Формула перемещения тела без начальной скорости. Перемещение при прямолинейном равноускоренном движении. Начальная скорость тела не равна нулю

Слайд 2

Учимся решать задачи

Из основных уравнений: Где y0=0, v0y=0, ay=g, y =h, v y= v Получаем формулы: (1) (2)

Слайд 3

Пустьh(1) –путьпройденный телом в одну секунду h (2) –путь пройденный телом во вторую секунду, в третью и т.д.h 2 – путь пройденный телом за две секунды h (1): h (2):h (3)… = 1: 3: 5… Надо помнить: h1 = h(1) Формула 2t -1 позволяет определить любое нечетное число, которое соответствует модулю вектора перемещения в n-секунду движения, Так для h (5) соответствует нечетное число: 2 · 5 -1 =9

Слайд 4

Задача № 1 (FА.П. Рымкевич) Тело свободно падает с высоты 80 м. Каково его перемещение в последнюю секунду падения? Оформляем стандарт: Дано: СИ Решение: «Дано» и «СИ» запиши сам

Слайд 5

Решение 1 (способ)

Разбираемся с термином: « в последнюю секунду падения», Надо знать: сколько времени тело падало для этого из формулы (1) находим время. 2. Подставляем числовые значения, получаем, что t = 4 с 3. Следовательно, тело падало 4 секунды, Нам надо определить перемещение в четвертую секунду падения (помним отличия) 4. Составляем уравнения: h (1): h (4) = 1: 7 получаем h (4) =7 h(1) 5. Где h (1) = h 1 = h (1) = h 1=5 м. 6.h (4) =7·5 м = 35 м. Пишем ответ.

Слайд 6

Решение (2 способ)

1. Тело находилось в падении 4 секунды. Значит, четвертая секунда падения – это разность между четырьмя и тремя секундами движения. 2. Тогда искомое перемещение h (4) = h 4 – h 3 где h 4 – перемещение за 4 секунды падения; h3 – перемещение за три секунды падения. 3. Из формулы Находим h4=g·16/2=80 м, что дано в условии задачи; h3=g·9/2=45м, Тогда h(4) =80 м – 45 м = 35 м. Пишем ответ.

Тема: «Перемещение тела при прямолинейном равноускоренном движении. Без начальной скорости».

Цели урока:

Обучающая:

  • сформировать понятие перемещения при прямолинейном равноускоренном движении с учётом существования причинно-следственных связей;
  • рассмотреть графическое представление равноускоренного движения и отработать решение задач на нахождение параметров равноускоренного движения с применением формул;
  • сформировать практические умения применять знания в конкретных ситуациях.

Развивающая:

  • развивать умение читать и строить графики зависимости перемещения, скорости и ускорения от времени при равноускоренном движении;
  • развивать речь учащихся через организацию диалогического общения на уроке;
  • развивать и поддерживать внимание учащихся через смену учебной деятельности.

Воспитательная:

  • воспитывать познавательный интерес, любознательность, активность, аккуратность при выполнении заданий, интерес к изучаемому предмету.

Оборудование урока:

компьютер, мультимедийный проектор, экран, презентация «Перемещение при прямолинейном равноускоренном движении» (собственная разработка), распечатанная таблица для рефлексии.

Оборудование для демонстраций:

тележки легкоподвижные, секундомер, грузы на блоке.

План урока:

  1. Фронтальный опрос. Решение графических задач.
  1. Основная часть. Изучение нового материала (20 мин). Изложение нового материала с использованием презентации с дополнительными комментариями учителя, элементами беседы, демонстрация опытов.
  1. Закрепление (10 мин).

Фронтальный опрос. Решение задач.

Выставление оценок. Домашнее задание.

Ход урока

  1. Актуализация опорных знаний (10 мин).

Организационный момент. Объявление темы и целей урока.

Слайд 1,2.

Фронтальный опрос:

  1. Какие виды движения вы знаете?
  2. Дать определение каждого из них.
  3. Какие величины характеризуют эти виды движения?
  4. Что называется ускорением равноускоренного движения?
  5. Что такое равноускоренное движение?
  6. Что показывает модуль ускорения?
  7. Поезд отходит от станции. Как направлено его ускорение?
  8. Поезд начинает тормозить. Как направлены его скорость и ускорение?

Демонстрации (учитель показывает опыты) :

1. Движение тележки по наклонной плоскости с начальной нулевой скоростью.

2. Движение двух грузов, подвешенных на нити, перекинутой через блок.

(Ученики дают характеристику движения тел в увиденных опытах).

Слайд 3.

Решите устно. №1.

Охарактеризуйте движения материальных точек, графики зависимости v х (t) ,

которых 1 и 2 представлены на рисунке 1. Как определить по этим графикам проекцию перемещения точки на ось х, его модуль и пройденный путь?

Слайд 4.

Решите устно. №2.

На рисунке 2 схематически показаны графики зависимости скорости тел от времени.

Что общего у этих движений, чем они отличаются?

Слайд 5.

Решите устно. №3.

Какой из участков графика зависимости скорости от времени (рис. 3) соответствует равномерному движению, равноускоренному с возрастающей скоростью, равноускоренному с уменьшающейся скоростью?

Слайд 6.

Решите устно. №3.

На рисунке 4 схематически показаны графики зависимости скорости тел от времени. Что общего у всех движений, чем они отличаются?

  1. Основная часть. Изучение нового материала (15 мин).

Слайд 7.

Учитель анализирует графики зависимости физических величин при равноускоренном движении в форме диалога с учениками (слайды 7-11).

График проекции вектора скорости тела, движущегося с постоянным ускорением (рис. 5).

Площадь под графиком скорости численно равна перемещению. Следовательно, площадь трапеции численно равна перемещению.

Слайд 8.

Уравнение для определения проекции вектора перемещения тела при его прямолинейном равноускоренном движении:

Слайд 9.

Перемещение тела при прямолинейном равноускоренном движении без начальной скорости:

Слайд 10.

График зависимости проекции вектора перемещения тела от времени (рис. 6), если тело движется с постоянным ускорением.

Слайд 11.

График зависимости координаты тела от времени тела, движущегося с постоянным ускорением (рис. 7).

  1. Закрепление (15 мин).

Слайд 12.

Подумай и ответь! №5 .

Чему равно перемещение тела, если график изменения его скорости от времени изображен схематично на рисунке 8?

Слайд 13.

Подумай и ответь! №6 .

На рисунке 9 схематически показаны графики зависимости тел от времени. Что общего у всех движений, чем они отличаются?

Слайд 14.

Задача №8 (решение учеником у доски).

Кинематический закон движения поезда вдоль оси Ох имеет вид: x= 0,2t 2 .

Разгоняется или тормозит поезд? Определите проекцию начальной скорости и ускорение.

Запишите уравнение проекции скорости на ось Ох. Постройте графики проекций ускорения и скорости.

Задача №9 (решение учеником у доски).

Положение катящегося вдоль оси Ох по полю футбольного мяча задается уравнением
x =10 + 5t - 0,2t 2 . Определите проекцию начальной скорости и ускорение. Чему равна координата мяча и проекция его скорости в конце 5-й секунды?

Слайд 15.

Подумай и найди соответствие (рис.10). №7 .

IV. Рефлексия. Подведение итогов урока (5 мин).

Слайд 16, 17.

Заполнение концептуальной таблицы.

(Таблица для рефлексии у каждого ученика на столе)

(Обмен мнениями, цитаты из таблиц с рефлексией).

Подведение итогов, выставление оценок.

Д/З: п. 7,8; .Проверь себя.


Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда a x = a, v x = v. Следовательно,

На рисунке 6.3 изображен график зависимости v(t).

1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

l = at 2 /2. (2)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения s x от времени. В данном случае проекция ускорения на ось x положительна, поэтому s x = l, a x = a. Таким образом, из формулы (2) следует:

s x = a x t 2 /2. (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда s x < 0. А путь отрицательным быть не может!

4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?


Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

v x = v 0x + a x t, (4)

где v 0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v 0x > 0, a x > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости v x (t) при v 0x > 0, a x > 0.

5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

s x = v 0x + a x t 2 /2. (5)

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения s x соотношением

s x = x – x 0 ,

где x 0 - начальная координата тела. Следовательно,

x = x 0 + s x , (6)

Из формул (5), (6) получаем:

x = x 0 + v 0x t + a x t 2 /2. (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t 2 .
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v 0 , конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

Подставим это выражение в формулу (2) для пути:

l = at 2 /2 = a/2(v/a) 2 = v 2 /2a. (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь l т = v 0 2 /2a, где v 0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v 0 и путь, пройденный при разгоне с места до скорости v 0 с тем же по модулю ускорением a, одинаковы.

9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с 2 . Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с 2 . Сравните найденные вами значения тормозного пути с длиной классной комнаты.

10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v 2 – v 0 2)/2a, если скорость тела увеличивается;
б) l = (v 0 2 – v 2)/2a, если скорость тела уменьшается.


11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

s x = (v x 2 – v 0x 2)/2ax (10)

12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?


Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости v x (t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t 1 и t 2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t 1 и t 2 составьте систему двух уравнений с двумя неизвестными v 0 и a.
в) Решив эту систему уравнений, выразите v 0 и a через b, t 1 и t 2 .
г) Выразите весь пройденный шариком путь l через b, t 1 и t 2 .
д) Найдите числовые значения v 0 , a и l при b = 30 см, t 1 = 1с, t 2 = 2 с.
е) Постройте графики зависимости v x (t), s x (t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

Проекция вектора перемещения при прямолинейном равноускоренном движении рассчитывается по следующей формуле:

  • Sx=V0x*t+(ax*t^2)/2.

Рассмотрим случай, когда движения начинается с нулевой начальной скоростью. В этом случае записанное выше уравнение примет следующий вид:

  • Sx= ax*t^2)/2.

Для модулей векторов a и S можно записать следующее уравнение:

  • S=(a*t^2)/2.

Зависимость перемещения и времени

Видим, что при прямолинейной равноускоренном движении без начальной скорости, модуль вектора перемещения будет прямо пропорционален квадрату промежутку времени, в течение которого совершалось это перемещение. То есть, другими словами, если мы увеличим в n-раз время движения, то перемещение увеличится в n^2 раз.

Например, если за какой-то промежуток времени t1 от начала движения тело совершило перемещение s1=(a/2)*(t1)^2,

Тогда за промежуток времени t2=2*t1, это тело совершит перемещение S2=(a/2)*4*(t1)^2=4*S1.

За промежуток t3=3*t1, это тело совершит перемещение S3=9*S1 и т.д., для любого натурального n. Это конечно же будет выполняться, при условии, что время должно отсчитываться от одного и того же момента.

На следующем рисунке хорошо представлена эта зависимость.

  • OA:OB:OC:OD:OE = 1:4:9:16:25.

При увеличении промежутка времени, который отсчитывается от начал движения, в целое число раз по сравнению с t1, модули векторов перемещений будут возрастать как ряд квадратов последовательных натуральных чисел.

Помимо этой закономерности, из представленного выше рисунка можно установить еще одну, следующую закономерность:

  • OA:AB:BC:CD:DE = 1:3:5:7:9.

За последовательные равные промежутки времени, модули векторов перемещений, совершаемых телом, будут относиться между собой как ряд последовательных нечетных чисел.

Стоит отметить, что такие закономерности будут верными только в равноускоренном движении. То есть они являются как бы неким своеобразным признаком равноускоренного движения. Если необходимо проверить, является ли движение равноускоренным, то можно проверить эти закономерности, и если они будут выполняться, то движение будет равноускоренным.