Что такое вид в микробиологии. Лекции по микробиологии - файл Микробиология.docx. Предмет, задачи, разделы микробиологии, ее связь с другими науками

Микробиологические процессы широко применяют в различных отраслях народного хозяйства. В их основе лежит использование в промышленности биологических систем и процессов, ими вызываемых. В основе многих производств лежат реакции обмена веществ, происходящие при росте и размножении некоторых микроорганизмов.

В настоящее время с помощью микроорганизмов производят кормовые белки, ферменты, витамины, аминокислоты и антибиотики, органические кислоты, липиды, гормоны, препараты для сельского хозяйства и т.д.

В пищевой промышленностимикроорганизмы используются при получении ряда продуктов. Так, алкогольные напитки- вино, пиво, коньяк, спирт-и другие продукты получают при помощи дрожжей. В хлебопекарной промышленности используют дрожжи и бактерии, в молочной промышленности -молочнокислые бактерии и т.д.

Среди многообразия вызываемых микроорганизмами процессов одним из существенных является брожение.

Под брожением понимают превращение углеводов и некоторых других органических соединений в новые вещества под воздействием ферментов, продуцируемых микроорганизмами. Известны различные виды брожения. Обычно их называют по конечным продуктам, образующимся в процессе брожения, например спиртовое, молочнокислое, уксуснокислое и др.

Многие виды брожения- спиртовое, молочнокислое, ацетонобутиловое, уксуснокислое, лимоннокислое и другие, вызываемые различными микроорганизмами, - используют в промышленности. Например, в производстве этилового спирта, хлеба, пива применяют дрожжи; в производстве лимонной кислоты - плесневые грибы; в производстве уксусной и молочной кислот, ацетона¾ бактерии. Основная цель указанных производств превращение - субстрата (питательной среды) под действием ферментов микроорганизмов в необходимые продукты. В других производствах, например в производстве хлебопекарных дрожжей, главной задачей является накопление максимального количества культивируемых дрожжей.

Основные группы микроорганизмов, используемых в отраслях пищевой промышленности, - бактерии, дрожжевые и плесневые грибы.

Бактерии. Используют в качестве возбудителей молочнокислого, уксуснокислого, маслянокислого. ацетонобутилового брожения. Культурные молочнокислые бактерии используют при получении молочной кислоты, в хлебопечении, иногда в спиртовом производстве. Они превращают сахар в молочную кислоту.

В производстве ржаного хлеба важная роль принадлежит молочнокислым бактериям. В процессе получения ржаного хлеба участвуют истинные (гомоферментативные) и неистинные (гетероферментативные) молочнокислые бактерии. Гетероферментативные молочнокислые бактерии наряду с молочной кислотой образуют летучие кислоты (в основном уксусную), спирт и диоксид углерода. Истинные бактерии в ржаном тесте участвуют только в кислотообразовании, а неистинные наряду с кислотообразованием оказывают существенное влияние на разрыхление теста, являясь энергичными газообразователями. Молочнокислые бактерии ржаного теста существенное влияние оказывают также на вкус хлеба, так как он зависит от общего количества кислот, содержащихся в хлебе, и от их соотношения. Кроме того, молочная кислота оказывает влияние на процесс образования и структурно-механические свойства ржаного теста.


Маслянокислое брожение, вызываемое маслянокислыми бактериями, используют для производства масляной кислоты, эфиры которой применяют в качестве ароматических веществ, а для спиртового производства эти бактерии опасны,так как масляная кислота подавляет развитие, дрожжей и инактивирует a-амилазу.

К особым видам маслянокислых бактерий относятся ацетонобутиловые бактерии, превращающие крахмал и другие углеводы в ацетон, бутиловый и этиловый спирты. Эти бактерии используют в качестве возбудителей брожения в ацетонобутиловом производстве.

Уксуснокислые бактерии используют для получения уксуса (раствора уксусной кислоты), так как они способны окислять этиловый спирт в уксусную кислоту.

Следует отметить, что уксуснокислое брожение является вредным для спиртового производства. так как приводит к снижению выхода спирта, а в пивоварении ухудшает качество пива, вызывает его порчу.

Наука биология включает в себя большое количество подразделов и дочерних наук. Однако одной из самых молодых и перспективных, полезных для человека и его деятельности является микробиология. Сравнительно недавно возникшая, но стремительно набравшая обороты в развитии, эта наука на сегодняшний день сама стала родоначальницей таких разделов, как биотехнология и Что такое микробиология и как проходили этапы ее становления и развития? Разберемся в этом вопросе подробнее.

Что такое микробиология?

В первую очередь, микробиология - это наука. Объемная, интересная, молодая, но динамично развивающаяся наука. Этимология слова ведет свое происхождение от греческого языка. Так, "mikros" означает "малый", вторая часть слова происходит от "bios", что значит "жизнь", и заключительная часть от греч. "logos", что переводится как учение. Теперь можно дать дословный ответ на вопрос, что такое микробиология. Это учение о микро-жизни.

Другими словами, это изучение самых мелких живых существ, которые не видимы невооруженным глазом. К таким одноклеточным организмам относятся:

  1. Прокариоты (безъядерные организмы, или не имеющие оформленного ядра):
  • бактерии;
  • археи.

2. Эукариоты (организмы, имеющие оформленное ядро):

  • одноклеточные водоросли;
  • простейшие.

3. Вирусы.

Однако приоритетное значение в микробиологии отводится изучению именно бактерий самых разных видов, форм и способов получения энергии. Именно в этом состоят основы микробиологии.

Предмет изучения науки

На вопрос, что изучает микробиология, можно ответить так: она изучает внешнее многообразие бактерий по форме и размерам, их влияние на окружающую среду и на живые организмы, способы питания, развития и размножения микроорганизмов, а также их влияние на хозяйственную и практическую деятельность человека.

Микроорганизмы - это существа, способные обитать в самых разнообразных условиях. Для них практически нет пределов по температуре, по кислотности и щелочности среды, давлению и влажности. При любых условиях существует хотя бы одна (а чаще всего множество) группа бактерий, способная выживать. Сегодня известны сообщества микроорганизмов, которые заселяют совершенно анаэробные условия внутри вулканов, на дне термоисточников, в темных глубинах океанов, суровых условиях гор и скал и так далее.

Науке известны сотни видов микроорганизмов, которые со временем складываются в тысячи. Однако установлено, что это только малая толика того разнообразия, что есть в природе. Поэтому работы у микробиологов очень много.

Одним из самых знаменитых центров, в котором происходило подробное изучение микроорганизмов и всех процессов, с ними связанных, являлся Пастеровский институт во Франции. Названный в честь знаменитого основателя микробиологии как науки Луи Пастера, этот институт микробиологии выпустил из своих стен массу замечательных специалистов, которыми были совершены не менее замечательные и значительные открытия.

В России на сегодняшний день действует институт микробиологии им. С. Н. Виноградского РАН, который является самым крупным исследовательским центром в области микробиологии в нашей стране.

Исторический экскурс в микробиологическую науку

История развития микробиологии как науки складывается из трех основных условных этапов:

  • морфологический или описательный;
  • физиологический или накопительный;
  • современный.

В целом, история микробиологии насчитывает в своем развитии около 400 лет. То есть начало возникновения приходится примерно на XVII век. Поэтому и считается, что она достаточно молодая наука в сравнении с другими разделами биологии.

Морфологический или описательный этап

Само название говорит о том, что на данном этапе проходило, строго говоря, просто накопление знаний о морфологии бактериальных клеток. Началось все с открытия прокариот. Данная заслуга принадлежит родоначальнику микробиологической науки итальянцу Антонио ван Левенгуку, который обладал острым умом, цепким взглядом и хорошим умением логически мыслить и обобщать. Будучи также неплохим техником, он сумел выточить линзы, дающие увеличение в 300 раз. Причем повторить его достижение смогли только в середине XX века русские ученые. И то не вытачиванием, а выплавкой линз из оптического стекловолокна.

Вот эти линзы и послужили материалом, через который Левенгук обнаружил микроорганизмы. Причем изначально он ставил перед собой задачу весьма прозаичного характера: ученого интересовало, почему хрен такой горький. Растерев части растения и рассмотрев их под микроскопом собственного производства, он и увидел целый живой мир крошечных созданий. Было это в 1695 году. С этих пор Антонио начинает активно изучать и описывать различные виды бактериальных клеток. Он различает их только по форме, однако и это уже немало.

Левенгуку принадлежит около 20 рукописных томов, которые описывают подробно шаровидные, палочковидные, спиральные и другие виды бактерий. Им написан первый труд по микробиологии, который называется "Тайны природы, открытые Антони ван Левенгуком". Первая попытка систематизировать и обобщить накопленные знания по морфологии бактерий принадлежит ученому О. Мюллеру, который предпринял ее в 1785 году. С этого момента история развития микробиологии начинает набирать свои обороты.

Физиологический или накопительный этап

На данном этапе развития науки были изучены механизмы, лежащие в основе жизнедеятельности бактерий. Рассмотрены процессы, в которых они принимают участие и которые без них невозможны в природе. Была доказана невозможность самозарождения жизни без участия живых организмов. Все эти открытия были совершены в результате экспериментов великого ученого-химика, но после этих открытий еще и микробиолога, Луи Пастера. Сложно переоценить его значение в развитии этой науки. История микробиологии вряд ли сумела бы развиться так быстро и полно, если бы не этот гениальный человек.

Открытия Пастера можно отобразить несколькими основными пунктами:

  • доказал, что знакомый людям издревле процесс брожения сахаристых веществ обусловлен наличием определенного вида микроорганизмов. Причем для каждого вида брожения (молочно-кислое, спиртовое, масляное и так далее) характерно наличие специфической группы бактерий, которые его и осуществляют;
  • ввел в пищевую отрасль процесс пастеризации для избавления продуктов от микрофлоры, вызывающей их гниение и порчу;
  • ему принадлежит заслуга повышения иммунитета к болезням путем введения вакцины в организм. То есть Пастер - родоначальник прививок, именно он доказал, что болезни вызываются наличием болезнетворных бактерий;
  • разрушил представления об аэробности всего живого и доказал, что для жизни многих бактерий (маслянокислых, например) кислород вообще не нужен, и даже вреден.

Главной неоспоримой заслугой Луи Пастера стало то, что все свои открытия он доказывал экспериментально. Так, что ни у кого не могло оставаться сомнений в справедливости полученных результатов. Но на этом история микробиологии, конечно, не заканчивается.

Еще одним ученым, работавшим в XIX веке и внесшим неоценимый вклад в изучение микроорганизмов, стал - немецкий ученый, которому принадлежит заслуга выведения чистых линий бактериальных клеток. То есть в природе все микроорганизмы тесно взаимосвязаны между собой. Одна группа в процессе жизнедеятельности создает для другой, другая делает тоже самое для третьей и так далее. То есть это те же цепи питания, что и у высших организмов, только внутри бактериальных сообществ. Вследствие этого очень сложно изучить какое-то отдельное сообщество, группу микроорганизмов, ведь их размеры чрезвычайно малы (1 -6 м или 1 мкм) и, находясь в постоянном тесном взаимодействии между собой, они не поддаются тщательному изучению поодиночке. Идеальной представлялась возможность вырастить множество идентичных клеток бактерий одного сообщества в искусственных условиях. То есть получить массу одинаковых клеток, которые будут видны невооруженным глазом и изучить процессы у которых станет значительно легче.

Таким образом было накоплено множество ценных сведений о жизнедеятельности бактерий, их пользе и вреде для человека. Развитие микробиологии пошло еще более интенсивным путем.

Современный этап

Современная микробиология - это целый комплекс подразделов и мини-наук, которые занимаются изучением не только самих бактерий, но и вирусов, грибков, архей и всех известных и вновь открываемых микроорганизмов. На вопрос, что такое микробиология, сегодня можно дать очень полный и развернутый ответ. Это комплекс наук, занимающихся изучением жизнедеятельности микроорганизмов, их применения в практической жизни человека в разных областях и сферах, а также влияния микроорганизмов друг на друга, на окружающую среду и живые организмы.

В связи с таким обширным понятием микробиологии следует привести современную градацию данной науки на разделы.

  1. Общая.
  2. Почвенная.
  3. Водная.
  4. Сельскохозяйственная.
  5. Медицинская.
  6. Ветеринарная.
  7. Космическая.
  8. Геологическая.
  9. Вирусология.
  10. Пищевая.
  11. Промышленная (техническая).

Каждый из приведенных разделов занимается подробным изучением микроорганизмов, их влияния на жизнь и здоровье людей и животных, а также возможности использования бактерий в практических целях для улучшения качества жизни человечества. Все это в комплексе и есть то, что изучает микробиология.

Наибольший вклад в развитие современных методов микробиологии, способов выведения и возделывания штаммов микроорганизмов внесли такие ученые, как Вольфрам Циллиг и Карл Штеттер, Карл Везе, Норман Пейс, Уотсон Крик, Полинг, Цукеркандль. Из отечественных ученых это такие имена, как И. И. Мечников, Л. С. Ценковский, Д. И. Ивановский, С. Н. Виноградский, В. Л. Омелянский, С. П. Костычев, Я. Я. Никитинский и Ф. М. Чистяков, А. И. Лебедев, В. Н. Шапошников. Благодаря работам перечисленных ученых, были созданы способы борьбы с серьезными болезнями животных и людей (сибирская язва, сахарный клещ, ящур, оспа и так далее). Были созданы способы повышения иммунитета к бактериологическим и вирусным заболеваниям, получены штаммы микроорганизмов, способных перерабатывать нефть, создавать в процессе жизнедеятельности массу различных органических веществ, очищать и улучшать экологическую обстановку, разлагать нераспадающиеся химические соединения и многое другое.

Вклад этих людей поистине неоценим, поэтому некоторые из них (Мечников И. И.) получили Нобелевскую премию за свои работы. На сегодняшний день существуют дочерние науки, образовавшиеся на основе микробиологии, которые являются самыми передовыми в биологии - это биотехнология, биоинженерия и генная инженерия. Работа каждой из них направлена на получение организмов или группы организмов с заранее заданными свойствами, удобными человеку. На выведение новых методов работы с микроорганизмами, на получение максимальной выгоды от использования бактерий.

Таким образом, этапы развития микробиологии хотя и немногочисленны, однако очень содержательны и полны событиями.

Методы изучения микроорганизмов

Современные методы микробиологии основаны на работе с чистыми культурами, а также использовании новейших достижений техники (оптической, электронной, лазерной и так далее). Вот основные из них.

  1. Использование микроскопических технических средств. Как правило, только световые микроскопы полного результата не дают, поэтому применяются также люминесцентные, лазерные и электронные.
  2. Посевы бактерий на специальных питательных средах для выведения и культивирования абсолютно чистых колоний культур.
  3. Физиолого-биохимические методы анализа культуры микроорганизмов.
  4. Молекулярно-биологические методы анализа.
  5. Генетические методы анализа. На сегодняшний день стало возможным проследить генеалогическое древо практически каждой открытой группы микроорганизмов. Это стало возможным благодаря работам Карла Везе, который сумел расшифровать участок генома колонии бактерий. С этим открытием стало возможным построение филогенетической системы прокариот.

Совокупность перечисленных методов позволяет получать полную и подробную информацию о любом из вновь открывающихся или уже открытых микроорганизмов и находить им правильное применение.

Этапы микробиологии, которые она прошла в своем становлении как наука, не всегда включали такой щедрый и точный набор методов. Однако примечательно, что самым действенным в любые времена является метод экспериментальный, именно он послужил основой для накопления знаний и умений в работе с микромиром.

Микробиология в медицине

Один из наиболее важных и значимых именно для человеческого здоровья разделов микробиологии является медицинская микробиология. Предметом ее изучения стали вирусы и патогенные бактерии, которые вызывают тяжелые заболевания. Поэтому перед медиками-микробиологами стоит задача: выявить патогенный организм, культивировать его чистую линию, изучить особенности жизнедеятельности и причины, по которым наносится вред организму человека, и найти средство для устранения данного действия.

После того как чистая культура патогенного организма будет получена, необходимо провести тщательный молекулярно-биологический анализ. На основе результатов провести испытание устойчивости организмов к антибиотикам, выявить пути распространения заболевания и выбрать наиболее эффективный метод лечения против данного микроорганизма.

Именно медицинская микробиология, в том числе ветеринарная, помогла решить ряд злободневных проблем человечества: созданы бешенства, рожи непарнокопытных, оспы овец, анаэробных инфекций, туляремии и паратифа, стало возможным избавление от чумы и парапневмонии и так далее.

Пищевая микробиология

Основы микробиологии, санитарии и гигиены тесно взаимосвязаны между собой и вообще едины. Ведь патогенные организмы способны распространяться гораздо быстрее и в большем объеме, когда условия санитарии и гигиены оставляют желать лучшего. И в первую очередь это находит отражение в пищевой промышленности, при массовых производствах продуктов питания.

Современные данные о морфологии и физиологии микроорганизмов, биохимических процессах, вызываемых ими, а также влияние экологических факторов на микрофлору, развивающуюся в продуктах питания при транспортировании, хранении, реализации и переработке сырья, позволяют избежать многих проблем. Роль микроорганизмов в процессе формирования и изменения качества пищевых продуктов и возникновения ряда заболеваний, вызываемых патогенными и условно-патогенными видами, весьма значительна, и поэтому задачей пищевой микробиологии, санитарии и гигиены является эту роль выявить и повернуть на благо человеку.

Также пищевая микробиология культивирует бактерии, способные преобразовывать из нефти белки, использует микроорганизмы для разложения пищевых продуктов, для обработки многих товаров питания. Процессы брожения на основе молочно-кислых и масляно-кислых бактерий дают человечеству множество необходимых продуктов.

Вирусология

Совершенно отдельная и очень большая группа микроорганизмов, которая на сегодняшний день является самой малоизученной - это вирусы. Микробиология и вирусология - две тесно взаимосвязанные категории микробиологической науки, которые изучают патогенные бактерии и вирусы, способные нанести тяжкий вред здоровью живых организмов.

Вирусология раздел очень обширный и сложный, поэтому заслуживает отдельного изучения.

Белова Алена, 12 группа

Самостоятельная работа 1

Предмет микробиологии

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишённые хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишённые хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

Самостоятельная работа 2.

История развития микробиологии

Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооружённым какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни.

В таксономическом отношении микроорганизмы очень разнообразны. Они включают прионы, вирусы, бактерии, водоросли, грибы, простейшие и даже микроскопические многоклеточные животные.

По наличию и строению клеток вся живая природа может быть разделена на прокариоты (не имеющие истинного ядра), эукариоты (имеющие ядро) и не имеющие клеточного строения формы жизни. Последние для своего существования нуждаются в клетках, т.е. являются внутриклеточными формами жизни (рис. 1).

По уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки все живое делят на 4 царства жизни: эукариоты, эубактерии, архебактерии, вирусы и плазмодии.

К прокариотам, объединяющим эубактерии и архебактерии, относят бактерии, низшие (сине- зелёные) водоросли, спирохеты, актиномицеты, архебактерии, риккетсии, хламидии, микоплазмы. Простейшие, дрожжи и нитчатые грибы-эукариоты.

Микроорганизмы-это невидимые простым глазом представители всех царств жизни. Они занимают низшие (наиболее древние) ступени эволюции, но играют важнейшую роль в экономике, круговороте веществ в природе, в нормальном существовании и патологии растений, животных, человека.

Микроорганизмы заселяли Землю ещё 3- 4 млрд. лет назад, задолго до появления высших растений и животных. Микробы представляют самую многочисленную и разнообразную группу живых существ. Микроорганизмы чрезвычайно широко распространены в природе и являются единственными формами живой материи, заселяющими любые, самые разнообразные субстраты (среды обитания), включая и более высокоорганизованные организмы животного и растительного мира.

Можно сказать, что без микроорганизмов жизнь в ее современных формах была бы просто невозможна.

Микроорганизмы создали атмосферу, осуществляют кругооборот веществ и энергии в природе, расщепление органических соединений и синтез белка, способствуют плодородию почв, образованию нефти и каменного угля, выветриванию горных пород, многим другим природным явлениям.

С помощью микроорганизмов осуществляются важные производственные процессы - хлебопечение, виноделие и пивоварение, производство органических кислот, ферментов, пищевых белков, гормонов, антибиотиков и других лекарственных препаратов.

Микроорганизмы как никакая другая форма жизни испытывает воздействие разнообразных природных и антропических (связанных с деятельностью людей) факторов, что, с учётом их короткого срока жизни и высокой скорости размножения, способствует их быстрому эволюционированию.

Наибольшую печальную известность имеют патогенные микроорганизмы (микробы-патогены) - возбудители заболеваний человека, животных, растений, насекомых. Микроорганизмы, приобретающие в процессе эволюции патогенность для человека (способность вызывать заболевания), вызывают эпидемии, уносящие миллионы жизней. До настоящего времени вызываемые микроорганизмами инфекционные заболевания остаются одной из основных причин смертности, причиняют существенный ущерб экономике.

Изменчивость патогенных микроорганизмов составляет основную движущую силу в развитии и совершенствовании систем защиты высших животных и человека от всего чужеродного (чужеродной генетической информации). Более того, микроорганизмы являлись до недавнего времени важным фактором естественного отбора в человеческой популяции (пример - чума и современное распространение групп крови). В настоящее время вирус иммунодефицита человека (ВИЧ) посягнул на святое святых человека - его иммунную систему.

Основные этапы развития микробиологии, вирусологии и иммунологии

К ним можно отнести следующие:

1 Эмпирических знаний (до изобретения микроскопов и их применения для изучения микромира).

Дж.Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний- contagium vivum.

2 Морфологический период занял около двухсот лет.

Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов (максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах.

3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р. Коха.

Л. Пастер - изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов).

Р. Кох - метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры (запятой Коха), туберкулёза (палочки Коха), совершенствование техники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха.

4 Иммунологический период.

И.И. Мечников - “поэт микробиологии” по образному определению Эмиля Ру. Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета.

Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета, и родилась наука иммунология.

В дальнейшем было установлено, что наследственный и приобретенный иммунитет зависит от согласованной деятельности пяти основных систем: макрофагов, комплемента, Т- и В- лимфоцитов, интерферонов, главной системы гистосовместимости, обеспечивающих различные формы иммунного ответа. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия.

12 февраля 1892г. на заседании Российской академии наук Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И. Ивановского - ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. Однако только после установления природы гена и генетического кода вирусы были отнесены к живой природе.

5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин, и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго - вне хромосомного (плазмидного) генома бактерий.

Изучение плазмид показало, что они представляют собой еще более просто устроенные организмы, чем вирусы, и в отличии от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции.

6. Современный молекулярно-генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа.

В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно-биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в основе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно-генетические закономерности, свойственные более высоко организованным организмам.

Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии.

Расшифрованы молекулярно-генетическая организация многих вирусов и механизмы их взаимодействия с клетками, установлены способность вирусной ДНК встраиваться в геном чувствительной клетки и основные механизмы вирусного канцерогенеза.

Подлинную революцию претерпела иммунология, далеко вышедшая за рамки инфекционной иммунологии и ставшая одной из наиболее важных фундаментальных медико-биологических дисциплин. К настоящему времени иммунология - это наука, изучающая не только защиту от инфекций. В современном понимании иммунология - это наука, изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании структурной и функциональной целостности организма.

Иммунология в настоящее время включает ряд специализированных направлений, среди которых, наряду с инфекционной иммунологией, к наиболее значимым относятся иммуногенетика, иммуноморфология, трансплантационная иммунология, иммунопатология, иммуногематология, онкоиммунология, иммунология онтогенеза, вакцинология и прикладная иммунодиагностика.

Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию.

Медицинская микробиология и вирусология изучает возбудителей инфекционных болезней человека (их морфологию, физиологию, экологию, биологические и генетические характеристики), разрабатывает методы их культивирования и идентификации, специфические методы их диагностики, лечения и профилактики.

7.Перспективы развития.

На пороге 21 века микробиология, вирусология и иммунология представляют одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний.

Иммунология вплотную подошла к регулированию механизмов самозащиты организма, коррекции иммунодефицитов, решению проблемы СПИДа, борьбе с онкозаболеваниями.

Создаются новые генно- инженерные вакцины, появляются новые данные об открытии инфекционных агентов - возбудителей “соматических” заболеваний (язвенная болезнь желудка, гастриты, гепатиты, инфаркт миокарда, склероз, отдельные формы бронхиальной астмы, шизофрения и др.).

Появилось понятие о новых и возвращающихся инфекциях (emerging and reemerging infections). Примеры реставрации старых патогенов- микобактерии туберкулеза, риккетсии группы клещевой пятнистой лихорадки и ряд других возбудителей природноочаговых инфекций. Среди новых патогенов- вирус иммунодефицита человека (ВИЧ), легионеллы, бартонеллы, эрлихии, хеликобактер, хламидии (Chlamydia pneumoniae). Наконец, открыты вироиды и прионы - новые классы инфекционных агентов.

Вироиды - инфекционные агенты, вызывающие у растений поражения, сходные с вирусными, однако эти возбудители отличаются от вирусов рядом признаков: отсутствием белковой оболочки (голая инфекционная РНК), антигенных свойств, одноцепочечной кольцевой структурой РНК (из вирусов - только у вируса гепатита D), малыми размерами РНК.

Прионы (proteinaceous infectious particle- белкоподобная инфекционная частица) представляют лишенные РНК белковые структуры, являющиеся возбудителями некоторых медленных инфекций человека и животных, характеризующихся летальными поражениями центральной нервной системы по типу губкообразных энцефалопатии й- куру, болезнь Крейтцфельдта - Якоба, синдром Герстманна- Страусслера- Шайнкера, амниотрофический лейкоспонгиоз, губкообразная энцефалопатия коров (коровье “бешенство”), скрепи у овец, энцефалопатия норок, хроническая изнуряющая болезнь оленей и лосей. Предполагается, что прионы могут иметь значение в этиологии шизофрении, миопатий. Существенные отличия от вирусов, прежде всего отсутствие собственного генома, не позволяют пока рассматривать прионы в качестве представителей живой природы.

3. Задачи медицинской микробиологии.

К ним можно отнести следующие:

    Установление этиологической (причинной) роли микроорганизмов в норме и патологии.

    Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей.

    Бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях.

    Контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микро биоценозов (микрофлорой) поверхностей и полостей тела человека.

4. Методы микробиологической диагностики.

Методы лабораторной диагностики инфекционных агентов многочисленны, к основным можно отнести следующие.

    Микроскопический- с использованием приборов для микроскопии. Определяют форму, размеры, взаиморасположение микроорганизмов, их структуру, способность окрашиваться определёнными красителями.

    К основным способам микроскопии можно отнести световую микроскопию (с разновидностями- иммерсионная, темнопольная, фазово - контрастная, люминесцентная и др.) и электронную микроскопию. К этим методам можно также отнести авторадиографию (изотопный метод выявления).

    Микробиологический (бактериологический и вирусологический) - выделение чистой культуры и ее идентификация.

    Биологический - заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях (биопроба).

    Иммунологический (варианты - серологический, аллергологический) - используется для выявления антигенов возбудителя или антител к ним.

    Молекулярно-генетический - ДНК- и РНК- зонды, полимеразная цепная реакция (ПЦР) и многие другие.

Заключая изложенный материал, необходимо отметить теоретическое значение современной микробиологии, вирусологии и иммунологии. Достижения этих наук позволили изучить фундаментальные процессы жизнедеятельности на молекулярно-генетическом уровне. Они обусловливают современное понимание сущности механизмов развития многих заболеваний и направления их более эффективного предупреждения и лечения.

Viva animalika – маленькие зверушки.

В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

Начинается II период развития микробиологии пастеровский или физиологический.

Работы Пастера. (1822-1895)

Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

Пастер доказал невозможность самозарождения жизни.

Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

Пастеризация.

Роберт Кох (1843-1910)

Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

Русская микробиология.

^ Н. Н. Мечников (1845-1916)

Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

В 1909г. Получил за эту теорию Нобелевскую премию.

^ С. Н. Виноградский (1856-1953)

Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

^ В. Л. Омелонский (1867-1928)

Написал первый учебник по микробиологии.

Методы микробиологических исследований.

Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

Общебиологические :

Методы молекулярной биологии,

Цитохимии

Генетики

Биофизики

Химический состав и строение бактериальной клетки.

Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

Ультраструктура бактериальной клетки.

Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

Поверхностная структура это:

Ворсинки

Клеточная стенка

Внутренние структуры:

Цитоплазматическая мембрана (ЦПМ)

Нуклеоид

Рибосомы

Мезосомы

Включения

Функции органеллы.

^ Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

Функции

Поддержание постоянной внешней формы бактерий.

Механическая защита клетки

Дают возможности существовать в гипотонических растворах.

^ Слизистая капсула (слизистый чехол)

Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющее четко очерченную поверхность.

Различают:

Микрокапсулу (меньше 0,2 мкм)

Микрокапсулу (больше 0,2 мкм)

Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

Различают капсульные колонии:

S-типа (гладкие, ровные, блестящие)

R-типа (шероховатые)

Функции:

Защищает клетку от механических повреждений

Защищает от высыхания

Создает дополнительный осмотический барьер

Служит препятствием для проникновения вирусом

Является источником запасных питательных веществ

Может быть приспособлением к окружающей среде

Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

Функции:

Те же, что у капсулы.

Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

Жгутики

Функция

Локомоторная

ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

Функции:

Перенос веществ – через мембраны,

Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

Пассивный (по градиенту концентрации)

Локализуется большинство ферментативных систем клетки

Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

Нуклеоид :

Не имеет мембраны,

Не содержит хромасом

Не делиться митозом.

Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

Количество нуклеоидов в клетке – 1, реже от 1 до 8.

Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

Пластинчатые

Трубчатые

^ Функции

Окисление веществ.

Аэросомы - структуры, которые содержат какой-либо газ.

Внутрицитоплазмотические включения

В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

Химический состав клеток прокариотов.

В состав любой клетки прокариотов входят:

2 типа нуклеиновых кислот (ДНК и РНК)

Углеводы

Минеральные вещества

Вода

В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

Вода в клетках бывает в 3-х состояниях:

Свободном

Связанном

Связанном с боиполимерами

Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

^ Минеральные вещества

Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn, Mo, B, Cr, Co, Cu, и др.

Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

^ Роль минеральных веществ :

Являются активаторами и ингибиторами ферментативных систем.

Биополимеры.

Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

Нуклеиновых кислот

Углеводов (полисахаридов)

Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

^ Нуклиновые кислоты .

В клетках в среднем содержится 10% РНК и 3-4% ДНК.

Белки.

Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

Лепиды

В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

Углеводы

Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

Морфология бактерий.

По внешнему виду бактерии делятся на 3 группы:

Кокковидной формы

Палочковидной формы

Извитые (или спиралевидные)

^ Шаровидные бактерии – (кокки).

Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

или в виде виноградной кисти – стафилококки

Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

По признаку расположения клеток по отношению друг к другу кокки делят на:

Монококки

Диплококки

Стрептококки

Стафилококки

^ Палочковидные бактерии (цилиндрические)

Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

Палочковидные микроорганизмы могут образовывать споры.

Спорообразующие формы называются бациллы.

Неспорообразующие называються бактериями.

Булавовидные.

Клострициальные.

В зависимости от взаимного расположения делят:

Монобациллы

Диплобациллы

Стептобациллы

^ Спиралевидные бактерии

Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

В зависимости от количества витков делят на группы:

Вибрионы

Спироллы 4-6 витков

Спирохеты 6-15 витков

Чаще всего это болезнетворные микроорганизмы.

Существуют еще редко встречающиеся бактерии.

Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

Для некоторых групп прокариотов характерно ветвление.

В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

Движение бактерий.

Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

Скользящие

Плавающее

Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих

периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

Монотрих

Биполярный монотрих или амфитрих

Лофотрих

Амфитрих или биполярный лофотриф

Перетрих

Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

Жгутики не являются жизненно важными органами.

Жгутики как бы присутствуют на определенных стадиях развития клетки.

Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

Таксисы могут быть хема, фото, аэро,

Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

Споры и спорообразование.

Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

Микроцисты:

При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

Они функционально аналогичны бактериальным эндоспорам:

Более устойчивы к изменению температур

Высушиванию

Различным физическим воздействиям, чем вегетативная клетка.

Эндоспоры:

Образуются эндоспоры у следующих бактерий:

Desulfotomaculum

Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

Спора- это покоящаяся стадия спорообразующих видов бактерий.

Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

Факторы и индуцирующие споро образование:

Недостаток питательных веществ в среде

Изменение pH

Изменение температуры

Накопление выше определенного уровня продуктов клеточного метаболизма.

Принципы систематики микроорганизмов.

Понятие вид, штамм, клон.

Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

Важным критерием определения понятия вид является однородность особей.

Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillus anthracis.

В микробиологии широко применяются термины штамм и клон.

Штамм более узкое понятие чем вид.

Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

Однако свойства различных штаммов не выходят за пределы вида.

Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

Популяции микробов состоящие из особей одного вида называются чистой культурой.

Понятие о статических и проточных микробных культурах.
Хемостат

Турбиностат – определение мертвых микроорганизмов по мутности.

Таких емкостях выращивается проточная микробная культура.

Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

Закономерности роста и развития микроорганизмов.

Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

Размножение.

Под ростом подразумевается увеличение размеров организма или его живого веса.

Под размножением подразумевается увеличение количества организмов.

Скорости роста микробной популяции:
Абсолютная скорость.
Относительная скорость по биомассе.

Понятие генерации:

Фазы развития стационарной микробной культуры.

Фаза – лаг-фоза.

Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

Фаза – ускорение роста.

Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

Фаза – линейного роста.

Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

Фаза – замедление роста.

В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

II, III и IV фазы объединяются в одну фазу роста.

Фаза- стационарная.

В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

Фаза – отмирание.

Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.

Потребности прокариот в питательных веществах.

Бактерии кик и все живые организмы нуждаються в питательных веществах необходимых для синтеза основных клеточных компонентов, которые могут быть синтезированы клеткой или поступать в готовом виде.

Чем больше готовых соединений должен получать организм извне, тем ниже уровень его биосинтетических способностей, т.к. химическая организация всех живущих форм одинакова.

Источники углерода.

В конструктивном метаболизме основная роль принадлежит углероду. В зависимости от источника углерода для конструктивного метаболизма все прокариоты делятся на:

Автотрофов – организмы способные синтезировать все компоненты клетки из углекислого газа, воды и минеральных веществ.

Гетеротрофы – источником углерода для конструктивного метаболизма служат органические соединения.
Степени гетеротрофии.

Сапрофиты (сапрос – гнилой, греч.)

Гетеротрофные организмы, которые непосредственно от других организмов не зависят, но нуждаются в готовых органических соединениях. Они используют продукты жизнедеятельности других организмов или разлагающиеся растительные и животные ткани. К сапрофитам относятся большая часть бактерий.

Степень требовательности к субстрату у сапрофитов весьма различна.

В эту группу входят организмы которые могут расти только на достаточно сложных субстратах (молоко, трупы животных, гниющие растительные остатки), т.е. им нужны в качестве обязательных элементов питания углеводы, органические формы азота в виде кабера аминокислот, пентуров, белков, все или часть витаминов, нуклеотиды, или готовые

компоненты необходимые для синтеза последних (азотистые основания, пятиуглеродные сахара). Чтобы удовлетворить потребности этих гетеротрофов в элементах питания их обычно культивируют на средах содержащих мясные или рыбные гидролизаты, автолизаты дрожжей, растительные экстракты, молочную сыворотку.

Есть прокариоты требующие для роста весьма ограниченное число готовых органических соединений, в основном из число витаминов и аминокислот, хотя они не в состоянии синтезировать сами. С другой стороны есть гетеротрофы нуждающееся только в одном органическом источнике углерода (сахар, спирт, кислота или другие углерод содержащие соединения).

Олиготрофные бактерии (олиго – мало) обитают в водоемах, способны расти при низких концентрациях в среде органических веществ (в пределах 1-15 мг. Углерода на литр).
Потребности в азоте.

Азота содержится примерно 10-14% в расчете на сухой вес клетки. В природе азот встречаеться в окисленной, восстановленной форме и в виде молекулярного азота.

Подавляющее большинство прокариот усваивают азот в восстановленной форме (соли аммония, мочевина, аминокислоты или продукты их неполного гидролиза).

Роль микроорганизмов в круговороте азота.




денитрофикация



нитрофикация

азотофикация



аммонофикация


Источники серы и фосфора.

Сера фосфор необходимы в небольших количествах 1-3% от сухой массы клетки. Сера входит в состав аминокислот, витаминов и кофакторов (биотин, коферменты и т.д.). фосфор неаобходимый компонетк нуклеиновых кислот, коферментов.

В природе сера находится в форме неорганических солей, главным образом сульфатов, молекулярной серы или в составе органических соединений. большинство прокариот потреляют серу в виде сульфата переводя её в сероводород. Основная форма фосфора в природе – фосфаты и прокариоты потребляют в основном одно или двузамещенные фосфаты.

Роль ионов металлов.

Металлы в форме катионов неорганических солей, как составная часть ферментов в достаточно высоких концентрациях необходимы: Mg, Ca, K, Fe. В небольших количествах нужны: Zn, Mn, Na, Cu, Y, Ni, Co.

Факторы роста.

Некоторые прокариоты обнаруживают потребности в одном каком-либо органическом соединении из группы витаминов, аминокислот, или азотистых оснований, которые они по каким-либо причинам не могут синтезировать. Такие органические соединения необходимы в очень не больших количествах получили название факторов роста. Организмы которые в дополнение к основным источникам углерода необходим один и больше факторов роста называеться ауксотрофами, в отличии от прототрофов синтезирующих все необходимые органические соединения из основных источников углерода.

Общая характеристика метаболизма прокариот.

Метаболизм (обмен веществ) – складывается из двух противоположных, но взаимосвязанных потоков реакций.

Энергетический метаболизм (катоболизм) – это поток реакций сопровождающейся мобилизацией энергии и преобразованием её в электрохимическую (поток электронов) и химическую (АТФ), которая затем может использоваться во всех энергозависимых процессах.

Катоболизм характерен только для групп организмов, метаболизм который связан с превращением органических соединений.

Конструктивны метаболизм (анаболизм) (биосинтезы) –это поток реакций в результате которых за счет поступающих из вне веществ строиться вещество клеток. Это процесс

связанный с потреблением свободной энергией, запасенной в химической форме в молекулах АТФ или других богатых энергией соединений.

Есть прокариоты у которых функционирует один поток превращений органических соединений углерода.

Фотолитотрофы и хемолитотрофы.

Метоболические пути состоят из множества последовательных ферментативных реакций.

На начальном этапе потребления веществ из окружающей среды молекулы служащие исходным субстратом для питания перерабатываются в дополнительном (периферическом) метаболизме.

Связь между двумя типами метаболизма.

Катаболизм и анаболизм связаны по нескольким каналам:

Основной энергетический пред. Реакции поставляют энергию необходимую для биосинтеза и других клеточных энергозависимых функций.

Биосинтетические реакции кроме энергии часто нуждаются в поступлении из вне восстановителей в виде протонов H⁺ или электронов, источником которые также служат реакции энергетического метаболизма.

Определенные промежуточные этапы – метаболиты обеих путей могут быть одинаковыми, хотя направленность потоков реакции различно. Это создает возможность для использование общих промежуточных продуктов в каждом из метаболических путей. Промежуточные вещества называются амфиболитами, а промежуточные реакции – амфиболистическими. Ключевые метаболиты образуются на пересечении метаболистичесских путей и выполняющих многообразные функции называются центроболиты.

Ферменты.

Это катализаторы биохимических реакций клетки, белковой природы.

Классификация:

По месту действия.

Эндоферменты – ферменты которые работают внутри клетки.

Экзофермены – ферменты которые клетка выделяет за свою мембрану для того что бы расщеплять крупные молекулы.

По характеру присутствия в клетке.

Конститутивные – ферменты которые в клетке всегда есть.

Индуцибельные – которые вырабатываются клеткой в ответ на поступление нового питательного вещества.

Биохимическая (международная) 1961 год.

По характеру ферментных реакций.

Оксиредуктазы – это ферменты которые катализируют окислительно-восстановительные реакции, сопровождающиеся переносом протонов и электронов.

Трансферазы – это ферменты которые катализируют реакции переноса отдельных групп.

Гидролазы – это ферменты катализирующие гидролитическое расщипление сложных органических субстратов.

Лиазы – ферменты которые катализируют не гидролитическое расщипление субстрата.

Изомеразы – катализируют реакции изомеризации.

Лигазы (синтетазы) – катализируют реакции синтеза или образов сложных органических молекул.

Механизм ферментативных реакций.

Особенности ферментативных реакций.

Особенность ферментативных раекций состоит в строгой спецефичности действия ферментов.

Специфичность – это способность реагировать только с одним веществом или группой веществ. Специфичность бывает абсолютная- фермент действует только с одним веществом, и групповая – фермент катализирует реакции с группой веществ обладающих общими структурными признаками, относительная – проявляется в том случае, когда фермент действует на определенную химическую связь, стереохимическая – когда фермент действует на определенный стереоизомер.

Многие ферменты образуют так называемы мультиферментные системы
Эти системы определяют перенос веществ н\з клеточную мембрану, реакции фотосинтеза, окислительно-восстановительные процессы в метахондриях и тд. Процесс превращения вещества с участием системы ферментов представляет собой серию последовательных реакций, каждая из которых катализирует определенный фермент.

В отличие от неорганических катализаторов ферменты отличаются кооперативностью и строгой последовательностью действия.

Каждая клетка имеет регуляторные механизмы, позволяющие ей в зависимости от потребностей изменять скорость отдельных биохимических реакций, в результате регуляции синтеза определенных ферментов или их активности. Способность подчинять такой регуляции – важная особенность ферментов.

Каталич. Активность ферментов чрезвычайно высокая.

Реакция проходит в 10¹⁰ раз быстрее некаталической.

Способы существования прокариот.


Источник энергии

Источник электронов и протонов

Источник углерода

Способ существования микроорганизмов.

Свет

фото-


Литотрофы Mn, Fe, H

И др. неорг. соединения.


CO₂, HCO₃ автотрофы

Фотолитоавтоторофы

Органика,

гетеротрофы


фотолитогетеротрофы

Органические вещества органотрофы

CO₂, HCO₃ автотрофы

Фотоорганоавторофы

Органика,

гетеротрофы


фотоорганогетеротрофы

Химич. Связь

Хемо-


Неорганч. литорофы

CO₂, HCO₃ автотрофы

Хемолитоавтрофы

Органика,

гетеротрофы


Хемолитогетеротрофы

Органич. органотрофы

CO₂, HCO₃ автотрофы

Хемоорганоавтотровы

Органика,

гетеротрофы


Хемоорганогетеротрофы

Отношение к кислороду.

Если микроорганизмы нуждаются для осуществления окислительно-восстановительных реакций в кислороде, то их называют аэробными . Если микроорганизмы для осуществления окислительно-восстановительных реакций используются не в кислород, а окисленные соединения (NO₃, NO₂, SO₄ и т.п.), то их называют анаэробными.

Различают строгих (облигатных) аэробов или анаэробов.

Существуют так же факультативные (необязательные) аэробы и анаэробы.

Существуют группы никсотрофов (лизотрофы) – организмы способные переходить от одного способа питания к другому, или одновременно использовать 2 источника углерода и \ или 2 энергии: энергия света + энергия окисления органических хим. соединений.

Микроорганизмы и окружающая среда.

Представили прокариот разных способов существования

Фотолитоавтотрофы: цианобактерии, пурпурные и зеленые бактерии (+высшие растения)

Фотолитогетеротрофы: некоторые цианобактерии, пурпурные и зеленые бактерии.

Фотоорганоавтотрофы: некоторые пурпурные бактерии.

Фотоорганогетеротрофы: пурпурные и некоторые зеленые бактерии, галобактерии, некоторые цианобактерии.

Хемолитоавтотрофы: нитрифицирующие, теоновые, водородные ацидофильные железобактерии.

Хемолитогетеротрофы: метанообразующи, водородные бактерии.

Хемоорганоавтотрофы: факультативные литератрофы, окисляющие муравьиную кислоту.

Хемоорганогетеротрофы: большинство пркариот (+ все животные и грибы).

Физические факторы.

Температура :

Мезофиллы –микроорганизмы приспособленные к существованию в интервале средних температур (20⁰-45⁰ С). В этой группе как и в других есть организмы развивающиеся в более широком и более узком диапазоне температур и указанный интервал нельзя считать строго ограниченным.

К мезофиллам относиться большая часть микроорганизмов, в том числе и болезнетворные, причем наточенные для человека микробы имеют оптимум около 37⁰С.

Психрофилы – приспособлены к существованию про пониженных температурах (-8⁰,+20⁰С)

Большинство психрофинов способны расти при температурах характерных для мезофиллов, по этому их называют факультативными, т.е. не обязательными психрофилами.

В отличии них облигатные (обязательные) психрофилы погибают при температурах близких к +30⁰С. К данной группе относятся некоторые почвенные и морские бактерии а так же виды поточенные для морских животных и растений.

Некоторые психрофилы вызывают порчу продуктов хранящихся при пониженных температурах.

Термофилы – развиваются в зоне высоких температур 15⁰ – 75⁰С. В природе термофильные бактерии обитают в горячих источниках, молоке, почве, навозе.

Газовый состав атмосферы.

Аэробы, анаэробы. Есть узкие группы бактерий которые развиваются при избыточном содержании в воздухе некоторых газов.

^ Метан (СН₄), метанобразующие бактерии на торфяных почвах.

Водород (Н) водородные бактерии так же.

Азот (N₂) азотфиксирующие бактерии, почвенные бактерии находящиеся в симбиозе с корнями бобовых растений.

^ Сероводрод (H₂ S ) в навозных кучах болотах, в местах где много гниющей органики, сероводородные бактерии.

В разряженных частях атмосферы на высоте более 10км. Встречаются споры и жизнеспособные бактерии. На морских глубинах вплоть до 10 000 метров встречаются жизнеспособные бактерии. Есть данные, что в литосфере на глубине 5км. Так же встречаются споры и жизнеспособные бактерии.

Свет. (Смотреть фототрофов в способах сущ. прокариот.)

Биохимические факторы.

В природных условиях микроорганизмы существуют в сообществах и поэтому каждая отдельная особь испытывает влияние не только абатических факторов окружающей сред, но и подвергается воздействию факторов биохимического происхождения.

Все многообразие взяиомотношений между микроорганизмами пожно подразделить на 5 видов:

Метабиоз

Антагонизм

Из них 3 и 4 факторы являющиеся прямыми воздействиями, а 2 и 3 – косвенными воздействиями.

Симбиоз - сожительство организмов разных видов приносящее им взаимную пользу.

Азотфиктирующие бактерии и корни бобовых растений.

Метобиоз- такой тип взаимоотношений, при котором продукты жизнедеятельность жизнедеятельности одних организмов потребляются в качестве питательных веществ другими организмами.

Антогонизм- называют такие отношения когда продукты жизнедеятельности одного микроорганизма угнетают другой.

Существует 3 типа жизни:

Брожение (субстратное фосфорелирование)

Дыхание (окислительное фосфорелирование)

Фотосинтез (фотофосфорелирование)

Брожение характерно только для микроорганизмов, дыхание характерно для консументов и микроорганизмов, фотосинтез характерен для растений и микроорганизмов.

Брожение – самый древний тип жизни характерен тем, что расщепление углеродов происходит в акаэробных условиях. В зависимости от конечного продукта брожения различают спиртовое брожение, уксусно-кислое, пропионово-кислое, молочно-кислое, масляно-кислое и др.

Гликолиз – сбраживание углеродов.

1стадия происходит накопление простых сахаров и их превращение в глицеральдегидрофосфат.

Происходит расходование АТФ

Глюкоза С₆

Глюкоза 6 фосфор

Глюкоза 1-6 фосфат

2 глицеральдегидрофосфат
2 стадия:

Происходит окисление – восстановление триоз и существующее образование АТФ
Фн (фосфор не органический)+ глицеральдегирофосфат

1-3 дифосфоглицерат

3 фосфоглицерат

2 фосфоглицерат

Фосфоенолпируват.

Пируват (правиноградная кислота)

Спирт, молочная кислота и т.д.
^ Энергетический выход гликолиза

2 молекулы АТФ образуется при расщеплении 1 молекулы глюкозы

Дыхание

Процесс дыхания происходит в аэробных условиях. Происходит окисление углеродов за счет кислорода.

Цикл Кребса. См приложение 2.

Фотосинтез

Происходит образование углеродов из углекислого газа за счет энергии квантов света. См прил.3

Смысл – запасание энергии квантов света, химических связей триоз и образование тексоз.
Приложение

Классификация живого мира по Виттекеру.

Plentae(растения)Fundi(грибы) Animalia (животные)

Protista (одноклеточные)

Monera (бактерии)

Определение- Микробиология наука о животных организмах имеющих малые размеры и невидимых невооруженным глазом.

Микроорганизмы не представляют собой единой систематической группы. К ним относятся одноклеточные и многоклеточные организмы растительного и животного происхождения, а также особая группа прокарестических организмов-бактерий и бактериофаги, вирусы.

Размеры микроорганизмов.

Группа микроорганизмов

Размер микроорганизмов

Наука изучающая данную группу

Вирусология

Бактерии

Бактериология

Цианобактерии

Альгология

Микроскопические водоросли

Микроскопические животные

Протозоология

Микроскопические грибы

Микология(Фунгология)

История микробиологии.

Человек в своей практической деятельности встречался с микроорганизмами с древнейших времен: хлебопечение; виноделие; пивоварение; инфекционные заболевания.

Причины инфекционных заболеваний выяснялись начиная с древней Греции.

Гиппократ IVвек до н.э. (тиазмы в воздухе)

Фракастора Vвек до н.э. (учение о контагее)

Микроорганизмы впервые увидел Антонио Ван Левенгук 17век (1632-1723)

Vivaanimalika– маленькие зверушки.

В середине 19 века Геккель изучая более внимательно строение бактериальных клеток обнаружил, что оно отличаться от строения клеток растений и животных. Он назвал эту группу прокариоты (клетки не имеющие настоящего ядра), а остальные растения, животные и грибы которые в клетке имеют ядро отошли в группу эукариоты.

Начинается II период развития микробиологии пастеровский или физиологический.

Работы Пастера. (1822-1895)

Пастер поставил развитие микробиологии на новый путь. По воззрениям того времени брожение считалось чисто химическим процессом

    Пастер в своих работах показал, что каждый вид брожения вызывается свими специфическими возбудителями – микроорганизмами.

    Изучая масляно-кислое брожение Пастер установил, что для бактерий вызывающих это брожение воздух вреден и открыл новый тип жизни анаэробиоз.

    Пастер доказал невозможность самозарождения жизни.

    Пастер изучал инфекционные заболевания (сибирскую язву) и предложил метод предохранительных прививок как способ борьбы с инфекциями. Пастер сделал первый шаг и зарождению новой науки – иммунология. В 1888г. В Париже на средства собранные по подписке был построен институт микробиологии.

    Пастеризация.

Роберт Кох (1843-1910)

    Окончательно доказал, что заразные болезни вызываются болезнетворными бактериями. Указал приемы борьбы с распространением инфекционных заболеваний – ДЕЗИНФЕКЦИЯ.

    Ввел в практику микробиологических исследованный использование твердых патотельных сред для получения чистых культур.

    Открыл возбудителей сибирской язвы (1877г.), туберкулеза (1882г.), холеры(1883г.).

Русская микробиология.

Н. Н. Мечников (1845-1916)

Продолжил работы Пастера по предохранительным прививкам и обнаружил, что в ответ на введения в кровь ослабленного возбудителя болезни в крови появляется большое количество особых иммунных тел –фагоцитов, и т.о. обосновал теорию иммунитета.

В 1909г. Получил за эту теорию Нобелевскую премию.

С. Н. Виноградский (1856-1953)

Следовал серобактерии, железобактерии, нитрифицирующие бактерии. Изучал почвенные бактерии. Открыл явление азотофикации. Открыл процесс хемосинтеза.

Хемосинтез исп. химических связей внутри молекул, как источник энергии для настроения новых молекул.

В. Л. Омелонский (1867-1928)

Написал первый учебник по микробиологии.

Методы микробиологических исследований.

    Бактериоскопический –это изучение внешней формы микроорганизмов с помощью увеличительных приборов.

    Бактериологический – это метод выращивания бактерий искусственных питательных средах. С помощью этого метода изучаеться форма бактериальных колоний, период роста, и др. характеристики роста бактериальных культур.

    Общебиологические :

    Методы молекулярной биологии,

    Цитохимии

    Генетики

    Биофизики

Химический состав и строение бактериальной клетки.

    Поверхностные клеточные структуры и внеклеточные образования: 1- клеточная стенка; 2-капсула; 3-слизистые выделения; 4-чехол; 5-жгутики; 6-ворсинки.

    Цитоплазматические клеточные структуры: 7-ЦМП; 8-нуклеотид; 9-рибосомы; 10-цитоплазма; 11-хроматофоры; 12-хлоросомы; 13-пластинчатые тилакоиды; 16-мезасома; 17-аэросомы (газовые вакуоли) ; 18-ламелярные структуры;

    Запасные вещества: 19-полисахарные гранулы; 20-гранулы поли-β-оксимасляной кислоты; 21-гранулы полифосфата; 22-цианофициновые гранулы; 23-карбоксисомы (полиэдральные тела); 24-вкючения серы; 25-жировые капли; 26-углеводородные гранулы.

Ультраструктура бактериальной клетки.

Разные методы исследования позволили выявить различия внутренней и внешней структуры у бактерий.

Поверхностная структура это:

  • Ворсинки

    Клеточная стенка

Внутренние структуры:

    Цитоплазматическая мембрана (ЦПМ)

    Нуклеоид

    Рибосомы

    Мезосомы

    Включения

Функции органеллы.

Клеточная стенка – обязательная структура для прокариотов за исключением микоплазмы и L-формы. На долю клеточной стенки приходится от 5 до 50% сухого вещества клетки.

Клеточная стенка имеет поры и пронизана сетью каналов и разрывов.

Функции

    Поддержание постоянной внешней формы бактерий.

    Механическая защита клетки

    Дают возможности существовать в гипотонических растворах.

Слизистая капсула (слизистый чехол)

Капсула и слизистый чехол покрывают клетку снаружи. Капсулой называется слизистое образование покрывающее клеточную стенку, имеющеечетко очерченную поверхность.

Различают:

    Микрокапсулу (меньше 0,2 мкм)

    Микрокапсулу (больше 0,2 мкм)

Наличие капсулы зависит от вида микроорганизмов и условий культивирования.

Различают капсульные колонии:

    S-типа (гладкие, ровные, блестящие)

    R-типа (шероховатые)

Функции:

    Защищает клетку от механических повреждений

    Защищает от высыхания

    Создает дополнительный осмотический барьер

    Служит препятствием для проникновения вирусом

    Является источником запасных питательных веществ

    Может быть приспособлением к окружающей среде

Под слизистым чехлом понимают аморфное бесструктурное слизистое вещество окружающее клеточную стенку и легко отделяющееся от неё.

Иногда ослизнение происходит у нескольких клеток так, что образуется общий чехол (зоология)

Функции:

Те же, что у капсулы.

Ворсинки представляют собой тонкие полые образования белковой природы (длина от 0,3-10 мкм, толщина 10 нм). Ворсинки подобно жгутикам являеться поверхностными придатками бактериальной клетки, но не выполняют локомоторную реакцию.

Жгутики

Функция

Локомоторная

ЦПМ – обязательный структурный элемент клетки. На долю ЦПМ приходиться 8-15% сухого вещества клетки из них 50-70% - белки 15-30% - липиды. Толщина ЦПМ 70-100Å (10⁻¹⁰).

Функции:

    Перенос веществ – через мембраны,

    Активный (против градиента концентрации, осуществляется белками – ферментами с затратой энергии)

    Пассивный (по градиенту концентрации)

    Локализуется большинство ферментативных систем клетки

    Имеет специальные участки для прикрепления ДНК прекариотной клетки и именно рост мембраны обеспечивает разделение геномов при делении клетки.

Нуклеоид . Вопрос о наличии ядра у бактерий в течении десятилетий носил дискуссионный характер.

При помощи электронной микроскопии ультратонких срезов бактериальных клеток, усовершенствованных цитохимических методах, радиографических и генетических исследований доказано наличие у бактерий нуклеодида – эквивалента ядра в клетке эукариотов.

Нуклеоид :

    Не имеет мембраны,

    Не содержит хромасом

    Не делиться митозом.

Один нуклеоид представляет собой макромолекулу ДНК с молекулярным весом 2-3*10⁹, размером 25-30 Å.

В развернутом состоянии это замкнутая кольцевая структура длинной примерно 1мнм.

В молекуле ДНК нуклеоида закодирована вся генетическая информация клетки и т.о. она является своеобразной кольцевой хромасомой.

Количество нуклеоидов в клетке – 1, реже от 1 до 8.

Рибосомы – это нуклеоидные частицы размером в 200-300Å. Ответственны за синтез белка. Находятся в цитоплазме прокариотов в количестве 5-50 тысяч.

Хроматофоры – это складки цитоплазматической мембраны в виде капель, которые содержат окислительно-восстановительные ферменты. У фотосинтетиков – ферменты осуществляют синтез веществ за счет энергии солнца, у хемосинтетиков- за счет разрушенных химических связей молекулы.

Тилокоиды так же содержат набор окислительно-восстановительных ферментов. Они есть и у фотосинтеиков и у хемосинтетиков. Очевидно прообраз митохондрий.

    Пластинчатые

    Трубчатые

Функции

    Окисление веществ.

Аэросомы - структуры, которые содержат какой-либо газ.

Внутрицитоплазмотические включения

В процессе жизнедеятельности бактериологической клетки в её цитоплазме могут формироваться морфологические образования, выявляемые цитохимическими методами. Эти образования названные включениями по своей химической природе различны и не одинаковы у разных бактерий. В одних случаях включения являются продуктами обмена бактериальной клетки, а в других запасным питательным питательным веществом.

Химический состав клеток прокариотов.

В состав любой клетки прокариотов входят:

    2 типа нуклеиновых кислот (ДНК и РНК)

  • Углеводы

    Минеральные вещества

Вода

В количественном отношении самый значительный компонент клеток микроорганизмов, количество её составляет 75-85%. Количество воды зависит от вида микроорганизмов, условий роста, физиологического состояния клетки.

Вода в клетках бывает в 3-х состояниях:

    Свободном

    Связанном

    Связанном с боиполимерами

Роль воды. Универсальный растворитель- необходимый для растворения многих химических растворений и осуществления реакций промежуточного метаболизма (гидролиз).

Минеральные вещества

    Биогены (углерод(50%), водород,кислород,азот(14%),фосфор(1%),сера)

    Макроэлементы (0,01-3% от сухой массы клетки) K, Na, Mg, Ca, Cl, Fe.

    Микроэлементы (0,001-0,01% от сухой массы клетки) Mg, Zn,Mo,B,Cr,Co,Cu, и др.

    Ультрамикроэлементы (<0,001%) вся остальная таблица Менделеева.

Соотношение отдельных химических элементов может колебаться в значительных пределах, в зависимости от систематического положения микроорганизмов, условий роста и ряда других причин.

Количество минеральных веществ составляет 2-14% от сухой массы клетки, после биогенов.

Роль минеральных веществ :

    Являются активаторами и ингибиторами ферментативных систем.

Биополимеры.

Основные химические элементы входят в состав биополимеров присущих всем живым организмам:

    Нуклеиновых кислот

  • Углеводов (полисахаридов)

Характерным только для клеток – прокариот являются биополимер составляющий основу их клеточной стенки (по химическому составу это гликопептид или пептидогликан).

Нуклиновые кислоты .

В клетках в среднем содержится 10% РНК и 3-4% ДНК.

Белки.

Важнейшее значение в структуре и функции клеток принадлежит белкам, на долю которых приходиться 50-75% от сухой массы клетки.

Значит долю белков микроорганизмов составляют ферменты играющие существенную роль в проявлении жизнедеятельности прокариот. К биологически активным белкам принадлежат белки участвующие в транспорте питательных веществ а также многие токсины.

Часть белков составляют белки выполняющие структурную функцию – белки ЦПМ, клеточной стенки и др. органелл клетки.

Лепиды

В состав лепитов прокариот входят жирные кислоты, нейтральные жиры, фосфолепиды, гликолепиды, воска, лепиды содержащие изопреновые единицы (каротеноиды, бактопренол).

Микоплазмы в отличие от всех других прокариот содержат холестерин. Большая часть лепидов входит в состав мембраны клетки и клеточной стенки.

Углеводы

Из них состоят многие структурные компоненты клетки. Они используются в качестве доступных источников энергии и углерода. В клетках содержаться как моносахариды, так и полисахариды.

Морфология бактерий.

По внешнему виду бактерии делятся на 3 группы:

    Кокковидной формы

    Палочковидной формы

    Извитые (или спиралевидные)

Шаровидные бактерии – (кокки).

Могут быть самостоятельными клетками – монококки °₀° или связанными попарно – диплококки или связанными в цепочку – стрептококки или в пакете – сарцины

или в виде виноградной кисти – стафилококки

Бактерии шаровидной формы называемые кокками имеют правильную сферическую форму или форму неправильного шара.

Средний диаметр кокков – 0,5-1,5 мкм, у пневмококков например –

По признаку расположения клеток по отношению друг к другу кокки делят на:

    Монококки

    Диплококки

    Стрептококки

  • Стафилококки

Палочковидные бактерии (цилиндрические)

Различаются по форме величине в длину и в поперечнике, в форме концов клетки а так же взаимному расположению.

Размеры в поперечнике 0,5-1 мкм, длинна 2-3мкм.

Большинство палочковидных бактерий имеют форму прямого цилиндра. Некоторые бактерии могут иметь либо прямую либо слегка изогнутую форму.

Изогнутая форма встречается у вибрионов к которым относится возбудитель холеры.

У отдельных бактерий встречаются нитевидные и ветвящиеся формы.

Палочковидные микроорганизмы могут образовывать споры.

Спорообразующие формы называются бациллы.

Неспорообразующие называються бактериями.

Булавовидные.

Клострициальные.

В зависимости от взаимного расположения делят:

    Монобациллы

    Диплобациллы

    Стептобациллы

Спиралевидные бактерии

Бактерии имеющие изгибы, равные одному или нескольким оборотам спирали.

В зависимости от количества витков делят на группы:

    Вибрионы

    Спироллы 4-6 витков

    Спирохеты 6-15 витков

Чаще всего это болезнетворные микроорганизмы.

Существуют еще редко встречающиеся бактерии.

Шаровидная, палочковидная и спиралевидная форм бактерий самые распространенные, но встречатся и другие формы:

    Имеют вид кольца (замкнутого или разомкнутого в зависимости от стадии роста). Такие клетки предложено называть тороидами.

    У некоторых бактерий описано образование клеточных выростов, число которых может колебаться от 1 до 8и более.

    Существуют так же бактерии напоминающие по виду правильную шестиугольную звезду.

    Для некоторых групп прокариотов характерно ветвление.

    В 1980 году английский микробиолог Уолсби сообщил что микроорганизмы могут быть квадратными.

Форма бактерий наследственно закреплена (за исключением мипопиазм и L- форм), и по этому является одним из критериев при определении микроорганизмов.

Движение бактерий.

Способность активно передвигаться присуща многим бактериям. Существуют 2 типа подвижных бактерий:

    Скользящие

    Плавающее

    Скольжение. Микроорганизмы передвигаются по твердому и полу твердому субстрату (почва, ил, камни). В результате волнообразных сокращений вызывающих периферическое изменение формы тела. Образуется некоторое подобие бегущей волны: выпуклости клеточной стенки, которая перемещаясь в одном направлении способствует движению в противоположную сторону.

    Плавание. Палочковидные бактерии относятся к плавающим формам, а так же большинство спирилл и некоторые кокки.

Все эти бактерии передвигаются с помощью особых поверхностных нитевидных образований, называемых жгутиками. Различают несколько типов жгутикования в зависимости от того как они расположены на поверхности и сколько их:

    Монотрих

    Биполярный монотрих или амфитрих

    Лофотрих

    Амфитрих или биполярный лофотриф

    Перетрих

Толщина жгутиков 0,01-0,03 мкм. Длинна меняется у одной и той же клетки в зависимости от условий окружающей среды от 3-12 мкм.

Число жгутиков различно у разных видов бактерий, у некоторых перитрихов она достигает 100.

Жгутики не являются жизненно важными органами.

Жгутики как бы присутствуют на определенных стадиях развития клетки.

Скорость передвижения бактерий при помощи жгутиков различается у разных видов. Большинство бактерий проходит за секунду расстояние равное длине своего тела. Некоторые бактерии при благоприятных условиях могут проходить расстояния превышающие 50 длин тела.

В перемещениях бактерий есть определенный смысл, они стремятся в сторону наиболее благоприятных условий существования. Они называются таисисами.

Таксисы могут быть хема, фото, аэро,

Если в сторону благоприятных факторов то это положительно таксис , если от факторов, то отрицательно таксис.

Споры и спорообразование.

Многие бактерии способны образовывать структуры помогающие им переживать в течение длительного времени не благоприятные условия и переходить в активное состояние при попадание в подходящие для этого условия. Эти формы называются цистами эндоспорами.

Микроцисты:

При их образовании происходит утолщение стенки вегетативной клетки, в результате чего формируются оптически плотные, яркопреломляющие свет, окруженные слизью, укороченные палочки или сферические формы.

Они функционально аналогичны бактериальным эндоспорам:

    Более устойчивы к изменению температур

    Высушиванию

    Различным физическим воздействиям, чем вегетативная клетка.

Эндоспоры:

Образуются эндоспоры у следующих бактерий:

  • Desulfotomaculum

Формирование споры начинается с того что в зоне локализации нитей ДНК происходит уплотнение цитоплазмы, которая вместе с генетическим материалом обособляется от остального клеточного содержимого с помощью перегородки. Образуются плотные мембранные слои между которыми начинается формирование кортикального слоя (кортекс).

Спора- это покоящаяся стадия спорообразующих видов бактерий.

Бактерии образуют споры, когда создаются такие условия в окружающей среде которые индуцируют процесс спорообразования.

Считается что споры не обязательная стадия цикла развития споро образующих бактерий.

Можно создать условия в которых рост и размножение бактериальных клеток происходит без спорообразования в течении многих поколений.

Факторы и индуцирующие споро образование:

    Недостаток питательных веществ в среде

    Изменение pH

    Изменение температуры

    Накопление выше определенного уровня продуктов клеточного метаболизма.

Принципы систематики микроорганизмов.

Понятие вид, штамм, клон.

Основная таксономическая единица –вид который следует рассматривать как конкретную форму существования органического мира.

В микробиологии понятие вид можно определить как совокупность микроорганизмов имеющих единое происхождение и генотип, сходных по своим биологическим признакам и обладающих наследственно закрепленной способностью вызывать в стандартных условиях качественно-определенные процессы.

Сравнительно однородные виды бактерий определяют в роды → семейства → порядки → классы.

Важным критерием определения понятия вид является однородность особей.

Для микроорганизмов строгая однородность признаков не является характерными, поскольку их морфологические свойства могут изменяться в зависимости от условий окружающей с среды в течение короткого времени.

Название микроорганизма состоит из двух слов: первое слово означает род (оно пишется с большой буквы и является производной от какого либо термина характеризующего признак, или от фамилии автора открывшего или изучившего этот микроорганизм), второе слово обозначает конкретный вид (пишется с маленькой буквы и является производным существительного определяющего источник происхождения микроба, либо название вызываемого им заболевания, либо фамилия автора). Bacillusanthracis.

В микробиологии широко применяются термины штамм иклон.

Штамм более узкое понятие чем вид.

Штаммами называются различные микробные культуры одного вида, выделенные из различных источников или из одного источника, но в разное время.

Штаммы одного вида могут быть совершенно идентичными или различаться по отдельным признакам (например по устойчивости к какому – либо антибиотику, ферментации какого-либо сахара и т.д.).

Однако свойства различных штаммов не выходят за пределы вида.

Термином клон обозначают культуру микроорганизмов полученную из одной клетки.

Популяции микробов состоящие из особей одного вида называются чистой культурой.

Понятие о статических и проточных микробных культурах.

Хемостат

Турбиностат – определение мертвых микроорганизмов по мутности.

Таких емкостях выращивается проточная микробная культура.

Для выращивания проточной микробной культуры, выращенной в условиях постоянной подпитки и удаления продуктов метаболизма и мертвых микробных клеток.

Статичная микробная культура – это популяция бактерий находящихся в ограниченном жизненном пространстве, которое не обменивается ни веществом ни энергией с окружающей средой.

Закономерности роста и развития микроорганизмов.

Изменение и обновление организма в процессе его обмена с окружающей средой называется развитием. Развитие организма имеет 2 следствия:

    Размножение.

Под ростом подразумевается увеличение размеров организма или его живого веса.

Под размножением подразумевается увеличение количества организмов.

Скорости роста микробной популяции:

Абсолютная скорость.

Относительная скорость по биомассе.

Понятие генерации:

Фазы развития стационарной микробной культуры.

    Фаза – лаг-фоза.

Период от внесения бактерий до достижения ими максимальной относительной скорости роста. В этот период бактерии приспосабливаются к новой среде обитания и поэтому размножаются не значительно. К концу лаг-фазы клетки часто увеличивают свой оббьем и т.к. их количество в этот момент не велико, то относительная скорость роста биомассы становиться максимальной, по окончании этого периода, в то время как абсолютная скорость лишь незначительно увеличиваться. Длительность лаг-фазы зависит как от внешних условий так и от возраста бактерий и их видовой специфичности. Как правило чем полноценней среда, тем короче лаг-фаза. Изменение в химическом составе бактериальной клетки выражается в накоплении запасных питательных веществ и в резком повышении содержания РНК (в 8-12 раз), что свидетельствует об интенсивном синтезе ферментов, необходимых для дальнейшего роста и развития клетки.

    Фаза – ускорение роста.

Характеризуется постоянной относительной скоростью деления клеток. В этот период число клеток возрастает по экспоненте. Удельная скорость остается постоянной и максимальной, а абсолютная скорость быстро возрастает. Скорость деления клеток в фазе ускоренного роста является максимальной для них, причем для различных видов бактерий и условий окружающей среды эта скорость различна, так например, кишечная палочка в этой фазе делится каждые 20 минут, для некоторых почвенных бактерий время генерации 60-150 минут, а у нитрифицирующих бактерий 5-10 часов. В течении этой фазы величина клеток и их химический состав остаются постоянными.

    Фаза – линейного роста.

Эта фаза характеризуется резким снижением удельной скорости роста, т.е. увеличением времени генерации. Причиной этому служит начинающийся дефицит питательных веществ и избыточное содержание в среде продуктов обмена, которые в определенной концентрации негативно влияют на рост популяции. В этот период количество бактерий увеличивается линейно, а абсолютная скорость достигает максимума.

    Фаза – замедление роста.

В этот период дефицит питательных веществ и концентрации продуктов обмена продолжают увеличиваться, что сказывается на падении абсолютной и относительной скоростей роста. Увеличение количества клеток постепенно замедляется и к концу фазы и к концу фазы приближается к максимуму. В этот период характеристика отмирания части наименее приспособленных клеток.

II,IIIиIVфазы объединяются в одну фазуроста.

    Фаза- стационарная.

В течение этой фазы количество живых клеток в культуре сохраняется примерно постоянным, т.к. число вновь образующихся клеток равно числу отмирающих. Абсолютная и относительная скорости роста приближаются к нулевой отметке. Отмирание или выживание бактерий в этой фазе не является случайными событиями. Выживают как правило те клетки, которые способны качественно перестроить свой обмен веществ. Для всех бактерий в этой фазе характерно использование запасенных веществ, распад части клеточных веществ, биомассы статической культуры в этой фазе достигает максимума и поэтому называется выходом или урожаем культуры. количество урожая зависит от видовой принадлежности микроорганизмов, от природы и количества питательных веществ, а так же от условий культивирования. В микробных производствах проточные микробные культуры поддерживают в стационарной фазе развития.

    Фаза – отмирание.

Эта фаза наступает в тот момент когда концентрация какого либо из необходимых клеткам питательных веществ, падает до условного нуля, или когда какой-либо продукт обмена достигает такой концентрации в среде, при которой он токсичен для большинства клеток. Абсолютная и удельная скорости роста отрицательны, что говорит об отсутствии деления клеток.