом усвоении липидов из пищи у пациента могут начаться проблемы с эндокринной системой.
Таким образом, обмен липидов в организме в любом случае нужно рассматривать в комплексе, с точки зрения взаимосвязи с другими веществами.

Переваривание и всасывание липидов (обмен веществ, метаболизм )

Переваривание и всасывание липидов является первым этапом обмена этих веществ. Основная часть липидов попадает в организм с пищей. В ротовой полости происходит измельчение пищи и ее смешивание со слюной. Далее комок попадает желудок , где химические связи частично разрушаются под действием соляной кислоты. Также некоторые химические связи в липидах разрушаются под действием фермента липазы , содержащейся в слюне.

Липиды нерастворимы в воде, поэтому в двенадцатиперстной кишке они не сразу подвергаются расщеплению ферментами. Сначала происходит так называемое эмульгирование жиров. После этого химические связи расщепляются под действием липазы, поступающей из поджелудочной железы. В принципе, для каждого вида липидов сейчас определен свой фермент, отвечающий за расщепление и усвоение данного вещества. Например, фосфолипаза расщепляет фосфолипиды, холестеролэстераза – соединения холестерола и т. д. Все эти ферменты в том или ином количестве содержатся в соке поджелудочной железы.

Расщепленные фрагменты липидов всасываются по отдельности клетками тонкого кишечника. В целом переваривание жиров представляет собой весьма сложный процесс, который регулируется множеством гормонов и гормоноподобных веществ.

Что такое эмульгирование липидов?

Эмульгирование представляет собой неполное растворение жировых веществ в воде. В пищевом комке, попадающем в двенадцатиперстную кишку, жиры содержатся в виде крупных капель. Это препятствует их взаимодействию с ферментами. В процессе эмульгирования крупные жировые капли «дробятся» на капельки поменьше. В результате площадь соприкосновения жировых капель и окружающих водорастворимых веществ увеличивается, и становится возможным расщепление липидов.

Процесс эмульгирования липидов в пищеварительной системе проходит в несколько этапов:

  • На первом этапе печень вырабатывает желчь, которая и будет осуществлять эмульгирование жиров. Она содержит соли холестерина и фосфолипидов, которые взаимодействуют с липидами и способствуют их «дроблению» на мелкие капли.
  • Желчь, выделяемая из печени , скапливается в желчном пузыре. Здесь она концентрируется и выделяется по мере необходимости.
  • При потреблении жирной пищи, к гладким мышцам желчного пузыря поступает сигнал для сокращения. В результате порция желчи по желчевыводящим протокам выделяется в двенадцатиперстную кишку.
  • В двенадцатиперстной кишке происходит собственно эмульгирование жиров и их взаимодействие с ферментами поджелудочной железы. Сокращения стенок тонкого кишечника способствуют этому процессу, «перемешивая» содержимое.
У некоторых людей после удаления желчного пузыря могут возникнуть проблемы с усвоением жиров. Желчь поступает в двенадцатиперстную кишку непрерывно, непосредственно из печени, и ее не хватает для эмульгирования всего объема липидов, если их съедено слишком много.

Ферменты для расщепления липидов

Для переваривания каждого вещества в организме присутствуют свои ферменты. Их задача состоит в разрушении химических связей между молекулами (или между атомами в молекулах ), чтобы полезные вещества могли нормально усваиваться организмом. За расщепления различных липидов отвечают разные ферменты. Большинство из них содержится в соке, выделяемом поджелудочной железой.

За расщепление липидов отвечают следующие группы ферментов:

  • липазы;
  • фосфолипазы;
  • холестеролэстераза и др.

Какие витамины и гормоны участвуют в регуляции уровня липидов?

Уровень большинства липидов в крови человека относительно постоянен. Он может колебаться в определенных пределах. Зависит это от биологических процессов, протекающих в самом организме, и от ряда внешних факторов. Регуляция уровня липидов в крови является сложным биологическим процессом, в котором принимает участие множество различных органов и веществ.

Наибольшую роль в усвоении и поддержании постоянного уровня липидов играют следующие вещества:

  • Ферменты. Ряд ферментов поджелудочной железы принимает участие в расщеплении липидов, поступающих в организм с пищей. При недостатке этих ферментов уровень липидов в крови может понизиться, так как эти вещества просто не будут усваиваться в кишечнике.
  • Желчные кислоты и их соли. В желчи содержатся желчные кислоты и ряд их соединений, которые способствуют эмульгированию липидов. Без этих веществ также невозможно нормальное усвоение липидов.
  • Витамины. Витамины оказывают комплексное укрепляющее действие на организм и прямо или косвенно влияют также на обмен липидов. Например, при недостатке витамина А ухудшается регенерация клеток в слизистых оболочках, и переваривание веществ в кишечнике тоже замедляется.
  • Внутриклеточные ферменты. В клетках эпителия кишечника содержатся ферменты, которые после всасывания жирных кислот преобразуют их в транспортные формы и направляют в кровоток.
  • Гормоны. Ряд гормонов влияет на обмен веществ в целом. Например, высокий уровень инсулина может сильно влиять на уровень липидов в крови. Именно поэтому для пациентов с сахарным диабетом некоторые нормы пересмотрены. Гормоны щитовидной железы , глюкокортикоидные гормоны или норадреналин могут стимулировать распад жировой ткани с выделением энергии.
Таким образом, поддержание нормального уровня липидов в крови – весьма сложный процесс, на который прямо или косвенно влияют разные гормоны, витамины и другие вещества. В процессе диагностики врачу необходимо определить, на каком именно этапе этот процесс был нарушен.

Биосинтез (образование ) и гидролиз (распад ) липидов в организме (анаболизм и катаболизм )

Метаболизмом называется совокупность обменных процессов в организме. Все метаболические процессы можно разделить на катаболические и анаболические. К катаболическим процессам относится расщепление и распад веществ. В отношении липидов это характеризуется их гидролизом (распадом на более простые вещества ) в желудочно-кишечном тракте. Анаболизм объединяет биохимические реакции, направленные на образование новых, более сложных веществ.

Биосинтез липидов происходит в следующих тканях и клетках:

  • Клетки эпителия кишечника. В стенке кишечника происходит всасывание жирных кислот, холестерина и других липидов. Сразу после этого в этих же клетках образуются новые, транспортные формы липидов, которые попадают в венозную кровь и направляются в печень.
  • Клетки печени. В клетках печени часть транспортных форм липидов распадется, и из них синтезируются новые вещества. Например, здесь происходит образование соединений холестерина и фосфолипидов, которые затем выделяются с желчью и способствуют нормальному пищеварению.
  • Клетки других органов. Часть липидов попадает с кровью в другие органы и ткани. В зависимости от типа клеток, липиды преобразуются в определенный вид соединений. Все клетки, так или иначе, синтезируют липиды для образования клеточной стенки (липидного бислоя ). В надпочечниках и половых железах из части липидов синтезируются стероидные гормоны.
Совокупность вышеописанных процессов и составляет метаболизм липидов в человеческом организме.

Ресинтез липидов в печени и других органах

Ресинтезом называется процесс образования определенных веществ из более простых, которые были усвоены раньше. В организме этот процесс протекает во внутренней среде некоторых клеток. Ресинтез необходим, для того чтобы ткани и органы получали все необходимые виды липидов, а не только те, которые были употреблены с пищей. Ресинтезированные липиды называются эндогенными. На их образование организм затрачивает энергию.

На первом этапе ресинтез липидов происходит в стенках кишечника. Здесь поступающие с пищей жирные кислоты преобразуются в транспортные формы, которые отправятся с кровью в печень и другие органы. Часть ресинтезированных липидов будет доставлено в ткани, из другой части образуются необходимые для жизнедеятельности вещества (липопротеины, желчь, гормоны и др. ), избыток преобразуется в жировую ткань и откладывается «про запас».

Входят ли липиды в состав мозга?

Липиды являются очень важной составляющей частью нервных клеток не только в головном мозге , но и во всей нервной системе. Как известно, нервные клетки контролируют различные процессы в организме путем передачи нервных импульсов. При этом все нервные пути «изолированы» друг от друга, чтобы импульс приходил к определенным клеткам и не затрагивал другие нервные пути. Такая «изоляция» возможна благодаря миелиновой оболочке нервных клеток. Миелин, препятствующий хаотичному распространению импульсов, примерно на 75% состоит из липидов. Как и в клеточных мембранах, здесь они образуют двойной слой (бислой ), который несколько раз завернут вокруг нервной клетки.

В состав миелиновой оболочки в нервной системе входят следующие липиды:

  • фосфолипиды;
  • холестерин;
  • галактолипиды;
  • гликолипиды.
При некоторых врожденных нарушениях образования липидов возможны неврологические проблемы. Это объясняется именно истончением или прерыванием миелиновой оболочки.

Липидные гормоны

Липиды играют важную структурную роль, в том числе, присутствуя в структуре многих гормонов. Гормоны, в состав которых входят жирные кислоты, называют стероидными. В организме они вырабатываются половыми железами и надпочечниками. Некоторые из них присутствуют и в клетках жировой ткани. Стероидные гормоны принимают участие в регуляции множества жизненно важных процессов. Их дисбаланс может повлиять на массу тела, способность к зачатию ребенка , развитие любых воспалительных процессов, работу иммунной системы. Залогом нормальной выработки стероидных гормонов является сбалансированное потребление липидов.

Липиды входят в состав следующих жизненно важных гормонов:

  • кортикостероиды (кортизол , альдостерон , гидрокортизон и др. );
  • мужские половые гормоны - андрогены (андростендион, дигидротестостерон и др. );
  • женские половые гормоны - эстрогены (эстриол, эстрадиол и др. ).
Таким образом, недостаток некоторых жирных кислот в пище может серьезно отразиться на работе эндокринной системы.

Роль липидов для кожи и волос

Большое значение имеют липиды для здоровья кожи и ее придатков (волосы и ногти ). В коже содержатся так называемые сальные железы, которые выделяют на поверхность некоторое количество секрета, богатого жирами. Это вещество выполняет множество полезных функций.

Для волос и кожи липиды важны по следующим причинам:

  • значительная часть вещества волоса состоит из сложных липидов;
  • клетки кожи быстро меняются, и липиды важны как энергетический ресурс;
  • секрет (выделяемое вещество ) сальных желез увлажняет кожу;
  • благодаря жирам поддерживается упругость, эластичность и гладкость кожи;
  • небольшое количество липидов на поверхности волос придают им здоровый блеск;
  • липидный слой на поверхности кожи защищает ее от агрессивного воздействия внешних факторов (холод, солнечные лучи, микробы на поверхности кожи и др. ).
В клетки кожи, как и в волосяные луковицы, липиды поступают с кровью. Таким образом, нормальное питание обеспечивает здоровье кожи и волос. Использование шампуней и кремов, содержащих липиды (особенно незаменимые жирные кислоты ) также важно, потому что часть этих веществ будет впитываться с поверхности клеток.

Классификация липидов

В биологии и химии существует довольно много различных классификаций липидов. Основной является химическая классификация, согласно которой липиды делятся в зависимости от своей структуры. С этой точки зрения все липиды можно разделить на простые (состоящие только из атомов кислорода, водорода и углерода ) и сложные (включающие хотя бы один атом других элементов ). Каждая из этих групп имеет соответствующие подгруппы. Эта классификация наиболее удобна, так как отражает не только химическое строение веществ, но и частично определяет химические свойства.

В биологии и медицине имеются свои дополнительные классификации, использующие другие критерии.

Экзогенные и эндогенные липиды

Все липиды в организме человека можно разделить на две большие группы - экзогенные и эндогенные. В первую группу входят все вещества, попадающие в организм из внешней среды. Наибольшее количество экзогенных липидов попадает в организм с пищей, однако существуют и другие пути. Например, при применении различных косметических средств или лекарственных препаратов организм также может получать некоторое количество липидов. Их действие будет преимущественно локальным.

После попадания в организм все экзогенные липиды расщепляются и усваиваются живыми клетками. Здесь из их структурных компонентов будут сформированы другие липидные соединения, в которых нуждается организм. Эти липиды, синтезированные собственными клетками, называются эндогенными. Они могут иметь совершенно другую структуру и функции, но состоят из тех же «структурных компонентов», которые попали в организм с экзогенными липидами. Именно поэтому при недостатке в пище тех или иных видов жиров могут развиваться различные заболевания. Часть компонентов сложных липидов не может быть синтезирована организмом самостоятельно, что отражается на течении определенных биологических процессов.

Жирные кислоты

Жирными кислотами называется класс органических соединений, которые являются структурной часть липидов. В зависимости от того, какие именно жирные кислоты входят в состав липида, могут меняться свойства этого вещества. Например, триглицериды, важнейший источник энергии для человеческого организма, являются производными спирта глицерина и нескольких жирных кислот.

В природе жирные кислоты содержатся в самых разных веществах - от нефти до растительных масел. В организм человека они попадают в основном с пищей. Каждая кислота является структурным компонентом для определенных клеток, ферментов или соединений. После всасывания организм преобразует ее и использует в различных биологических процессах.

Наиболее важными источниками жирных кислот для человека являются:

  • животные жиры;
  • растительные жиры;
  • тропические масла (цитрусовое,

Липиды - что это такое? В переводе с греческого, слово "липиды" означает "мелкие частички жира". Представляют они собой группы соединений природной органики обширного характера, включающие в себя непосредственно жиры, а также жироподобные вещества. Являются частью всех без исключения живых клеток и подразделяются на простые и сложные категории. В состав простых липидов входит спирт и жирные кислоты, а сложные содержат высокомолекулярные компоненты. И те и другие связаны с биологическими мембранами, оказывают действие на активные ферменты, а также участвуют в формировании нервных импульсов, стимулирующих мышечные сокращения.

Жиры и гидрофобия

Одной из является создание энергетического резерва организма и обеспечение водооталкивающих свойств кожного покрова вкупе с термоизоляционной защитой. Некоторые жиросодержащие вещества, не имеющие жирных кислот, также отнесены к липидам, к примеру, и терпены. Липиды не поддаются воздействию водной среды, но легко растворяются в органических жидкостях типа хлороформа, бензола, ацетона.

Липиды, презентация которых периодически проводится на международных семинарах в связи с новыми открытиями, являются неисчерпаемой темой для исследований и научных изысканий. Вопрос "Липиды - что это такое?" никогда не теряет своей актуальности. Тем не менее, научный прогресс не стоит на месте. В последнее время выявлено несколько новых жирных кислот, которые находятся в биосинтетическом родстве с липидами. Классификация органических соединений может быть затруднена из-за схожести по определенным характеристикам, но при существенном различии других параметров. Чаще всего создается отдельная группа, после чего восстанавливается общая картина гармоничного взаимодействия родственных веществ.

Клеточные мембраны

Липиды - что это такое с точки зрения функционального предназначения? Прежде всего, они являются важнейшим компонентом живых клеток и тканей позвоночных животных. Большинство процессов в организме происходит при участии липидов, формирование клеточных мембран, взаимосвязь и обмен сигналами в межклеточной среде не обходятся без жирных кислот.

Липиды - что это такое, если их рассматривать с позиции спонтанно возникающих стероидных гормонов, фосфоинозитидов и простагландинов? Это, прежде всего, присутствие в плазме крови которые, по определению, являются отдельными компонентами липидных структур. Из-за последних организм вынужден вырабатывать сложнейшие системы их транспортировки. Жирные кислоты липидов в основном переносятся в комплексе с альбуминами, а липопротеиды, растворимые в воде, транспортируются обычным порядком.

Классификация липидов

Распределение соединений, имеющих биологическую природу, по категориям - это процесс, связанный с некоторыми проблемами спорного характера. Липиды в связи с биохимическими и структурными свойствами могут быть отнесены в равной степени к разным категориям. Основные классы липидов включают в себя простые и сложные соединения.

К простым относятся:

  • Глицериды - эфиры глицеринового спирта и жирных кислот высшей категории.
  • Воски - эфир высшей жирной кислоты и 2-атомного спирта.

Сложные липиды:

  • Фосфолипидные соединения - с включением азотистых компонентов, глицерофосфолипиды, офинголипиды.
  • Гликолипиды - расположенные в наружных биологических слоях организма.
  • Стероиды - высокоактивные вещества животного спектра.
  • Сложные жиры - стеролы, липопротеины, сульфолипиды, аминолипиды, глицерол, углеводороды.

Функционирование

Липидные жиры выполняют роль материала для клеточных мембран. Участвуют в транспортировке различных веществ по периферии организма. Жировые прослойки на основе липидных структур помогают защитить тело от переохлаждения. Обладают функцией энергетического накопления "про запас".

Запасы жиров концентрируются в цитоплазме клеток в форме капель. Позвоночные животные, и человек в том числе, обладают специальными клетками - адипоцитами, которые способны содержать в себе достаточно много жира. Размещение жировых накоплений в адипоцитах происходит благодаря липоидным ферментам.

Биологические функции

Жир не только надежный источник энергии, он также обладает теплоизолирующими свойствами, чему способствует биология. Липиды при этом позволяют достичь нескольких полезных функций, таких как естественное охлаждение организма или, наоборот, его теплоизоляция. В северных регионах, отличающихся низкими температурами, все животные накапливают жир, который откладывается по всему телу равномерно, и таким образом создается естественная защитная прослойка, выполняющая функцию теплозащиты. Особенно важно это для крупных морских животных: китов, моржей, тюленей.

Животные, обитающие в жарких странах, тоже накапливают жировые отложения, но у них они не распределяются по всему телу, а сосредотачиваются в определенных местах. Например, у верблюдов жир собирается в горбах, у пустынных зверьков - в толстых, коротких хвостиках. Природа тщательно следит за правильным размещением и жира, и воды в живых организмах.

Структурная функция липидов

Все процессы, связанные с жизнедеятельностью организма, подчиняются определенным законам. Фосфолипиды являются основой биологического слоя мембран клеток, а холестерин регулирует текучесть этих мембран. Таким образом, большинство живых клеток находится в окружении плазматических мембран с двойным слоем липидов. Такая концентрация необходима для нормальной клеточной деятельности. В одной микрочастице биомембраны содержится более миллиона липидных молекул, которые обладают двойными характеристиками: они одновременно гидрофобные и гидрофильные. Как правило, эти взаимоисключающие свойства носят неравновесный характер, и поэтому их функциональное назначение выглядит вполне логично. Липиды в клетке - это эффективный природный регулятор. Гидрофобный слой обычно доминирует и защищает клеточную мембрану от проникновения вредоносных ионов.

Глицерофосфолипиды, фосфатидилэтаноламин, фосфатидилхолин, холестерол также способствуют непроницаемости клеток. В тканевых структурах располагаются другие мембранные липиды, это сфингомиелин и сфингогликолипид. Каждое вещество выполняет определенную функцию.

Липиды в диете человека

Триглицериды - характера, являются эффективным источником энергии. кислотами обладают мясо и молочные продукты. А кислоты жирные, но ненасыщенные, содержатся в орехах, подсолнечном и оливковом масле, семечках и зернах кукурузы. Чтобы в организме не повышался уровень холестерина, рекомендуется ежедневную норму животных жиров ограничить 10 процентами.

Липиды и углеводы

Многие организмы животного происхождения "укладывают" жиры в определенных точках, подкожной клетчатке, в складках кожного покрова, других местах. Окисление липидов таких жировых отложений происходит медленно, и поэтому процесс их перехода в углекислый газ и воду позволяет получить значительное количество энергии, почти в два раза больше, чем могут дать углеводы. Кроме того, гидрофобные свойства жиров избавляют от необходимости использования большого количества воды для стимулирования гидратации. Переход жиров в энергетическую фазу происходит "всухую". Вместе с тем жиры действуют гораздо медленнее в плане высвобождения энергии, и больше подходят для животных в состоянии спячки. Липиды и углеводы как бы дополняют друг друга в процессе жизнедеятельности организма.

Биохимический анализ крови (или привычнее для пациента «биохимия крови») используются на первом этапе диагностики любых патологических состояний. Обычно поводом для его назначения являются не совсем хорошие результаты общего анализа, ежегодная диспансеризация населения (при наличии хронических заболеваний) или профилактическое обследование лиц, занятых на вредных производственных процессах.

Биохимический анализ крови (БАК) включает множество различных показателей, определяющих работу того или иного органа, назначается врачом, хотя и сам пациент по собственному желанию может обратиться в платную лабораторию, чтобы сделать биохимию. Значения норм традиционно используемых тестов на содержание холестерина, билирубина, активности аминотрансфераз известны многим людям, не имеющим медицинского образования, но активно интересующихся своим здоровьем.

Таблица норм биохимического анализа крови

Учитывая многогранность проводимых исследований в биохимической лаборатории и высокий интерес пациентов к этой теме, мы постараемся обобщить данные тесты, но ограничимся самыми распространенными показателями, названия, единицы измерения и нормы которых представим в виде таблицы, максимально приближенной к официальному бланку результатов БАК.

Следует иметь в виду, что нормы многих показателей у взрослых и у детей разнятся, а, кроме этого, нередко зависят от половой принадлежности, особенностей и возможностей того или иного организма. Чтобы таблица не утомила читателя, нормы будут приведены преимущественно для взрослых с упоминанием значения показателей у детей (до 14 лет), мужчин и женщин в отдельности, если в этом появится необходимость.

Показатели

Единицы измерения

Примечание

Общий белок г/л 64 – 83 (у взрослых)

58 – 76 (у детей)

Альбумин г/л 35 – 50 (у взрослых)

38 – 54 (у детей)

Миоглобин мкг/л 19 – 92 (муж.)

12 – 76 (жен.)

Трансферрин г/л 2,0 – 4,0 у беременных показатель выше, у стариков, наоборот – его значения снижаются по сравнению с указанной нормой
Ферритин мкг/л 20 – 250 (м)
ОЖСС мкмоль/л 26,85 – 41,2 повышается физиологически с одновременным падением уровня железа у беременных женщин
СРБ мг/л до 0,5 (для всех) показатель не зависит от пола и возраста
Ревматоидный фактор Ед/мл до 10 (для всех) не зависит от пола и возраста
Церулоплазмин мг/л 150,0 – 600,0
Холестерин общий ммоль/л до 5,2 для определения липидного спектра в БАК включаются ЛПВП и ЛПНП
Триглицериды ммоль/л 0,55 – 1,65 приведенные нормальные значения весьма условны, поскольку уровень ТГ изменяется в сторону увеличения каждые 5 лет, но не должен превышать 2,3 ммоль/л
Мочевина ммоль/л 2,5 – 8,3 (взрослые)

1,8 – 6,4 (дети)

Креатинин мкмоль/л у взрослых:

у детей — от 27 до 62

Мочевая кислота ммоль/л 0,24 – 0,50 (м)

0,12 – 0,32 (дети)

Билирубин общий

связанный

свободный

мкмоль/л 3,4 – 17,1

25% общего

75% общего

в других источниках норма до 20,5 мкмоль/л
Глюкоза моль/л взрослые: 3,89 – 5,83

дети: 3,33 – 5,55

старше 60 лет — до 6,38
Фруктозамин ммоль/л до 280,0 у диабетиков диапазон значений от 280 до 320 говорит об удовлетворительной регуляции углеводного обмена
Аспартатаминотрансфераза (АсАТ) Ед/л у взрослых (37°С):

до 31 у женщин

до 35 у мужчин

у детей: в зависимости от возраста

показатели нормы зависят от температуры инкубации пробы, у детей зависят еще и от возраста, но, в целом, нормы выше
Аланинаминотрансфераза (АлАТ) Ед/л у взрослых:

до 31 у женщин

до 41 у мужчин

при 37°С, у детей нормальные значения несколько выше
Щелочная фосфатаза (ЩФ) Ед/л 20 – 130 (взрослые)

130 – 600 (дети)

при 37°С
α-амилаза Ед/л до 120 (у взрослых и у детей после года) у детей до года – до 30 Ед/л
Липаза Ед/л 0 — 417
Креатинкиназа (КК), креатинфосфокиназа (КФК) Ед/л до 195 у мужчин

до 170 у женщин

при 37°С
МВ-фракция КК Ед/л менее 10 Ед/л
Лактатдегидрогеназа (ЛДГ) Ед/л 120- 240

у детей в зависимости от возраста:

1 месяц — 150- 785,постепенное снижение к году до 145 – 365, до 2 лет – до 86 – 305, у детей и подростков норма составляет от 100 до 290 Ед/л

при 37°С
Гамма-глютамилтранспептидаза (ГГТП) Ед/л у взрослых:

до месяца – до 163

до года – ниже 91

до 14 лет – ниже 17 Ед/л

при 37°С
Натрий ммоль/л 134 – 150 (взрослые)

у детей – 130 — 145

Калий ммоль/л у взрослых: 3,6– 5,4

до 1 мес. -3,6 – 6,0

до года – 3,7 – 5,7

до 14 лет – 3,2 – 5,4

Хлориды ммоль/л 95,0 – 110,0
Фосфор ммоль/л 0,65 – 1,3 (взрослые)

от 1,3 до 2,1(дети)

Магний ммоль/л 0,65 – 1,1
Железо мкмоль/л у взрослых:

11,64 – 30,43 (м)

8,95 – 30,43 (ж)

до года — 7,16 – 17,9

до 14 лет — 8,95 – 21,48

Кальций ммоль/л 2,0 – 2,8
Цинк мкмоль/л 11 — 18 (взрослые)

11 — 24 (у детей)

Хотелось бы обратить внимание читателя, что в разных источниках можно встретить другие значения нормы. Особенно это касается ферментов, например, N АлАТ — от 0,10 до 0,68 ммоль/(ч.л), АсАТ – от 0,10 до 0,45ммоль/(ч.л). Это зависит от единиц измерения и температуры инкубации пробы, что обычно отражается в бланке анализа, ровно, как и референтные значения данной КДЛ. И, конечно, совсем не значит, что весь этот перечень для каждого больного является обязательным, ведь нет смысла назначать все в куче, если отдельные показатели при подозрении на определенную патологию никакой информации не несут.

Врач, выслушав жалобы больного и опираясь на клинические проявления, у пациента с артериальной гипертензией, скорее всего, в первую очередь будет исследовать липидный спектр, а при подозрении на гепатит назначит билирубин, АлТ, АсТ и, возможно, щелочную фосфатазу. И уж конечно – первый признак сахарного диабета (неумеренная жажда) является поводом для исследования крови на сахар, а явные признаки анемии заставят заинтересоваться железом, ферритином, транферрином и ОЖСС. При получении не очень хороших результатов биохимические исследования всегда можно продолжить, расширив за счет дополнительных анализов (на усмотрение врача).

Основные показатели биохимического анализа крови

По измененному общему анализу крови судят о наличии патологии, которую придется еще поискать. Биохимический анализ, в отличие от общеклинического, показывает нарушения функции определенного органа в результате патологических изменений, которые самим человеком еще не распознаны, то есть, на этапе скрытого течения болезни. Кроме этого, БАК помогает установить, хватает ли организму витаминов, микроэлементов и других необходимых веществ. Таким образом, к основным показателям биохимического анализа крови относят ряд лабораторных тестов, которые для удобства восприятия следует разделить на группы.

Белки

Данную группу в БАК представляют и белки, без которых жизнь организма невозможна, и специфические белковые структуры, возникающие в силу определенных (экстремальных) ситуаций:

Ферменты

Ферменты в биохимическом анализе крови чаще представлены «печеночными пробами» (АлТ и АсТ) да амилазой, заметно повышающейся при возникновении проблем с поджелудочной железой. Между тем, перечень энзимов, которые могут рассказать о состояния организма значительно шире:

Липидный спектр

Диагностика заболеваний сердечно-сосудистой системы, как правило, не ограничивается лишь назначением общего холестерина, для кардиолога данный показатель в изолированном виде никакой особой информации не несет. Для того чтобы узнать, в каком состоянии находится сосудистые стенки (а они могут быть тронуты атеросклерозом), нет ли признаков развития ИБС или, упаси Бог, явно грозит инфаркт миокарда, чаще всего используют биохимический тест, называемый липидным спектром, который включает:

  • Холестерин общий;
  • Липопротеины низкой плотности (ХС-ЛПНП);
  • Липопротеины высокой плотности (ХС-ЛПВП);
  • Триглицериды;
  • Коэффициент атерогенности, который рассчитывается по формуле, исходя из цифровых значений показателей, указанных выше.

Думается, что нет особой надобности в очередной раз описывать характеристики, клиническое и биологическое значение всех составляющих липидного спектра, они достаточно подробно изложены в соответствующих темах, размещенных на нашем сайте.

Углеводы

Наверное, самым распространенным анализом в числе показателей биохимии крови является содержание глюкозы («сахара»). Этот тест в дополнительных комментариях не нуждается, все знают, что проводят его строго натощак, а показывает он, не грозит ли человеку сахарный диабет. Хотя, следует заметить, что существуют и другие причины повышения данного показателя, не связанные с наличием грозного заболевания (травмы, ожоги, печеночная патология, болезни поджелудочной железы, чрезмерное поедание сладких продуктов).

Вопросы у молодых, еще несведущих в «сахарном» деле пациентов, может вызвать проведение глюкозонагрузочного теста (сахарная кривая), которую назначают, в основном, для выявления скрытых форм диабета.

К сравнительно новым тестам, призванным определить поведение углеводов в организме, можно отнести гликированные белки (или гликозилированные – что одно и то же):

  1. Гликированный альбумин (в БАК он обозначается как фруктозамин);
  2. Гликированный гемоглобин;
  3. Гликозилированные липопротеины.

Пигменты

Билирубин – продукт распада гемоглобина эритроцитов, его повышенные показатели характерны для широкого круга патологических состояний, поэтому для диагностики используют три варианта гемоглобиногенного пигмента:

  • Билирубин общий;
  • Прямой или связанный, конъюгированный;
  • Непрямой (свободный, несвязанный, неконъюгированный).

Болезни, связанные с повышением данного пигмента, могут быть самого различного происхождения и характера (от наследственной патологии до несовместимых переливаний крови), поэтому диагноз в большей мере основывается в зависимости от соотношения фракций билирубина, а не от его общего значения. Чаще всего этот лабораторный тест помогает диагностировать отклонения, причиной которых стало поражение печени и желчевыводящих путей.

Низкомолекулярные азотистые вещества

Низкомокулярные азотистые вещества в биохимическом исследовании крови представлены такими показателями:

  1. Креатинин, позволяющий определить состояние многих органов и систем и поведать о серьезных нарушениях их функции (тяжелые поражения печени и почек, опухоли, сахарный диабет, снижение функции надпочечников).
  2. Мочевина, представляющая собой основной анализ, указывающий на развитие почечной недостаточности (уремический синдром, «мочекровие»). Уместным будет назначение мочевины для определения функциональных способностей других органов: печени, сердца, желудочно-кишечного тракта.

Микроэлементы, кислоты, витамины

В биохимическом исследовании крови нередко можно встретить тесты, определяющие уровень неорганических веществ и органических соединений:

  • Кальций (Са) — внутриклеточный катион, основное место сосредоточения которого – костная система. Значения показателя изменяются при заболеваниях костей, щитовидной железы, печени и почек. Кальций служит важным диагностическим тестом выявления патологии развития костной системы у детей;
  • Натрий (Na) относится к основным внеклеточным катионам, переносит воду, изменение концентрации натрия и выход ее за пределы допустимых значений может повлечь серьезные патологические состояния;
  • Калий (K) – изменения его уровня в сторону уменьшения может останавливать работу сердца в систоле, а в сторону увеличения – в диастоле (и то, и другое – плохо);
  • Фосфор (P) – химический элемент, прочно связанный в организме с кальцием, вернее, с метаболизмом последнего;
  • Магний (Mg) – и недостаток (обызвествление артериальных сосудов, снижение кровотока в микроциркуляторном русле, развитие артериальной гипертензии), и избыток («магнезиальный наркоз», блокада сердца, кома) влечет нарушения в организме;
  • Железо (Fe) может обойтись без комментариев, этот элемент является составной частью гемоглобина – отсюда его главная роль;
  • Хлор (Cl) – основной внеклеточный осмотически активный анион плазмы;
  • Цинк (Zn) – недостаток цинка задерживает рост и половое развитие, увеличивает селезенку и печень, способствует возникновению анемии;
  • Цианокобаламин (витамин В12);
  • Аскорбиновая кислота (витамин С);
  • Фолиевая кислота;
  • Кальцитриол (витамин D) – дефицит затормаживает образование костной ткани, вызывает рахит у детей;
  • Мочевая кислота (продукт обмена пуриновых оснований, играющий не последнюю роль в формировании такого заболевания, как подагра).

Центральное место в лабораторной диагностике

Некоторые лабораторные тесты, хотя и входят в раздел биохимии, стоят как бы особняком и воспринимаются отдельно. Это касается, например, такого анализа, как коагулограмма, который изучает систему гемостаза и включает исследование факторов свертывания крови.

При описании БАК многие лабораторные тесты (белки, ферменты, витамины) остались без внимания, но, в основном, это анализы, назначаемые в редких случаях, поэтому они вряд ли вызовут интерес широкого круга читателей.

Кроме этого, следует отметить, что исследование гормонов или определение уровня иммуноглобулинов (IgA, IgG, IgM) – это тоже биохимический анализ крови, который, однако, осуществляют преимущественно методом ИФА (иммуноферментный анализ) в лабораториях несколько иного профиля. Как правило, пациенты с привычной биохимией его как-то не связывают, да и нам, затрагивая их в данной теме, пришлось бы чертить громоздкие и непонятные таблицы. Впрочем, в крови человека можно определить практически любое вещество, присутствующее в ней постоянно или случайно туда проникшее, однако, чтобы каждое из них рассмотреть досконально, пришлось бы писать большую научную работу.

Для базовой же оценки состояния здоровья человека обычно используются следующие показатели:

  1. Общий белок;
  2. Альбумин;
  3. Мочевина;
  4. Мочевая кислота;
  5. АсАТ;
  6. АлАТ;
  7. Глюкоза;
  8. Билирубин (общий и связанный);
  9. Холестерин общий и ЛПВП;
  10. Натрий;
  11. Калий;
  12. Железо;
  13. ОЖСС.

Вооружившись данным списком, пациент может отправиться в платную биохимическую лаборатории и сдать биологический материал для исследования, а вот с результатами нужно обратиться к специалисту, который займется расшифровкой биохимического анализа крови.

Разный подход к одной проблеме

Расшифровкой биохимического анализа крови, как и других лабораторных тестов, занимается врач лабораторной диагностики или лечащий врач. Тем не менее, можно понять интерес и беспокойство пациента, получившего на руки ответ с результатами исследования его собственной крови. Не каждый в силах дождаться, что скажет доктор: повышенные показатели или, наоборот, они находятся ниже допустимых значений. Врач, конечно, объяснит подчеркнутые красным или выделенные другим способом цифры и расскажет, какие болезни могут скрываться за отклонениями от нормы, однако консультация может быть завтра-послезавтра, а результаты — вот они: в собственных руках.

Ввиду того, что пациенты ныне в большинстве своем люди довольно грамотные и в вопросах медицины немало «подкованные», мы попробовали вместе разобраться в наиболее распространенных вариантах БАК, но опять-таки – исключительно с ознакомительной целью. В связи с этим хочется предостеречь пациентов от самостоятельной расшифровки биохимического анализа крови, ведь одни и те же величины БАК могут у разных людей говорить о разных болезнях. Для того чтобы в этом разобраться, врач привлекает к диагностическому поиску другие лабораторные тесты, инструментальные методы, уточняет анамнез, назначает консультации смежных специалистов. И только собрав все факторы воедино, в том числе, и биохимическое исследование крови, врач выносит свой вердикт (устанавливает диагноз).

Пациент к данному вопросу подходит по-другому: не имея специальных знаний, оценивает результаты однобоко: показатель повышен – значит, больной (название болезни найти несложно). Однако это еще полбеды, хуже, когда, опираясь на результаты анализов и собственные умозаключения, человек назначает себе лечение. Это недопустимо, поскольку можно упустить время, если человек на самом деле болен, или навредить своему организму, используя вычитанные в сомнительных источниках методы лечения. А вот что нужно действительно знать и помнить пациенту – так это, как правильно подготовиться к биохимическому исследованию крови.

Во избежание излишних затрат

Биохимические исследования крови всегда проводятся натощак, поскольку они очень чувствительны к различным веществам, попавшим в организм накануне анализа (пищевые продукты, фармацевтические средства). Особенно неустойчив к различным внешним и внутренним воздействиям гормональный фон человека, поэтому отправляясь в лабораторию, следует учитывать подобные нюансы и постараться подготовиться должным образом (анализ на гормоны не очень-то и дешевый).

Для исследования биохимии крови необходимо добыть ее из локтевой вены в количестве не менее 5 мл (при тестировании сыворотки на автоматическом анализаторе можно обойтись и меньшей дозой). Человек, пришедший на анализ, должен быть заведомо осведомлен и подготовлен к важной процедуре:

  • Вечером позволить себе легкий ужин, после которого можно только пить чистую воду (алкоголь, чай, кофе, соки к разрешенным напиткам не относятся);
  • Отменить вечернюю пробежку (исключить повышенную физическую активность), коль она запланирована по режиму;
  • Отказать в удовольствии принять горячую ванну на ночь;
  • Мужественно выдержать 8-12-часовое голодание (для липидного спектра не рекомендуется принимать пищу 16 часов);
  • Утром не принимать таблетки, не заниматься зарядкой;
  • Преждевременно не нервничать, чтобы в спокойном состоянии прибыть в лабораторию.

В противном случае придется посетить КДЛ повторно, что повлечет дополнительные нервные и материальные затраты. Не нужно особо сравнивать биохимию с общим анализом крови, где изучается клеточный состав. Там хоть и требуется подготовка, но не столь строгая, съеденный кусочек чего-либо вкусного может не и повлиять на результат. Здесь по-другому: биохимические показатели представлены метаболитами и биологически активными веществами, которые не смогут оставаться «равнодушными» даже к малейшим изменениям внутри организма или вокруг его. Например, одна конфета, съеденная на завтрак, вызовет повышение сахара в крови, выброс инсулина, активацию ферментов печени и поджелудочной железы и так далее… Возможно, кто-то не поверит, но любое наше действие найдет отражение в биохимическом анализе крови.

Видео: биохимический анализ крови в программе «О самом главном»

Шаг 2: после оплаты задайте свой вопрос в форму ниже ↓ Шаг 3: Вы можете дополнительно отблагодарить специалиста еще одним платежом на произвольную сумму

Синтез холестерина в организме человека

  1. Процесс выработки вещества
  2. Синтез общего холестерина
  3. Как используется холестерин?
  4. Нарушения в синтезе холестерина
  5. Подводя итоги

Организм каждого человека представляет собой сложную «машину» которая каждого задумывающегося о ее работе человека поражает своими уникальным возможностями. В теле происходят самые разные и одновременно с этим необычные биохимические процессы, которые сложно не только объяснить, но даже представить.

За многие подобные операции несет ответственность печень, а процесс синтеза холестерина является одной из ее основных функций. От данного процесса прямо зависит выработка полезных стероидных гормонов, важного витамина Д, а также транспорт разных полезных веществ.

В данной статье вниманию будет представлена информация относительно того, как происходит синтез холестерина, откуда он берется сначала в печени, а потом выбрасывается в организм. Также освящен вопрос, какого сбой и проблемы возникают в организме, если нарушается общее количество холестерина в организме.

Процесс выработки вещества

Такие распространенные и популярные продукты в рационе человека, как масло, яйца и мясо, а также фастфуд и разные полуфабрикаты, содержат в своем составе большое количество холестерина. Если употреблять их в большом количестве и ежедневно, количество холестерина в организме становится критически высоким.

Стоит знать, что употребление определенных продуктов, является не единственным источником появления холестерина, он вырабатывается еще и в печени. Возникает вопрос, зачем печень вырабатывает свой собственный низкой плотности липопротеин? Ответ здесь достаточно прост и базируется на понятиях полезного и опасного холестерина.

Вещество, которое содержится в пище, характеризуется низкими показателями плотности и оказывает на организм пагубное воздействие. Он имеет не очень качественную и полезную для организма любого человека структуру, потому не идет на синтез и транспортировку полезных веществ. Именно по этой причине он оседает на стенках артерий, вен и сосудов и органов в виде опасных атеросклеротических бляшек.

Что касается печени, то она «заботится» об общем здоровье организма, вырабатывая полезный холестерин, что характеризуется низкими показателями плотности. Такой полезный холестерин занимается тем, что отфильтровывает плохой вид холестерина из крови, а потом выводит его из тела в качестве желчи. Говоря иными словами, полезный холестерин эффективно препятствует стремительному развитию опасных атеросклеротических образований.

Синтез общего холестерина

Процесс образования молекул полезного элемента в печени достаточно интересен и разобраться в нем не очень сложно. Общий синтез холестерина в теле человека осуществляется в клетках, которые известны, как гепатоциты. Они характеризуются развитым в органах организма эндоплазматическим ретикулом, то есть клеточной органеллой, которая отвечает за выработку основной жировой и высокой углеводной основы. Также ответственность отмечается за их общую модификацию.

Серьезно углубляться в процесс синтеза холестерина стоит только специалистам – биохимикам и врачам, простым пациентам достаточно просто изучить основные моменты данного процесса, чтобы понять, как эффективно корректировать питание и строить общий образ жизни.

Итак, перед тем как печень выпустит в организм полезный холестерин, в нем проходят последовательность биологических процессов, вырабатывающих такие вещества, как:

  • Мевалонат;
  • Изопентенилпирофосфат;

Только после этого осуществляется выработка самого холестерина. Каждый этап можно описать более подробно.

Выработка мевалоната

Для выработки данного вещества организм в организме должно присутствовать большое количество глюкозы. Чтобы получить ее нужно употреблять злаки и сладкие фрукты. Молекулы и элементы сахара в человека расщепляются под действием ферментов до 2 молекул ацетил-КоА. Потом вступает в общую реакцию такое вещество, как ацетоацетилтрансфераза, превращающая последний в такое вещество, как ацетоил-КоА.

Из данного химического соединения посредством особых биологических реакций в организм поступает тот самый мевалонат.

Получение изопентенилпирофосфата

Как только в составе ретикулума гепатоцитов образуется нужный объем мевалоната, сразу запускается синтез данного вещества. После этого важный для здоровья мевалонат особым особым образом фосфорилируется, то есть отдает некоторое количество своего фосфата многочисленным молекулам АТФ. В результате получается нуклетид, что считается оптимальным хранилищем энергии всего организма.

Синтез сквалена

Посредством последовательно идущих конденсаций, то есть выделения воды, осуществляется образование молекул особого сквалена. В ситуации, если для выше описанной реакции клетки тела тратят важную энергию АТФ, то для элементов сквалена они используют НАДН, который представляет собой еще один источник нужной энергии.

Выработка данного вещества является предпоследней естественной реакцией в общей последовательности работы печени. Происходит данный процесс тогда, когда из молекул, содержащих ланостерин, полностью уходит вода.

Сразу после этого общая формула произведенного соединения превращается из развернутой в циклическую. В данном случае источником энергии становится область НАДФН.

Последним этапом выработки общего холестерина является быстрое превращение ланостерина в это вещество. Осуществляется данный процесс в клеточных мембранах эндоплазматического ретикулума гепатоцита. Элемент основного вещества посредством нескольких этапов превращений приобретает особую двойную связь в процессе образования карбонов.

Для осуществления данного процесса требуется достаточно большой объем энергии, которая берется из молекул НАДФН. Как только над всеми производными вещества ланостерина потрудятся разные ферменты, относящиеся к категории трансформаторов, осуществляется образование холестерина.

На основании всего сказанного выше можно сделать вывод, что синтез холестерина в теле человека проходит в 5 этапов. Они контролируются биологическими ферментами, разными донорами и иными, не менее важными факторами. Например, есть такие элементы, на уровень активности которых оказывают влияние гормоны щитовидки, а также инсулин.

Как используется холестерин?

Выработанный в печени холестерин, нужен организму для выполнения самых разных процессов. Среди них можно отметить синтез важных для организма стероидных гормонов, для выработки необходимого количества витамина Д и транспортировка по всему организму Q10.

К основным стероидным гормонам можно отнести кортикостероиды, глюкокортикоиды, а также минералкортикоиды. Данные элементы необходимы для регулирования разных обменных процессов, разных полезных и активных веществ, важных для репродуктивной системы мужских и женских половых гормонов. Холестерин после выработки в печени, попадает по сосудам в надпочечники и способствует образованию данных веществ.

Выработка витамина Д происходит на основании скопления холестерина под поверхностью кожи и воздействия на нее солнечных лучей. Это важный компонент для человеческого организма, так как без него невозможно регулировать усвоение кальция.

Полезный холестерин после выработки в печени с кровью транспортируется из нее в клетки кожных покровов. Кстати, тот же самый процесс осуществляется и с плохим холестерином, но в коже он не преобразуется в витамин Д, но становится причиной образования холестериновых бляшек, которые явно видны под тонкой кожей век.

Нарушения в синтезе холестерина

Как и во всех процессах человеческого организма в процессе синтеза холестерина могут возникнуть определенные проблемы. Часто они возникают по причине нарушения обмена веществ. В случае с холестерином, он может быть повышенным и пониженным, на основании этого и разнятся его общие показатели и симптомы, происходящие в организме.

Недостаток полезного холестерина

При определенных заболеваниях полезного холестерина может не хватать. Это может происходить по причине нарушений работы и функции щитовидной железы, проблем с сердцем и сахарного диабета. Также появлению сниженного холестерина может способствовать определенная генетическая предрасположенность.

Среди последствий, с которыми может столкнуться человек, имеющий сниженный холестерин, можно отметить:

  1. Детский рахит, возникающий по причине не усвоения необходимого кальция;
  2. Ранее старение, возникающее по причине разрушения клеточных мембран без транспорта Q10;
  3. Снижение веса, которое основано на низком уровне расщеплении жиров;
  4. Подавление защитных сил организма;
  5. Появление изнурительных болей в сердце, а также в мышцах.

Превышение холестерина

Если у человека, наоборот, большое количество холестерина, его здоровье также будет подвергаться определенной опасности.

В организме будут наблюдаться такие проблемы, как:

  • Развитие гепатита и цирроза печени;
  • Повышение веса;
  • Пагубное для человека нарушение общего липидного обмена;
  • Развитие воспалительных процессов хронического характера.

При избыточном накоплении холестерина образуются многочисленные атеросклеротические скопления, которые в виде бляшек закупоривают сосуды. Также вырабатывается большое количество желчи, что просто не успевает выйти из желчного пузыря. Это автоматически вызывает образование в органе камней, а также сильно страдает сердце и многочисленные сосуды в организме.

Подводя итоги

Синтез холестерина в печени – это достаточно сложный процесс, который происходит в организме каждый день. Тело человека производит собственные элементы – липопротеиды полезного вида или высокого уровня плотности, которые эффективно предотвращают образование на сосудах опасных для здоровья холестериновых бляшек.

Если нормальный синтез холестерина будет нарушен, такое опасное заболевание, как атеросклероз, будет только прогрессировать.

Чтобы поддерживать оптимальный уровень синтеза холестерина в крови, стоит выстроить максимально правильное питание и режим дня с должным количество свободного времени на отдых. Для этого нужно употреблять в пищу продукты, богатые полезными кислотами Омега-3. Они в состоянии быстро и эффективно снизить количество опасного холестерина выводя его из организма.

Благодаря этому можно наладить работу нервной системы, восстановить эндотолей, которым покрываются сосуды и снизить вязкость и густоту крови. Все это автоматически снижает процесс возникновения и развития сердечно-сосудистых заболеваний. Среди продуктов, богатых данным веществом можно отметить все виды морепродуктов и разные виды рыбы.

Не менее важно наполнить свой рацион такими продуктами, как семечки, орехи, авокадо и оливковое масло. Здесь сосредоточено большое количество полезных фитостеринов, которые эффективно регулируют объем холестерина в крови. Применение оливкового масла в качестве салатной заправки позволит заменить насыщенные жиры на мононенасыщенные. Данный процесс в свою очередь снижает количество вредного холестерина на 18%, а полезный повышает примерно на 7%.

Очень важно правильно питаться, вести здоровый образ жизни. Только в этом случае синтез холестерина в организме будет происходить в нормальном режиме. В этом случае можно эффективно избежать сбоев в гормональном фоне, изменения в сосудах и формирования камней в желчном пузыре.