Кем и когда была открыта электропроводность металлов. Классическая теория электропроводности металлов

Электронная проводимость металлов была впервые экспериментально доказана немецким физиком Э.Рикке в 1901 г. Через три плотно прижатых друг к другу отполированных цилиндра - медный, алюминиевый и снова медный - длительное время (в течение года) пропускали электрический ток. Общий заряд, прошедший за это время, был равен 3.5·10 6 Кл. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то массы цилиндров должны были бы заметно измениться, если бы носителями заряда были ионы.

Результаты опытов показали, что масса каждого из цилиндров осталась неизменной. В соприкасающихся поверхностях были обнаружены лишь незначительные следы взаимного проникновения металлов, которые не превышали результатов обычной диффузии атомов в твердых телах. Следовательно, свободными носителями заряда в металлах являются не ионы, а такие частицы, которые одинаковы и в меди, и в алюминии. Такими частицами могли быть только электроны.

Прямое и убедительное доказательство справедливости этого предположения было получено в опытах, поставленных в 1913 г. Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. Т. Стюартом и Р. Толменом.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 1). К концам дисков с помощью скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться вдоль проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать короткое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. . Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение . Оно оказалось равным 1,8·10 11 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе, найденным ранее из других опытов.

Таким образом, электрический ток в металлах создается движением отрицательно заряженных частиц электронов. Согласно классической электронной теории проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), металлический проводник можно рассматривать как физическую систему совокупности двух подсистем:

  1. свободных электронов с концентрацией ~ 10 28 м -3 и
  2. положительно заряженных ионов, колеблющихся около положения равновесия.

Появление свободных электронов в кристалле можно объяснить следующим образом.

При объединении атомов в металлический кристалл слабее всего связанные с ядром атома внешние электроны отрываются от атомов (рис. 2). Поэтому в узлах кристаллической решетки металла располагаются положительные ионы, а в пространстве между ними движутся электроны, не связанные с ядрами своих атомов. Эти электроны называются свободными или электронами проводимости . Они совершают хаотическое движение, подобное движению молекул газа. Поэтому совокупность свободных электронов в металлах называют электронным газом .

Если к проводнику приложено внешнее электрическое поле, то на беспорядочное хаотическое движение свободных электронов накладывается направленное движение под действием сил электрического поля, что и порождает электрический ток. Скорость движения самих электронов в проводнике - несколько долей миллиметра в секунду, однако возникающее в проводнике электрическое поле распространяется по всей длине проводника со скоростью, близкой к скорости света в вакууме (3·10 8 м/с).

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью .

Электроны под влиянием постоянной силы, действующей со стороны электрического поля, приобретают определенную скорость упорядоченного движения (ее называют дрейфовой). Эта скорость не увеличивается в дальнейшем со временем, так как при столкновении с ионами кристаллической решетки электроны передают кинетическую энергию, приобретенную в электрическом поле, кристаллической решетке. В первом приближении можно считать, что на длине свободного пробега (это расстояние, которое электрон проходит между двумя последовательными столкновениями с ионами) электрон движется с ускорением и его дрейфовая скорость линейно возрастает со временем

В момент столкновения электрон передает кинетическую энергию кристаллической решетке. Потом он опять ускоряется, и процесс повторяется. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике и, следовательно, разности потенциалов на концах проводника, так как , где l - длина проводника.

Известно, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц

а значит, согласно предыдущему, сила тока пропорциональна разности потенциалов на концах проводника: I ~ U. В этом состоит качественное объяснение закона Ома на основе классической электронной теории проводимости металлов.

Однако в рамках этой теории возникли трудности. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (), между тем, согласно опыту, ~ Т. Кроме того, теплоемкость металлов, согласно этой теории, должна быть значительно больше теплоемкости одноатомных кристаллов. В действительности теплоемкость металлов мало отличается от теплоемкости неметаллических кристаллов. Эти трудности были преодолены только в квантовой теории.

В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при -269°С) удельное сопротивление скачком уменьшается (рис. 3) практически до нуля. Это явление обращения электрического сопротивления в нуль Г. Камерлинг-Оннес назвал сверхпроводимостью.

В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама - 0,012К, самое высокое у ниобия - 9К.

Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au 2 Bi, PdTe, PtSb и другие.

Вещества в сверхпроводящем состоянии обладают необычными свойствами:

  1. электрический ток в сверхпроводнике может существовать длительное время без источника тока;
  2. внутри вещества в сверхпроводящем состоянии нельзя создать магнитное поле:
  3. магнитное поле разрушает состояние сверхпроводимости. Сверхпроводимость - явление, объясняемое с точки зрения квантовой теории. Достаточно сложное его описание выходит за рамки школьного курса физики.

Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

В настоящее время в линиях электропередачи на преодоление сопротивления проводов уходит 10 - 15% энергии. Сверхпроводящие линии или хотя бы вводы в крупные города принесут громадную экономию. Другая область применения сверхпроводимости - транспорт.

На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре - свыше 100К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

«Физика - 10 класс»

Как движутся электроны в металлическом проводнике, когда в нём нет электрического поля?
Как изменяется движение электронов, когда к металлическому проводнику прикладывают напряжение?

Электрический ток проводят твёрдые, жидкие и газообразные тела. Чем эти проводники отличаются друг от друга?

Вы познакомились с электрическим током в металлических проводниках и с установленной экспериментально вольт-амперной характеристикой этих проводников - законом Ома.

Наряду с металлами хорошими проводниками, т. е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизованный газ - плазма. Эти проводники широко используются в технике.

В вакуумных электронных приборах электрический ток образуют потоки электронов.

Металлические проводники находят самое широкое применение в передаче электроэнергии от источников тока к потребителям. Кроме того, эти проводники используются в электродвигателях и генераторах, электронагревательных приборах и т. д

Кроме проводников и диэлектриков (веществ со сравнительно небольшим количеством свободных заряженных частиц), имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, но и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников .

Долгое время полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, когда сначала была предсказана теоретически, а затем обнаружена и изучена легкоосуществимая возможность управления электрической проводимостью полупроводников.

Нет универсального носителя тока. В таблице приведены носители тока в различных средах.

Электронная проводимость металлов.


Начнём с металлических проводников. Вольт-амперная характеристика этих проводников нам известна, но пока ничего не говорилось о её объяснении с точки зрения молекулярнокинетической теории.

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика - порядка 10 28 1/м 3 .

Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10 -4 м/с.


Экспериментальное доказательство существования свободных электронов в металлах.


Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Мандельштама и Папалекси (1913), Стюарта и Толмена (1916). Схема этих опытов такова.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 16.1). К концам дисков при помощи скользящих контактов подключают гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока в этом опыте говорит о том, что он создаётся движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. |q|/m. Поэтому измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным 1,8 10 11 Кл/кг. Эта величина совпадала с отношением заряда электрона к его массе е/m, найденным ранее из других опытов.


Движение электронов в металле.


Свободные электроны в металле движутся хаотично. При подключении проводника к источнику тока в нём создаётся электрическое поле, и на электроны начинает действовать кулоновская сила = q e . Под действием этой силы электроны начинают двигаться направленно, т. е. на хаотичное движение электронов накладывается Скорость направленного движения увеличивается в течение некоторого времени t 0 до тех пор, пока не произойдёт столкновение электронов с ионами кристаллической решётки. При этом электроны теряют направление движения, а затем опять начинают двигаться направленно. Таким образом, скорость направленного движения электрона изменяется от нуля до некоторого максимального значения, равного В результате средняя скорость упорядоченного движения электронов оказывается равной т. е. пропорциональной напряжённости электрического поля в проводнике: υ ~ Е и, следовательно, разности потенциалов на концах проводника, так как где l - длина проводника.

Сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу (15.2)). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника: I ~ U.

В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Этот факт подтверждает, например, зависимость сопротивления от температуры. Согласно классической теории металлов, в которой движение электронов рассматривается на основе второго закона Ньютона, сопротивление проводника пропорционально эксперимент же показывает линейную зависимость сопротивления от температуры.

Электрическая проводимость характеризует способность тела проводить электрический ток. Проводимость — величина обтаная сопротивлению . В формуле она обратно пропорциональна электрическому сопротивлению, и используются они фактически для обозначения одних и тех же свойств материала. Измеряется проводимость в Сименсах : [См]=.

Виды электропроводимости:

Электронная проводимость , где переносчиками зарядов являются электроны. Такая проводимость характерна в первую очередь для металлов, но присутствует в той или иной степени практически в любых материалах. С увеличением температуры электронная проводимость снижается.

Ионная проводимость . Существует в газообразных и жидких средах, где имеются свободные ионы, которые также переносят заряды, перемещаясь по объёму среды под действием электромагнитного поля или другого внешнего воздействия. Используется в электролитах. С ростом температуры ионная проводимость увеличивается, поскольку образуется большее количество ионов с высокой энергией, а также снижается вязкость среды.

Дырочная проводимость . Эта проводимость обуславливается недостатком электронов в кристаллической решётке материала. Фактически, переносят заряд здесь опять же электроны, но они как бы движутся по решётке, занимая последовательно свободные места в ней, в отличии от физического перемещения электронов в металлах. Такой принцип используется в полупроводниках, наряду с электронной проводимостью.


Самыми первыми материалами, которые стали использоваться в электротехнике исторически были металлы и диэлектрики (изоляторы, которым присуща маленькая электрическая проводимость). Сейчас получили широкое применение в электронике полупроводники. Они занимают промежуточное положение между проводниками и диэлектриками и характеризуются тем, что величину электрической проводимости в полупроводниках можно регулировать различным воздействием. Для производства большинства современных проводников используются кремний, германий и углерод. Кроме того, для изготовления ПП могут использоваться другие вещества, но они применяются гораздо реже.

В важное значение имеет передача тока с минимальными потерями. В этом отношении важную роль играют металлы с большой электропроводностью и, соответственно, маленьким электросопротивлением. Самым лучшим в этом отношении является серебро (62500000 См/м), далее следуют медь (58100000 См/м), золото (45500000 См/м), алюминий (37000000 См/м). В соответствии с экономической целесообразностью чаще всего используются алюминий и медь, при этом медь по проводимости совсем немного уступает серебру. Все остальные металлы не имеют промышленного значения для производства проводников.

Прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их (§ 40). Это обстоятельство заставляет предполагать, что атомы металла при прохождении тока не перемещаются от одного участка проводника к другому. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке (1845-1915). Рикке составил цепь, в которую входили три тесно прижатых друг к другу торцами цилиндра, из которых два крайних были медные, а средний алюминиевый. Через эти цилиндры пропускался электрический ток в течение весьма длительного времени (больше года), так что общее количество протекшего электричества достигло огромной величины (свыше 3000000 Кл). Производя затем тщательный анализ места соприкосновения меди и алюминия, Рикке не мог обнаружить следов проникновения одного металла в другой. Таким образом, при прохождении тока через металлы атомы металла не перемещаются вместе с током.

Каким же образом происходит перенос зарядов при прохождении тока через металл?

Согласно представлениям электронной теории, которыми мы неоднократно пользовались, отрицательные и положительные заряды, входящие в состав каждого атома, существенно отличаются друг от друга. Положительный заряд связан с самим атомом и в обычных условиях неотделим от основной части атома (его ядра). Отрицательные же заряды – электроны, обладающие определенным зарядом и массой, почти в 2000 раз меньшей массы самого легкого атома – водорода, сравнительно легко могут быть отделены от атома; атом, потерявший электрон, образует положительно заряженный ион. В металлах всегда есть значительное число «свободных», отделившихся от атомов электронов, которые блуждают по металлу, переходя от одного иона к другому. Эти электроны под действием электрического поля легко перемещаются по металлу. Ионы же составляют остов металла, образуя его кристаллическую решетку (см. том I).

Одним из наиболее убедительных явлений, обнаруживающих различие между положительным и отрицательным электрическими зарядами в металле, является упомянутый в § 9 фотоэлектрический эффект, показывающий, что электроны сравнительно легко могут быть вырваны из металла, тогда как положительные заряды крепко связаны с веществом металла. Так как при прохождении тока атомы, а следовательно, и связанные с ними положительные заряды не перемещаются по проводнику, то переносчиками электричества в металле следует считать свободные электроны. Непосредственным подтверждением этих представлений явились важные опыты, выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси, но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции (см. том I). Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.

Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке тех зарядов, которые двигались по инерции; если слева направо будут двигаться положительные заряды, то обнаружится ток, направленный слева направо; если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе ).

В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис. 141. На катушке, в которую вделаны две изолированные друг от друга полуоси , укреплена проволочная спираль 1. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами.

Рис. 141. Исследование природы электрического тока в металлах

Итак, опыты показывают, что в металлах имеются свободные электроны. Эти опыты являются одним из наиболее важных подтверждений электронной теории металлов. Электрический ток в металлах представляет собой упорядоченное движение свободных электронов (в отличие от их беспорядочного теплового движения, всегда имеющегося в проводнике).

86.1. Металлический незаряженный диск приводится в быстрое вращение и, таким образом, становится «центрифугой для электронов». Между центром и периферией диска возникает разность потенциалов (рис. 142; 1 – диск, 2 – контакты, 3 – электрометр). Каков будет знак этой разности?

Рис. 142. К упражнению 86.1

86.2. По серебряной проволоке с сечением 1 мм2 проходит ток силы 1 А. Вычислите среднюю скорость упорядоченного движения электронов в этой проволоке, полагая, что каждый атом серебра дает один свободный электрон. Плотность серебра равна кг/м3, его относительная атомная масса равна 108. Постоянная Авогадро моль-1.

86.3. Сколько электронов должно проходить через поперечное сечение провода ежесекундно, чтобы в проводе шел ток 2 А? Заряд электрона равен Кл.

Электронная проводимость металлов

Классификация проводников

ТЕМА 3 ФИЗИЧЕСКИЕ ЭФФЕКТЫ В ПРОВОДНИКАХ

Особенности проводимости металлов, тепловое и дрейфовое движение электропроводимости.

В электронной промышленности широко применяются металлы и их сплавы, из которых делают проводники.

Классифицируются по агрегатному состоянию: газообразные, жидкие, твёрдые.

Газообразные – пары веществ и газы при напряжённости электрического поля, ĸᴏᴛᴏᴩᴏᴇ обеспечивает ионизацию молекул. В них электрический ток создаётся как электронами, так и ионами. Используются в газоразрядных приборах.

Жидкие – растворы различных солей, кислот, щелочей, а также их расплавы (электролиты). Ток связан с переносом ионов, при этом состав электролита изменяется, а на электродах, погружённых в электролит, происходит выделœение вещества из раствора.

Твёрдые - ϶ᴛᴏ металлы, которые занимают в таблице Менделœеева более 75%. Ток в них создаётся только электронами, а в связи с этим нет переноса вещества от одного электрода к другому.

По применению металлические материалы подразделяются:

Металлы высокой проводимости;

Сплавы высокого сопротивления.

Металлы высокой проводимости : серебро, медь, алюминий, желœезо, золото.

Сверхпроводники (при низких t 0 C): алюминий, ртуть, свинœец, ниобий, соединœения с оловом, титаном, цирконием.

Сплавы высокого сопротивления :

Медно-марганцовые (манганин);

Медно-никелœевые (константаны);

Желœеза, никеля и хрома (нихромы).

Элементы первой группы таблицы Менделœеева одновалентны. Валентный электрон слабо связан со своим ядром и при любых внешних воздействиях разрывает связь с ядром и становится свободным. По этой причине в узлах кристаллической решётки находятся положительно заряженные атомы (ионы), а между ними перемещаются свободные электроны.

Ионы и электроны находятся в беспорядочном движении. Энергия этого движения представляет внутреннюю энергию тока.

Движение ионов, образующих решётку, состоит лишь в колебаниях около своих положений равновесия. Свободные электроны могут перемещаться по всœему объёму металла. При отсутствии внутри металла электрического поля, движение электронов хаотично, в каждый момент скорости различных электронов различны и имеют всœевозможные направления. Электроны подобны газу, в связи с этим их часто называют электронным газом.

Тепловое движение не вызывает никакого тока, так как вследствие полной хаотичности в каждом направлении будет двигаться столько же электронов, сколько в противоположном, и в связи с этим суммарный заряд, переносимый через любую площадку внутри, будет равен нулю.

В случае если на концах проводника создать разность потенциалов, ᴛ.ᴇ. создать внутри электрическое поле, то на каждый электрон будет действовать сила, каждый электрон получит дополнительные скорости, направленные в одну сторону. Движение станет направленным, ᴛ.ᴇ. будет электрический ток.

Вывод:

Хаотическое движение обусловлено воздействием внешних факторов (тепла). Направленное движение за счёт разности потенциалов принято называть дрейфовым.

Проводимость разных металлов различная, так как обусловлена:

Различным количеством свободных электронов в единице объёма;

Условиями движения электронов, связанных с различной длинной свободного пробега, ᴛ.ᴇ. пути, проходимого в среднем электроном между двумя соударениями с ионами.

На практике используют понятия: удельная проводимость и удельное сопротивление:

s - удельная проводимость, МСu/м

r - удельное сопротивление, Ом*мм 2 / м

r = 1/s = 1/еnm = 2mu т /е 2 n l ср,

где е – заряд электрона = 1,6 * 10 -19 ;

n – количество свободных электронов;

m - подвижность электрона, обусловленная электрическим полем;

m – масса электрона = 9,1 * 10 -31 кг;

l ср - средняя длина свободного пробега;

u т – средняя скорость теплового движения.

Значения u т ,n , в различных проводниках примерно одинаковы, к примеру:

n меди = 8,5*10 28 м -3 , n алюм = 8,3*10 28 м -3 , значение скорости теплового движения приблизительно u т = 10 5 м/с.

Для каждого металла существует определённый температурный коэффициент сопротивления при изменении Т 0 на 1 0 С, отнесённый к 10м начального сопротивления (a):

a = R 2 -R 1 / R 1 (T 2 -T 1) ,

где R 1 – сопротивление при T 1

R 2 – сопротивление при T 2

отсюда R 2 = R 1

Это соотношение справедливо для температур 100-150 0 С.

Электронная проводимость металлов - понятие и виды. Классификация и особенности категории "Электронная проводимость металлов" 2017, 2018.