Гидродинамика. Основные определения. Гидродинамика идеальной жидкости. Основные понятия о движении жидкости

Раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью,… … Энциклопедия техники

- (от греч. hydor вода и динамика), раздел гидроаэромеханики, в к ром изучается движение несжимаемых жидкостей и их вз ствие с тв. телами. Г. исторически наиболее ранний и сильно развитый раздел механики жидкостей и газов, поэтому иногда Г. не… … Физическая энциклопедия

- (от гидро... и динамика) раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в… … Большой Энциклопедический словарь

ГИДРОДИНАМИКА, в физике раздел МЕХАНИКИ, который изучает движение текучих сред (жидкостей и газов). Имеет большое значение в промышленности, особенно химической, нефтяной и гидротехнике. Изучает свойства жидкостей, такие как молекулярное… … Научно-технический энциклопедический словарь

ГИДРОДИНАМИКА, гидродинамики, мн. нет, жен. (от греч. hydor вода и dynamis сила) (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Толковый словарь Ушакова. Д.Н.… … Толковый словарь Ушакова

Сущ., кол во синонимов: 4 аэрогидродинамика (1) гидравлика (2) динамика (18) … Словарь синонимов

Часть гидромеханики, наука о движении несжимаемых жидкостей под действием внешних сил и о механическом воздействии между жидкостью и соприкасающимися с нею телами при их относительном движении. При изучении той или иной задачи Г. применяет… … Геологическая энциклопедия

Раздел гидромеханики, изучающий законы движения несжимаемых жидкостей и взаимодействия их с твердыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок и т. д. EdwART. Толковый Военно морской… … Морской словарь

гидродинамика - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN hydrodynamics … Справочник технического переводчика

ГИДРОДИНАМИКА - раздел (см.), изучающий законы движения несжимаемой жидкости и её взаимодействие с твёрдыми телами. Гидродинамические исследования широко применяются при проектировании кораблей, подводных лодок, судов на подводных крыльях и т.д … Большая политехническая энциклопедия

Книги

  • Гидродинамика, или записки о силах и движениях жидкостей , Д. Бернулли. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В 1738 вышла в свет знаменитая работа Даниила Бернулли "Гидродинамика, или Записки о силах и…

Гидродинамика

Гидродинамика – это раздел гидравлики, в котором рассматриваются законы движения и взаимодействия жидкости с неподвижными и подвижными поверхностями.

Движение жидкости существенно отличается от движения твердого тела. При движении жидкости расстояние между ее частицами не остается постоянным. Перемещение достаточно малого объема жидкости можно представить в виде суммы трех движений: поступательного, вращательного движения всего объема в целом, а также перемещения различных частиц объема относительно друг друга. В движущейся жидкости учитывают как массовые силы, так и силы трения (вязкость).

Движущаяся жидкость характеризуется двумя параметрами: скоростью течения и гидродинамическим давлением . Основной задачей гидродинамики является определение этих параметров при заданной системе внешних сил.

Установившимся называется движение, при котором скорость и давление в каждой точке пространства, занятого жидкостью, не изменяются во времени и являются функциями только ее координат:

При неустановившемся движении давление и скорость изменяются в каждой точке не только с изменением координат, но и во времени:

Под жидкой частицей в гидродинамике понимают условно выделенный очень малый объем жидкости, изменением формы которого можно пренебречь. Каждая частица жидкости при движении описывает кривую, которая называется траекторией движения .

Под потоком жидкости понимают движущуюся массу жидкости, полностью или частично ограниченную поверхностями. Поверхности раздела могут быть твердыми или образованными самой жидкостью на границе раздела фаз. Границами потоков служат стенки труб, каналов, открытая поверхность жидкости, а также поверхность обтекаемых потоком тел.

Напорным называется движение потока в закрытых руслах при полном заполнении поперечного сечения жидкостью. Например, напорное движение в трубах. Оно возникает за счет разности давлений в начале и конце трубопровода.

Безнапорным называется движение жидкости в открытых руслах, когда поток имеет свободную поверхность. В этом случае движение осуществляется только за счет силы тяжести, т.е. при наличии уклона (движение воды в каналах, реках, лотках и т.п.).

Струи представляют собой потоки жидкости, вытекающие через отверстия или сопла под действием напора. Струи могут быть ограничены со всех сторон газообразной или жидкой средой. В первом случае они называются свободными, во втором – затопленными.

Линией тока называют воображаемую кривую в движущемся потоке жидкости, для которой векторы скоростей каждой из частиц жидкости, находящихся на ней в данный момент времени, являются касательными к этой кривой. Линия тока при установившемся движении совпадает с траекторией частиц. Для неустановившегося движения линии тока не совпадают с траекторией. Линия тока характеризует направление движения всех частиц, расположенных на ней в данный момент, а траектория представляет собой путь, пройденной одной частицей за какое-то время .

Если в потоке движущейся жидкости выделить элементарную площадку , ограниченную контуром , и через все его точки провести линии тока, то образуется трубчатая поверхность, называемая трубкой тока , а жидкость, движущаяся внутри трубки тока, называется элементарной струйкой . Сечение, расположенное нормально к линиям тока называется живым сечением элементарной струйки.

К – контур тока

Элементарная струйка при установившемся движении обладает следующими свойствами:

Ее форма и ориентация в пространстве остаются неизменными по времени;

Боковая поверхность струйки непроницаема для жидкости, т.е. ни одна частичка жидкости не может проникнуть внутрь или выйти наружу через боковые стенки трубки тока;

Ввиду малости живого сечения струйки скорость и давление во всех точках сечения следует считать одинаковыми. Однако вдоль струек значения скорости и давления в общем случае могут меняться.

Живым сечением потока F называется площадь сечения, перпендикулярная к направлению линии тока и ограниченная его внешним контуром. Площадь живого сечения потока равна сумме площадей живых сечений элементарных струек.

Смоченным периметром потока П называется длина контура живого сечения, по которому жидкость соприкасается с ограничивающими ее стенками.

При напорном движении жидкости смоченный периметр П совпадает с геометрическим периметром Пг , при безнапорном не совпадает.

Гидравлическим радиусом R г называется отношение площади живого сечения к смоченному периметру:

Геометрический радиус и гидравлический радиус – совершенно разные понятия, даже в случае напорного движения жидкости в круглой трубе. Например, для трубы диаметром d геометрический радиус , а гидравлический .

При гидравлических расчетах часто используется понятие эквивалентного диаметра :

Расходом называется количество жидкости, протекающей через живое сечение потока в единицу времени. Различают объемный Q, массовый M и весовой G расходы жидкости. Они связаны между собой:

Для элементарной струйки элементарный расход определяется по формуле:

где dF - площадь живого сечения элементарной струйки.

Скорость жидкости в различных точках живого сечения потока различна, и точный закон изменения скорости по сечению не всегда известен, поэтому для упрощения расчетов вводят понятие средней скорости для живого сечения , тогда: .

Средняя скорость – фиктивная скорость потока, которая считается одинаковой для всех частиц данного сечения и подобрана так, что расход, определенный по ее значению, равен истинному значению расхода.

Установившееся движение характеризуется постоянством расхода во времени. Различают равномерное и неравномерное установившееся движение.

Равномерным установившимся движением называется такое движение жидкости, при котором средняя скорость и площади живых сечений потока не изменяются по его длине, например установившееся в цилиндрической трубе, движение в канале призматической формы.

Неравномерным установившемся движением называется такое движение, при котором средняя скорость и площади живых сечений потока изменяются по его длине, например, движение в трубе переменного сечения, движение в открытых руслах при наличии перегораживающего сооружения.

Явления, происходящие в реальных гидравлических устройствах, сложны, поэтому процессы описывают с помощью упрощенных моделей жидкости разной степени идеализации. При необходимости полученные результаты уточняют. В гидродинамике используют четыре модели жидкости:



Þидеальную (невязкую) и несжимаемую, наиболее грубую и простую модель жидкости, когда V=0 и ;

Þреальную (вязкую) и несжимаемую, которая учитывает потери энергии на трение и используется при исследованиях статических и энергетических характеристик элементов;

Þидеальную (невязкуго) и сжимаемую, позволяющую с минимальными трудностями рассмотреть динамические процессы в первом приближении;

Þреальную (вязкую) и сжимаемую, наиболее полно отражающую действительность, используемую при детальном исследовании динамических процессов.

1. Виды движения (течения) жидкости

2. Типы потоков жидкости

3. Гидравлические характеристики потока жидкости

4. Струйная модель потока

5.Уравнения неразрывности

Гидродинамика - это раздел гидравлики, изучающий законы механического движения жидкости и ее взаимодействия с непо­движными и подвижными поверхностями. Основная задача гид­родинамики: определение гидродинамических характеристик по­тока, таких как гидродинамическое давление, скорость движения жидкости, сопротивление движению жидкости, а также изучение их взаимосвязи.

Общие сведения.

Кинематика жидкости обычно в гидравлике рассматривается совместно с динамикой и отличается от нее изучением видов и кинематических характеристик движения жидкости без учета сил, под действием которых происходит движение, тогда как динами­ка жидкости изучает законы движения жидкости в зависимости от приложенных к ней сил.

Жидкость в гидравлике рассматривается как непрерывная среда, сплошь заполняющая некоторое пространство без образо­вания пустот. Причины, вызывающие ее движение, - внешние силы, такие, как сила тяжести, внешнее давление и т. д. Обычно при решении задач гидродинамики этими силами задаются. Не­известные факторы, характеризующие движение жидкости, - это внутреннее гидродинамическое давление (по аналогии с гидростатическим давлением в гидростатике) и скорость течения жид­кости в каждой точке некоторого пространства. Причем гидроди­намическое давление в каждой точке - функция не только коор­динат данной точки, как это было с гидростатическим давлением, но и функция времени t , т. е. может изменяться и со временем.

Основной задачей этого раздела гидравлики является определение следующих зависимостей скорости u и давления P в каждой точке потока жидкости, которые являются соответствующими функциями времени t и координат x , y , z :

.

Трудность изучения законов движения жидкости обусловлива­ется самой природой жидкости и особенно сложностью учета ка­сательных напряжений, возникающих вследствие наличия сил трения между частицами. Поэтому изучение гидродинамики, по предложению Л. Эйлера, удобнее начинать с рассмотрения не­вязкой (идеальной) жидкости, т. е. без учета сил трения, внося затем уточнения в полученные уравнения для учета сил трения реальных жидкостей.

Существует два метода изучения движения жидкости: метод Ж. Лагранжа и метод Л. Эйлера.

Метод Лагранжа заключается в рассмотрении движения каж­дой частицы жидкости, т. е. траектории их движения. Из-за зна­чительной трудоемкости этот метод не получил широкого распро­странения.

Метод Эйлера заключается в рассмотрении всей картины дви­жения жидкости в различных точках пространства в данный мо­мент времени. Этот метод позволяет определить скорость движе­ния жидкости в любой точке пространства в любой момент вре­мени, т. е. характеризуется построением поля скоростей и поэтому широко применяется при изучении движения жидкости. Недостаток метода Эйлера в том, что при рассмотрении поля скоростей не изучается траектория отдельных частиц жидкости.

При перемещении жидкости силу давления, отнесенную к единице площади, рассматривают как напряжение гидродинами­ческого давления, подобно напряжению гидростатического дав­ления при равновесии жидкости. Как и в гидростатике, вместо термина «напряжение давления» используют выражение «гидро­динамическое давление», или просто «давление».

По характеру изменения скоростей во времени движение жидкости бывает установившееся и неустановившееся.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Необходимость точного вычисления объема задавочной жидкости и соблюдения технологического режима определяется следующим обстоятельством. Отмечаемое в обследуемых скважинах избыточное забойное давление над пластовым к моменту начала освоения приводит к заметному запаздыванию притока из пласта. Так, в скважине № 6677 только после снижения уровня в кольцевом пространстве с 96 до 494 м давление на забое скважины становится равным пластовому и только с этого момента теоретически возможен приток из пласта. Этот момент наступает через 1,5 ч работы установки ЭЦН. Следовательно, весь этот период практически исключается возможность принудительного охлаждения погружного двигателя восходящим потоком пластовой жидкости.

Данные по остальным скважинам показаны в табл. 3.5.

Таблица 3.5

Характеристика обследуемых скважин по периоду возможной

инфильтрации рабочего агента в пласт после включения УЭЦН

Номер скважины

Перепад

давления

Рзаб - Рпл , МПа

Уровень жидкости в скважине, м

Время перемещения

уровня с

Ннач до Нст . , ч

Фактический

Соответствую- щий Рпл и

6677

585

6984

52

7706

6765

6737

7519

7447

7466

68

7735

Примечание. (Pзаб-Рпл) - перепад давления к моменту начала освоения скважины; Ннач - фактическое расстояние от устья до уровня жидкости к моменту начала освоения скважины; Нст - статический уровень.

Видно, что во всех скважинах наблюдается принципиально одинаковая картина. После включения погружного насоса во всех случаях проходит ощутимый промежуток времени, прежде чем создаются гидродинамические предпосылки для возникновения притока из пласта. В скважинах с достаточным перепадом давления (Рзаб - Рпл), несмотря на начавшуюся откачку из скважины, продолжается некоторое время инфильтрация рабочего агента в пласт, и на участке от приема насоса до пласта поток является нисходящим. Следовательно, в такой категории скважин электродвигатель погружной установки в начальный момент освоения, несмотря на отсутствие притока из пласта обтекается потоком рабочего агента.

После прекращения инфильтрации жидкости в пласт скорость обтекания двигателя приближается к нулевой. Учитывая, что по многим скважинам, осваиваемым после подземного ремонта погружными электроцентробежными установками, период возможного "обмыва" двигателя нисходящим потоком рабочего агента достаточно велик, были проведены дополнительные исследования.

В этих исследованиях ставилась цель получить зависимость скорости обтекания двигателя от времени при освоении скважины с детализацией этой зависимости в начальные периоды.

Методика исследований

Для характеристики гидродинамики обтекания погружного электродвигателя целесообразней использовать величину не абсолютной скорости, а относительной:

где - фактическая абсолютная скорость обтекания погружного двигателя; - номинальная абсолютная скорость обтекания; Qпл - расход жидкости, поступающей из пласта, или, наоборот, инфильтрующейся в пласт; Qном - номинальная производительность погружной электроцентробежной установки; Dном - номиналь,ный внутренний диаметр обсадной колонны; Dдв - внешний диаметр погружного двигателя.

Величина Qпл определяется на основе фактических замеров подачи насоса Q и динамики движения уровня жидкости в кольцевом пространстве в период освоения скважины:

(3.21)

где Hур(t) - расстояние от устья до уровня жидкости в кольцевом пространстве.

Результаты исследований

На рис. 3.9. представлены результаты измерений и обработки по каждой скважине. На рисунках показаны динамика изменения уровня жидкости, замеренная волномером и относительная скорость обтекания, вычисленная по вышеприведенной методике. Учитывая многообразие форм приведенных графиков первоначально был проведен анализ по отдельным скважинам. Здесь подробно описаны данные по скважинам 6677 и 6984.

Скважина 6677. Согласно данным исследований скважины 6677 первоначально освоение проводилось при значительной недогрузке погружной электроцентробежной установки и насос развивал подачу в 20-50% номинальной, лишь после перефазировки двигателя производительность насоса стала соответствовать характеристике. Данные о динамике подачи насоса приведены в табл. 3.6.

Представленный на рис. 3.9. и в табл. 3.6. материал указывает на то, что в данной скважине условия работы погружного электродвигателя в начальные периоды освоения были неблагоприятными - в течение длительного времени относительная скорость обтекания была близка к нулевой.

Период после вторичного запуска установки (t >3,6 ч) характеризуется не только резким снижением уровня, но и интенсивным притоком из пласта. В результате чего, скорость потока в кольцевом пространстве между погружным двигателем и обсадной колонной резко возрастает и достигает величины на 20-30% превышающей номинальную (ŵ = 1,2-1,3).

Наличие максимума в приводимых на рис. 3.9. зависимостях при t ≈ 5ч можно объяснить различным характером изменения плотности по мере притока жидкости из пласта на участке от забоя до приема насоса и от приема насоса до уровня жидкости. Последний участок вследствие разделения фаз будет формироваться газоводонефтяной смесью с пониженной по сравнению с забойным участком плотностью.

Таблица 3.6

Подача насоса и плотность перекачиваемой жидкости в период освоения скв. 6677

Время, ч

Подача насоса, м3/сут

Плотность жидкости, кг/м3

Время, ч

Подача насоса, м3/сут

Плотность жидкости, кг/м3

Остановка


Надо отметить, что в дальнейшем процесс сепарации газа приводит к росту давления в затрубном пространстве и оттеснению уровня. В данной скважине это наблюдается через 20-24 ч после начала освоения скважины (табл. 3.7). Таким образом зависимость Hур(t) в конечном счете имеет и другой экстремум (минимум). Анализируя зависимость w(t), следует отметить, что скорость обтекания погружного электродвигателя на средней и заключительной стадиях освоения высока и при выходе на режим соответствует номинальному значению.

Таблипа 3.7

Данные средней и заключительной стадий освоения скв. 6677

Время, ч

Hур, м

Давление в затрубном пространстве, МПа

Время, ч

Hур, м

Давление в затрубвом простравстве, МПа

Таким образом, освоение скв. 6677 характеризуется напряженными условиями работы ПЭД в начальной стадии; период работы ПЭД (Тн) с w ≤ 0,2 составляет около 3 ч - весь этот период погружной электродвигатель охлаждается потоком, имеющим скорость в 5 и более раз меньшую, чем wном.

Скважина № 6984. Начальная стадия освоения этой скважины отмечена двумя кратковременными остановками погружного насоса при t = 1,5 и 2,3 ч, а также одной длительной остановкой с t = 3 до t = 4,4 ч.

Из рис. 3.9. видно, что темп снижения уровня в затрубном пространстве до первой остановки погружного насоса достаточно высок, хотя производительность насоса в это время (табл. 3.8) невелика. Такое "несоответствие" объясняется ин-

Таблица 3.8

Подача насоса в период освоения скв. 6984

Подача насоса, м3/сут

Подача насоса, м3/сут

фильтрацией жидкости в этом интервале времени в пласт. Это видно также из зависимости ŵ(t), согласно которой (см. рис. 3.9) продолжительность инфильтрации в пласт составляет около часа. Велико и значение периода слабого обтекания погружного электродвигателя (Tн = 2 ч).

Общим в освоении скв. 6677 и 6984 является значительная недогрузка погружной электроцентробежной установки в начальный период по производительности. Это обстоятельство является дополнительной причиной увеличения Tн.

Анализ и обработка экспериментального материала показывают, что существует вполне определенная взаимосвязь между тремя гидродинамическими показателями освоения скважин после их подземного ремонта: Tн, ΔР = Рзаб - Рпл, Vф. Из обобщающего рисунка 3.10 видно, что продолжительность периода слабого обмыва ПЭД - величина Tн - растет с увеличением ΔР и Vф.

Но при этом надо отметить, что представленный материал несколько меняет существующее представление о характере освоения скважин после подземного ремонта. Это выражается, главным образом, в том, что успешность освоения в большой степени определяется существующим к моменту начала освоения избытком забойного давления над пластовым. Судя по фактическим данным для рассматриваемых условий избыток в 1,5 - 2,0 МПа является критическим; при ΔР > (1,5 - 2,0) МПа резко возрастает продолжительность периода слабого обмыва ПЭД.

Из вышесказанного следует, что при традиционной технологии освоения оперативность проведения подземного ремонта в некоторых случаях (при ΔР > ΔРкр) не может служить гарантией нормального режима обтекания погружного двигателя в начальный период. Кроме того, режим обтекания может быть значительно улучшен, если начало освоения скважины после подземного ремонта будет смещено и перепад давления ΔР = Рзаб - Рпл к моменту начала освоения будет ниже критического. Но такая мера будет действенна лишь в том случае, когда фактический и расчетный объемы рабочего агента будут примерно одинаковы, а объем инфильтрующейся в пласт жидкости Vф при этом минимален. Только в этом случае отрицательный эффект от снижения фильтрационной характеристики призабойной зоны скважины может быть скомпенсирован положительным воздействием от снижения ΔР к началу освоения. По иному идет процесс освоения в скважинах, заглушенных. ГЭР (рис. 3.11). Ниже приведем результаты исследования скв. 1560, продукция которой содержит нефть угленосных отложений вязкостью 19,2 мПа-с в пластовых условиях. Процесс освоения этой скважины проходит практически без осложнений. Уже в первые 50 мин ŵ равна 0,5, а через 4,6 ч достигает 0,95. В динамике Hyp = f(t) и ŵ = f(t) можно выделить четыре зоны.

Первая зона (t1) представляет из себя процесс, когда включенный насос забирает жидкость с затрубного пространства и резко снижает уровень. Приток из пласта жидкости начинается более интенсивно через 12-15 мин и в точке t1 имет максимум. Основная жидкость из затрубного пространства к этому моменту откачана и на прием насоса начинает поступать пластовая жидкость. Ввиду различия плотностей продукции пласта и задавочной жидкости насос,. как правило, меняет свою характеристику в сторону снижения, которое продолжается до выравнивания плотностей до приёма насоса и в затрубном участке.

С точки t2 (вторая зона) над приёмом насоса начинает накапливаться нефтяная фаза, плотность которой практически. равна плотности нефти в пластовых условиях. Этот процесс продолжается до точки t3 (третья зона). С момента t3 до t4 (четвертая зона) идет выравнивание системы пласт-насос-подъёмник и система переходит на "условно стационарный режим" работы. Аналогичный процесс происходит и в других исследованных скважинах.

При применении ГЭР эффект проявления начальных градиентов и капиллярных сил значительно ниже в сравнении со скважинами, заглушенными минерализованной водой высокой плотности . Так, по скв. 6737 он составляет 18 мин (см. начало кривой ŵ -рис. 3.9), скв. 7519 и 7447 - 24 и 36 мин соответственно, в то время как по скв. 1560 он составляет всего лишь 6 мин.

Представляют интерес результаты освоения скв. 7466, на которой перед ремонтом была проведена промывка забоя с допуском труб водным раствором дистиллята деэмульгатором типа дисолван. Операция с промывкой забоя скважины была: связана с другим технологическим процессом - очисткой призабойной зоны. Эффект действия химреагентов на этой скважине проявляется значительно, хотя перед ремонтом она была промыта технологической жидкостью. Фильтровавшиеся в пласт и адсорбированные в призабойной зоне углеводородный радикал и деэмульгатор изменяют картину освоения в сторону облегчения процесса. Если сравнить характер изменения ŵ = f(t) по скв. 7466 и 1560, то можно наблюдать схожесть происходящих процессов. Отличие физико-химических свойств задавочной жидкости и продукции скважин приводит к значительной перегрузке погружных установок в момент освоения и изменению геологофизических характеристик призабойной зоны.

Обобщая результаты исследования более чем 400 скважин с ЭЦН и используя зависимости (3.20) и (3.21) для скважин, откачивающих девонскую нефть, получили зависимость ŵ = f(Qн) при критериях ΔР = 1,5-2,0 МПа.

Действие параметров притока на ŵ комплексно. В значительной степени влияние оказывает μн и k. На рис. 3.12 зависимость ŵ = f(Qн) приведена для трех значений проницаемостей 0,2; 0,5 и 0,8 мкм2. Для данного случая принято, что приток из пласта в "условно стационарном режиме" соответствует производительности насоса. Анализируя кривые 1, 2, 3 (см. рис. 3.12), можно отметить следующее. Условия освоения и вывода на режим даже для одного и того же значения притока из пласта, наряду с другими параметрами, определяющим образом зависят от проницаемости призабойной зоны пласта. При притоках менее 150 - 180 м3/сут применение химреагентов, сохраняющих первоначальные характеристики пласта крайне необходимо.

Для скважин с притоком более 180 м3/сут могут быть применены и более дешевые технологические приемы, позволяющие значительно облегчить процесс освоения и пуска скважин. Но здесь следует иметь в виду, что процесс освоения и пуска скважины в работу комплексно взаимосвязан с работой погружного двигателя, насоса и подъемника, как единая гидродинамическая система. Применение жидкостей различных плотностей и вязкостей отражается на работе погружного насоса, двигателя и подъемника по-разному.

Рассмотрим прежде всего как первый элемент этой системы работу погружного двигателя. Двойственность причин, ухудшающих режим работы погружного двигателя в период освоения делает необходимым пересмотр существующей технологии подготовки к подземному ремонту и последующему освоению насосной скважины.

Из вышесказанного следует, что совершенствование технологии может проводиться в двух направлениях.

Первое - сокращение объема инфильтрации задавочной жидкости в пласт, особенно в тех случаях, когда физико-химические свойства рабочего агента сильно отличаются от свойств пластовой жидкости или же приводят к трудноустранимому в процессе эксплуатации ухудшению фильтрационной характеристики призабойной зоны скважины.

Второе направление - снижение забойного давления в скважине к моменту начала освоения погружным электроцентробежным насосом, то есть уровень задавочной жидкости в скважине к моменту включения установки должен быть близок к статическому или ниже его.

Эти два требования, конечно, при традиционной технологии подготовки и освоения после подземного ремонта не могут быть реализованы в одинаковой степени. И, как правило, выполнение одного требования может быть сделано лишь в ущерб другому. Количество жидкости, попадающей в пласт Vф, а также уровень жидкости в скважине Нур зависят от времени восстановления забойного давления после остановки скважины на подземный ремонт, иными словами, от времени ожидания задавки. При одинаковом объеме рабочего агента, используемого для задавки, и одинаковом времени проведения подземного ремонта, влияние времени ожидания задавки Тз на величины Vф и Нур сказывается по-разному.

На рис. 3.13 и 3.14 показаны условные графики гидродинамического состояния системы скважина - пласт для двух значений времени ожидания. Первый график соответствует условиям практически полного восстановления давления в скважине перед ее задавкой, а второй график - условиям, когда задавка начата непосредственно после остановки скважины на подземный ремонт (давление ещё не восстановлено).

Во втором случае отмечается значительно более высокий градиент давления в призабойной зоне, следовательно - более высокая скорость инфильтрации и высокий темп снижения давления. В результате к моменту начала освоения объем жидкости, проникшей в пласт, будет большим, а забойное давление (давление столба жидкости в скважине) меньшим, чем в первом случае.

На каждом конкретном объекте в связи с этим существует оптимальное время ожидания задавки, то есть оптимальная степень восстановления давления к моменту задавки скважины. В скважинах, оснащенных насосами большой производительности целесообразной является высокая степень восстановления давления. Большая скорость откачки до минимума сократит период слабого обмыва ПЭД, и призабойная зона пласта будет минимально загрязнена, так как Vф при этом незначителен.

В скважинах, освоение которых проводится насосами малой производительности, необходимо сократить время ожидания задавки. Это позволит к моменту включения погружной насосной установки обеспечить минимум разности между давлением столба жидкости в скважине и пластовым давлением, а после включения обеспечить практически мгновенный приток из пласта. Начнется обмыв погружного электродвигателя хоть и с недостаточно высокой скоростью, так как здесь происходит ухудшение фильтрационной характеристики призабойной зоны (в этом случае Vф велико). Впрочем, фактическая скорость обмыва будет находиться в определенном соответствии с требуемой для охлаждения ПЭД скоростью обмыва, ибо мощность двигателя относительно невелика.

Но главным требованием независимо от типоразмера применяемого оборудования при традиционной технологии задавки и освоения насосных скважин, следует повторить, остается строгая дозировка объема рабочего агента, обработанного химреагентом, используемого для задавки ремонтируемой скважины. Этот объем может быть подсчитан на основе вышеприведенных формул (3.19), согласно которых основными исходными параметрами служит пластовое давление, плотность задавочной жидкости, диаметр скважины, а также коэффициент запаса. Могут быть и другие разновидности технологии глушения, которые коренным образом исключают попадание задавочной жидкости в продуктивный пласт. Одним из способов, реализующих этот подход, является способ, основанный на использовании в процессе задавки скважины энергии сжатого газообразного агента.

Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

3.1. Основные понятия о движении жидкости

Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы - круг (рис.3.1, б); живое сечение клапана - кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

Рис. 3.1. Живые сечения: а - трубы, б - клапана

Смоченный периметр χ ("хи") - часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

Рис. 3.2. Смоченный периметр

Для круглой трубы

если угол в радианах, или

Расход потока Q - объем жидкости V , протекающей за единицу времени t через живое сечение ω.

Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

Гидравлический радиус потока R - отношение живого сечения к смоченному периметру

Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

υ = f(x, y, z)

P = φ f(x, y, z)

Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

υ = f 1 (x, y, z, t)

P = φ f 1 (x, y, z, t)

Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой .

Рис. 3.3. Линия тока и струйка

Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

Рис. 3.4. Труба с переменным диаметром при постоянном расходе

Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q 1 =Q 2 = const , откуда

ω 1 υ 1 = ω 2 υ 2

Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

3.2. Уравнение Бернулли для идеальной жидкости

Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P , средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

Рис.3.5. Схема к выводу уравнения Бернулли для идеальной жидкости

Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2 . Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q .

Для измерения давления жидкости применяют пьезометры - тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито . Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии .

Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0 , называемой плоскостью сравнения , будет одинакова.

Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода .

Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

z1 и z2 - удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2 ;
- удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
- удельные кинетические энергии в тех же сечениях.

Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна .

Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 - геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; - пьезометрические высоты; - скоростные высоты в указанных сечениях.

В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная .

3.3. Уравнение Бернулли для реальной жидкости

Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости

Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

Уравнение Бернулли для реальной жидкости будет иметь вид:

Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2 .

Кроме этого в уравнении появились еще два коэффициента α 1 и α 2 , которые называются коэффициентами Кориолиса и зависят от режима течения жидкости (α = 2 для ламинарного режима, α = 1 для турбулентного режима).