Международный студенческий научный вестник. Основы вероятностно-статистических методов описания неопределенностей

Закон больших чисел

Ранее было отмечено, что нельзя предвидеть, какое из возможных значений примет случайная величина, так как мы не можем учесть все обстоятельства, от которых зависит это событие. Однако в некоторых случаях можно указать вероятность такого события.

Опыт подсказывает нам, что события, вероятность наступления которых мала, редко происходят, а события, имеющие вероятность, близкую к единице, почти обязательно происходят. Принцип, заключающийся в том, что маловероятные события на практике рассматриваются как невозможные, носит название “принципа практической невозможности маловероятных событий”. События, происходящие с вероятностями, весьма близкими к единице, считаются практически достоверными (принцип практической достоверности). Сколь мала или сколь велика должна быть вероятность события, зависит от практического применения, от важности этого события.

Следовательно, одной из основных задач теории вероятностей является установление закономерностей, происходящих с вероятностями близкими к единице. Эти закономерности должны учитывать совместное влияние большого числа независимо (или слабо зависимо) действующих факторов. При этом каждый фактор в отдельности характеризуется незначительным воздействием. Всякое предложение, устанавливающее отмеченные выше закономерности, называется законом больших чисел. Законом больших чисел, по определению проф. А.Я. Хиничина, следует назвать общий принцип, в силу которого совокупное действие большого числа факторов приводит, при некоторых весьма общих условиях, к результату, почти не зависящему от случая.

Некоторые конкретные условия, при которых выполняется закон больших чисел, указаны в теоремах Чебышева, Бернули, Пуассона и Ляпунова.

Лемма Маркова. Неравенство и теорема Чебышева. Теоремы Бернулли и Пуассона

Лемма Маркова. Пусть Х - случайная величина, принимающая лишь неотрицательные значения. Тогда можно получить следующее неравенство:

(τ > 0 любое). (4.1)

Доказательство . Для определенности предположим, что Х - непрерывная случайная величина с плотностью f(х). По определению математического ожидания получаем

.

.

Оба слагаемых в правой части не отрицательны, в силу условий леммы, поэтому

,

но теперь x ≥ τ, и следовательно,

Таким образом,

Так как τ > 0, получим

Рассмотрим теперь случайную величину Х, имеющую математическое ожидание М(Х) и дисперсию D(X). Оценим вероятность события, заключающегося в том, что отклонение Х - М(Х) не превысит по абсолютной величине положительного числа ε. Оценка указанной вероятности получается с помощью неравенства Чебышева.

Неравенство Чебышева

Неравенство Чебышева . Вероятность того, что отклонение случайной величины Х от ее математического ожидания по абсолютной величине меньше положительного числа ε, не меньше, чем , то есть

. (4.2)

Доказательство . Приведем доказательство для дискретной (конечной) случайной величины Х:

x k +1

p k +1

p n

Рассмотрим случайную величину . Тогда ее ряд распределения имеет вид

│Х – M (X )│

│х 1 – M (X )│

│х 2 – M (X )│

│x k – M (X )│

│x k +1 – M (X )│

│x n – M (X )│

p k +1

p n

Не ограничивая общность рассуждения, можно предположить, что первые к значений случайной величины меньше заданного ε, а остальные значения не меньше ε. Тогда на основании теоремы сложения вероятностей получим следующую формулу:

. (4.3)

Чтобы найти , запишем формулу D(X) в виде

Опуская в правой части этого равенства первую сумму и заменяя во второй сумме меньшей величиной ε, получим неравенство

Из этого неравенства следует:

. (4.4)

Подставляя правую часть (4.4) в (4.3), окончательно получим

что и требовалось доказать.

Рассмотрим достаточно большое число n независимых случайных величин Х1, Х2, … Хn. Если дисперсии их ограничены числом C, то событие, заключающееся в том, что отклонение среднего арифметического этих случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым, является почти достоверным. Это предложение, относящиеся к закону больших чисел, доказал П.Л. Чебышев.

Теорема Чебышева . Если Х1, Х2, … Хn попарно независимые случайные величины, причем дисперсии их не превышают постоянного числа С, то как бы мало ни было положительное число ε, вероятность неравенства

будет как угодно близка к единице, если число n случайных величин достаточно велико.

Используя понятие предела, можно в условиях теоремы записать:

.

Вместо последней записи часто кратко говорят, что суммы сходятся по вероятности к нулю, которое записываются так, указывая над стрелкой р

.

Доказательство . Рассмотрим случайную величину , которая, по сути, является средней арифметической этих величин. Случайная величина Х есть линейная функция независимых случайных величин Х1, Х2, … Хn. На основании свойств математического ожидания и дисперсии можно записать:

По условию теоремы D(Xi) ≤ С, поэтому

.

Теперь можно воспользоваться неравенством Чебышева:

Переходя к пределу при , будем иметь:

.

Так как вероятность не может быть больше единицы, этот предел равен единице, что и требовалось доказать.

Из теоремы Чебышева следует утверждение, заключающиеся в том, что среднее арифметическое достаточно большого числа независимых случайных величин, имеющих ограниченные дисперсии, утрачивает случайный характер и становится детерминированной величиной.

Пример 4.1. Дисперсия каждой из 6250 независимых случайных величин не превосходит 9. Оценить вероятность того, что абсолютная величина отклонения средней арифметической этих случайных величин от средней арифметической их математических ожиданий не превысит 0,6.

Решение . Согласно теореме Чебышева искомая вероятность Р не меньше . По условиям задачи C = 9, n = 6250, ε = 0,6, следовательно, в соответствии с выражением (4.5) Р ≥ 0,996.

Отметим некоторые важные частные случаи теоремы Чебышева.

Теорема Бернулли . Пусть производится n независимых испытаний, в каждом из которых вероятность появления события постоянна и равна р. Тогда каково бы ни было ε > 0,

, (4.6)

где m/n - частость (относитетельная частота) появления события А.

Доказательство . Для доказательства рассмотрим случайную величину Хi = mi, являющуюся числом наступления события А в I испытании, так что m = m1 + m2 +…+ mi +…+ mn, и случайные величины mi попарно независимы. Ранее было показано, что М(mi) = p и D(mi) = pq. Так как pq ≤ 1/4, то дисперсии случайных величин mi ограничены одним и тем же числом С = 1/4, следовательно, получаем все условия, при которых справедлива теорема Чебышева и окончательно получим

, (4.7)

Пример 4.2. На предприятии, выпускающем кинескопы, 0,8 всей продукции выдерживает гарантийный срок службы. С вероятностью, превышающей 0,95, найти пределы, в которых находится доля кинескопов, выдерживающих гарантийный срок, из партии 8000 кинескопов.

Решение . Применяем теорему Бернулли при n = 8000, Р ≥ 0,95, р = 0,8 и q = 0,2. Подставляя данные p, q и n в формулу (4.7)

найдем ε=0,02. Раскрывая модуль в соотношении (4.6), из неравенства получим

или 6240 < m < 6560.

Теорема Пуассона. Если в последовательности независимых испытаний появление события А в k-ом испытании равна рk, то

(4.8)

где m есть случайная величина, равная числу появлений события А в первых n испытаниях.

Доказательство . Пусть случайная величина Хк = mk означает число появления события А в k-м испытании. Тогда , и случайные величины mk попарно независимы. Таким образом, теорема Пуассона является частным случаем теоремы Чебышева. На основании свойств математического ожидания и дисперсии случайной величины получим следующие формулы:

,

где черта над вероятностями означает их средние значения.

Подставляя эти формулы в неравенство Чебышева (4.5), получаем неравенство, выражающее теорему Пуассона:

, (4.9)

и переходя к пределу, при n, стремящимся к бесконечности, окончательно получим

Пример 4.3. Произведено 900 независимых испытаний, причем в 450 из этих испытаний вероятность появления события А равна 2/3, в 200 - 0,5, в 160 - 0,3 и в 90 - 0,4. Найти оценку вероятности того, что частость или относительная частота появления события А отклоняется по абсолютной величине от средней вероятности не больше, чем на 0,1.

Решение . Применяем теорему Пуассона. Находим :

Подставляя в правую часть неравенства (4.9)

значения , ε и n, получим Р ≥ 0,97.

Теорема Бернулли является частным случаем теоремы Пуассона.

В самом деле, если вероятность появления данного события в каждом испытании постоянна: р1 = р2 = … = рn = р, то = р и = pq.

Замечание. В тех случаях, когда вероятность появления события в каждом испытании не известна, за верхнюю границу дисперсии принимают C = 1/4, т.е.

.

Теорема Лапласа

Теоремы Чебышева, Бернулли, Пуассона устанавливают нижнюю границу вероятности, что часто бывает недостаточно. В некоторых случаях важно знать достаточно точное значение вероятности. Этому требованию отвечают так называемые предельные теоремы закона больших чисел, указывающие асимптотические формулы для вероятностей неравенства относительно n случайных величин Xi.

Мы уже знаем, что вероятность неравенства вычисляется по интегральной теорема Лапласа, а именно

,

Следовательно, достаточно точным выражением теоремы Бернулли является интегральная теорема Лапласа. Асимптотическую формулу для теоремы Чебышева доказал его ученик А.М. Ляпунов. Приведем теорему Ляпунова, доказательство которой мы провели в 4-х лекции.

Центральная предельная теорема

Теорема Ляпунова. Рассмотрим n независимых случайных величин Х1, Х2,…,Хn, удовлетворяющих условиям:

1) все величины имеют определенные математические ожидания и конечные дисперсии;

2) ни одна из величин не выделяется резко от остальных по своим значениям.

Тогда при неограниченном возрастании n распределение случайной величины приближается к нормальному закону.

Таким образом, имеем следующую асимптотическую формулу:

, (4.10)

где .

Пример 4.4. Дисперсия каждой из 400 независимых случайных величин равна 25. Найти вероятность того, что абсолютная величина отклонения средней арифметической случайных величин от средней арифметической их математических ожиданий не превысит 0,5.

Решение . Применим теорему Ляпунова. По условию задачи n = 400, D(Xi) = 25, следовательно, и ε = 0,5. Подставляя эти данные в формулу получим t = 2 откуда Р = Ф(2) = 0,9545.

В заключение приведем доказательство неравенства Чебышева для непрерывных случайных величин.

Лемма (неравенство Чебышева) . Для любого e e

Что и требовалось доказать.

1

В данной статье рассматриваются предельные теоремы теории вероятностей, в частности неравенство Чебышева, закон больших чисел, которые устанавливают связь между теоретическими и экспериментальными характеристиками случайных величин при большом числе испытаний над ними. Материал статьи ориентирован на детальную проработку основной теоремы Чебышева. Ее доказательство базируется на весьма общей лемме, известной под названием неравенство Чебышева. Данное неравенство справедливо для дискретных и непрерывных случайных величин. Неравенство Чебышева имеет ограниченное значение, так как часто дает грубую и очевидную оценку. Сущность теоремы состоит в том, что отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало. Теорема Чебышева представляет собой яркий пример, который подтверждает справедливость учения диалектического материализма о связи между случайностью и необходимостью.

теория вероятностей

случайные величины

предельные теоремы

закон больших чисел

неравенство Чебышева

теорема Чебышева

1. Бочаров П.П., Печинкин А.В. Теория вероятностей. Математическая статистика. – М.: Гардарика, 2009. – 328с.

2. Булдык Г.М. Теория вероятностей и математическая статистика. 2005. – 285с.

3. Гмурман В.Е. Теория вероятностей и математическая статистика: учебное пособие. – 12 издание – М.: Высшее образование, 2008. – 479с. – (Основы наук)

4. Письменный Д. Конспект лекций по теории вероятностей, математической статистике и случайным процессом/ Дмитрий Письменный. – 3-е издание – М.: Айрис-пресс, 2008. – 288с. – (Высшее образование)


Введение

Предельные теоремы условно делят на две группы. К первой группе теорем относится закон больших чисел, устанавливающий устойчивость средних значений: при большом числе испытаний их средний результат перестает быть случайным и может быть предсказан с точностью. Вторая группа теорем, которая называется центральной предельной теоремой, она устанавливает условия, благодаря которым закон распределения суммы большого числа случайных величин неограниченно приближается к нормальному.

В данной статье мы рассмотрим неравенство Чебышева, которое используется: а) для грубой оценки вероятностей событий, связанных со случайными величинами, распределение которых неизвестно; б) доказательства ряда теорем закона больших чисел.

Целью данной статьи является успешное изучение и практическое применение теоремы Чебышева и закона больших чисел для эффективной математической подготовки студентов экономических специальностей высших учебных заведений.

Неравенство Чебышева

Неравенство Чебышева справедливо для дискретных и непрерывных случайных величин.

Теорема 1. Если случайная величина Х имеет математическое ожидание М(Х)=а и дисперсию D(Х), то для любого ε>0 справедливо неравенство Чебышева.

P {|X-M(X)|}≥ε}≤ (1)

Докажем теорему (1) для непрерывной случайной величины Х с плотностью f(x).

Вероятность - это вероятность попадания случайной величины Х в область, лежащую вне промежутка .Можно записать

Так как область интегрирования можно записать в виде2 ≥ ε2,откуда следует. Имеем

так как интеграл неотрицательной функции при расширении области интегрирования может только увеличиться. Поэтому

Аналогично доказывается неравенство Чебышева и для дискретной случайной величины. Рассмотрим случайную величину Х с математическим ожиданием М(Х) и дисперсией D(X). Тогда теорема, приведенная ниже, является справедливой.

Теорема 2. Вероятность того, что величина Х отклоняется от своего математического ожидания М(Х) не меньше любого положительного числа ε ограничена сверху величиной , то есть

P {|X - M(X)|} <ε} ≥ 1- (2)

В форме (2) оно устанавливает нижнюю границу вероятности события, а в форме (1) - верхнюю.

Неравенство Чебышева справедливо для случайных величин Х= m, имеющей биноминальное распределение с математическим ожиданием М(Х) = а = np и дисперсией D(X) = npq. Данное неравенство принимает вид

P {| m - np | (3)

для частости события в n независимых испытаниях, в каждом из которых оно может произойти с вероятностью p=M()=a, дисперсия которых D()=, неравенство Чебышева имеет вид

P {| - p| (4)

Неравенство Чебышева имеет ограниченное значение, так как часто дает грубую и очевидную оценку. Например, если D(X) >ε2 и > 1, то 1-> 0; поэтому в данном случае неравенство Чебышева указывает на то, что вероятность отклонения неотрицательна, а это и без того тривиально,так как любая вероятность выражается неотрицательным числом. Это неравенство используется для вывода теоремы Чебышева.

Теорема Чебышева

Рассмотрим случайную величину Х, в которой закон распределения изменяется от эксперимента к эксперименту. Тогда будем иметь дело с несколькими (n) величинами.

Теорема 3. Если Х1, Х2, …, Xn независимые случайные величины с конечными математическими ожиданиями М(Хi), i=, и дисперсиями D(Хi), i=, ограниченными одним и тем же числом С, то есть D(Хi) < С, i=, то при возрастании n среднее арифметическое наблюдаемых значений величин Хi, i=, сходится по вероятности к среднему арифметическому их ожиданий, то есть для любого ε> 0

Рассмотрим величинуY=. Ее математическое ожиданиеM(Y) = , а дисперсияD(Y) = .

Применим к величине Y неравенство Чебышева, получим

P ()

Так как, то

Как бы ни было мало , переходя к пределу в формуле (6) при n, получим

что и требовалось доказать.

Таким образом, теорема Чебышева утверждает, что среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограниченны) перестает быть случайной величиной. То есть оно является устойчивым и сходится по вероятности к определенной неслучайной величине, так как среднее арифметическое математических ожиданий - величина неслучайная.

Можно получить другую формулировку закона больших чисел, если в формуле (5) перейти к вероятности противоположного события

Для одинаково распределенных случайных величин Хi, i= существует частный случай теоремы Чебышева.

Теорема 4 (теорема Хинчина). Пусть Х1, Х2, … - независимые одинаково распределенные случайные величины, которые имеют конечные математические ожидания М(Хi) = m. Тогда последовательность {Yn}, где Yn, сходится m с вероятностью 1, то есть для любого ε>0

Закон больших распространяется на зависимые случайные величины.

Теорема 5 (теорема Маркова). Если для случайных величин Х1, Х2, …

= 0

то среднее арифметическое наблюдаемых значений случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий:

для любого ε> 0

Сущность теоремы Чебышева состоит в том, что отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеяно мало.

Отсюда следует, невозможно с уверенностью предсказать какое вероятное значение примет каждое из случайных величин, но можно предвидеть какое значение примет их среднее арифметическое.

Таким образом, среднее арифметическое достаточно большого числа независимых случайных величин утрачивает характер случайной величины. Это можно объяснить тем, что отклонение каждой их величин от своих математических ожиданий могут быть и положительными, и отрицательными, а в среднем арифметическом они взаимно погашаются.

Теорема Чебышева является справедливой не только для дискретных, но и для непрерывных величин; она представляет собой яркий пример, который подтверждает справедливость учения диалектического материализма о связи между случайностью и необходимостью.

Библиографическая ссылка

Минасова Н.Р., Макеева О.О. ПРЕДЕЛЬНЫЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ // Международный студенческий научный вестник. – 2014. – № 2.;
URL: http://eduherald.ru/ru/article/view?id=11855 (дата обращения: 06.04.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Неравенство Чебышева

Наименование параметра Значение
Тема статьи: Неравенство Чебышева
Рубрика (тематическая категория) Математика

Теорема. Пусть (W,F,P) - неĸᴏᴛᴏᴩᴏᴇ вероятностное пространство и X - неотрицательная случайная величина, тогда для всякого e > 0 справедливо неравенство

(1)

Доказательство. Пусть случайная величина X представляется в виде

X = X ×I(X ³ e) + X × I(X < e) ³ XI (X ³ e) ³ eI (X³e),

где I(А) - индикатор события.

По этой причине, используя свойства математических ожиданий,

, отсюда

- это первое неравенство Чебышева.

Следствия. В случае если X - произвольная случайная величина, то для e>0

(2)

(3)

(3) - второе неравенство Чебышева в нецентрированной форме.

(4)

(4) - второе неравенство Чебышева в центрированной форме.

Пример. Дана случайная величина X с математическим ожиданием m x и дисперсией s x 2 =D x . Оценить вероятность того, что X отклонится от своего математического ожидания не меньше чем на 3s x .

Решение . Полагая в неравенстве Чебышева (формула (4)) e=3s x имеем:

ᴛ.ᴇ. вероятность того, что отклонение случайной величины от ее математического ожидания выйдет за пределы трех средних квадратических отклонений не должна быть больше 1/9. Это оценка сверху - верхняя граница вероятностного отклонения. Стоит сказать, что для нормальной случайной величины вероятностное отклонение =0,003.

Примечание. На практике имеем дело со случайными величинами, значения которых редко выходят за пределы m x ±3s x (“правило трех сигм").

Неравенство Чебышева - понятие и виды. Классификация и особенности категории "Неравенство Чебышева" 2017, 2018.

  • - Теорема 1. Неравенство Чебышева.

    Закон больших чисел. В широком смысле слова закон больших чисел означает, что при большом числе случайных экспериментов средний их результат практически перестает быть случайным и может быть предсказан с большой степенью определенности (т.е. событие имеет... .


  • - Неравенство Чебышева.

  • - Неравенство Чебышева.

    Случайный характер величины проявляется в том, что нельзя предвидеть, какое именно из своих значений она примет в итоге испытания. Это зависит от многих случайных причин, учесть которые мы не в состоянии. Поскольку о каждой случайной величине мы располагаем весьма... .


  • - Неравенство Чебышева

    ТЕОРЕМЕ БОЛЬШИХ ЧИСЕЛ И ЦЕНТРАЛЬНОЙ ПРЕДЕЛЬНОЙ НЕРАВЕНСТВО ЧЕБЫШЕВА, ПОНЯТИЕ О ЗАКОНЕ Если случайная величина Х с математическим ожиданием М(Х) = А может принимать только неотрицательные значения, то при любом e >0 справедливо... .


  • - ЛЕКЦИЯ 17. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ

    Если известна дисперсия случайной величины, то с ее помощью можно определить отклонение этой случайной величины на определенное значение от математического ожидания, причем оценка вероятности отклонения будет зависеть от дисперсии, а не от закона распределения....

  • Огромный опыт, накопленный человечеством, учит нас, что явления, имеющие вероятность, весьма близкую к единице, почти обязательно происходят. Точно так же события, вероятность наступления которых очень мала (иными словами, очень близка к нулю), наступают очень редко. Это обстоятельство играет основную роль для всех практических выводов из теории вероятностей, так как указанный опытный факт даёт право в практической деятельности считать мало вероятные события практически невозможными, а события, происходящие с вероятностями, весьма близкими к единице, практически достоверными. При этом на вполне естественный вопрос, какова должна быть вероятность, чтобы мы могли событие считать практически невозможным (практически достоверным), однозначного ответа дать нельзя. И это понятно, так как в практической деятельности необходимо учитывать важность тех событий, с которыми приходится иметь дело.

    Так, например, если бы при измерении расстояния между двумя пунктами оказалось, что оно равно 5340м и ошибка этого измерения с вероятностью 0,02 равна или больше (или меньше) 20м, то мы можем пренебречь возможностью такой ошибки и считать что расстояние действительно равно 5340м. Таким образом, в данном примере мы считаем событие с вероятностью 0,02 практически несущественным (практически невозможным) и в своей практической деятельности его не учитываем. В то же время в других случаях пренебрегать вероятностями 0,02 и даже ещё меньшими нельзя. Так, если при строительстве большой гидроэлектростанции, требующей огромных материальных затрат и человеческого труда, выяснилось, что вероятность катастрофического паводка в рассматриваемых условиях равна 0,02, то эта вероятность будет сочтена большой и при проектировании станции она должна быть обязательно учтена, а не отброшена, как это было сделано в предыдущем примере.

    Таким образом, только требования практики могут нам подсказать критерии, согласно которым мы будем считать те или иные события практически невозможными или практически достоверными.

    В то же время необходимо заметить, что любое событие, имеющее положительную вероятность, пусть даже близкую к нулю, может произойти. И если число испытаний, в каждом из которых оно может произойти с одной и той же вероятностью, очень велико, то вероятность хотя бы однократного его появления может стать сколь угодно близкой к единице. Это обстоятельство постоянно следует иметь в виду.

    Из сказанного понятно, что в практической деятельности, да и в общетеоретических задачах, большое значении имеют события с вероятностями, близкими к единице или нулю. Отсюда становится ясным, что одной из основных задач теории вероятностей должно быть установление закономерностей, происходящих с вероятностями, близкими к единице; при этом особую роль должны играть закономерности, возникающие в результате наложения большого числа независимых или слабо зависимых случайных фактов.

    Действительно, нельзя заранее уверенно предвидеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих случайных причин, учесть которые мы не в состоянии. Казалось бы, что поскольку о каждой случайной величине мы располагаем в этом смысле весьма скромными сведениями, то вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин. На самом деле это не так. Оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.

    Наличие связи между теоретическими и экспериментальными характеристиками случайных величин, проявляемой в большом числе опытов, позволяет предугадывать результаты массовых случайных явлений долей уверенности. Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в ряде предельных теорем, одна группа которых объединена под общим названием «Закон больших чисел», другая же – под общим названием «Центральная предельная теорема».

    Закон больших чисел состоит из теорем Чебышева и Бернулли (имеются и другие теоремы), в которых доказывается приближение при определённых условиях среднего арифметического случайных величин к некоторым случайным характеристикам. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли – простейшим.

    В другой же группе предельных теорем, объединённых под общим названием «Центральная предельная теорема», устанавливается факт приближения при определённых условиях закона распределения суммы случайных величин к нормальному закону распределения. Математически это выражается в виде условий, которые должны выполняться для рассматриваемых случайных величин, то есть необходимо выполнение некоторых условий для случайных величин
    , при которых суммарная случайная величина
    распределена по нормальному закону.

    Таким образом, закон больших чисел и центральная теорема составляют две группы предельных теорем теории вероятностей, которые в совокупности позволяют вполне обоснованно осуществлять прогнозы в области случайных явлений, давая при этом оценку точности производимых прогнозов.

      Теорема Чебышева

    Для доказательства теоремы Чебышева (да и других теорем, в том числе) воспользуемся одноимённым неравенством. Неравенство Чебышева (как впрочем и теорема) справедливо как для дискретных, так и для непрерывных случайных величин. Мы ограничимся, например, доказательством неравенства для непрерывной случайной величины.

    НЕРАВЕНСТВО Чебышева 1: Вероятность того, что отклонение случайной величины Х , имеющей конечную дисперсию
    , от её математического ожидания по абсолютной величине на меньше любого положительного числа, ограничена сверху величиной
    , то есть, справедливо неравенство:

    .

    Доказательство : По определению дисперсии для непрерывной случайной величины можем записать

    .

    Выделим на числовой оси Ох -окрестность точки
    (см. рис.). Заменим теперь интегрирование по всей оси интегралом по переменнойх на множестве . Так как под знаком интеграла стоит неотрицательная функция 2 , то результат интегрирования в результате может только уменьшиться, то есть

    Интеграл в правой части полученного неравенства – это вероятность того, что случайная величина Х будет принимать значения вне интервала
    . Значит

    Неравенство доказано.

    Замечание . Неравенство Чебышева имеет для практики ограниченное значение, поскольку часто даёт грубую, а иногда и тривиальную (не представляющую интереса) оценку. Например, если
    и, следовательно,
    ; таким образом, в этом случае неравенство Чебышева указывает лишь на то, что вероятность отклонения находится в пределах от нуля до единицы, а это и без того очевидно, так как любая вероятность удовлетворяет этому условию.

    Теоретическое же значение неравенства Чебышева весьма велико. Оценка, полученная Чебышевым, является универсальной, она справедлива для любых случайных величин, имеющих
    и
    .

    ПРИМЕР .Найти вероятность выхода случайной величины Х , имеющей математическое ожидание
    и дисперсию
    , за трёхсигмовые границы.

    Решение . Воспользуемся неравенством Чебышева:

    Сравним полученный результат с тем, который следует из правила трёх сигм для нормального закона распределения:

    Нетрудно сделать ВЫВОД : случайные величины, встречающиеся на практике, чаще всего имеют значительно меньшую вероятность выхода за трёхсигмовые границы, чем 1/9. Для них область является областью практически возможных значений случайной величины.

    ТЕОРЕМА Чебышева (частный случай): Пусть Х 1 , Х 2 , …, Х n – попарно независимые случайные величины, имеющие одно и то же математическое ожидание М (Х ), и пусть дисперсии этих величин равномерно ограничены (то есть не превышают некоторого постоянного числа С ). Тогда, при достаточно большом числе независимых опытов среднее арифметическое наблюдаемых значений случайных величин сходится по вероятности к их математическому ожиданию, то есть имеет место равенство:

    .

    Доказательство . Применим к случайной величине
    неравенство Чебышева:

    .

    Заметим (по условиям теоремы), что для дисперсии
    справедливы соотношения:

    То есть
    .

    Тогда, согласно неравенству Чебышева

    .

    Переходя к пределу при
    получаем

    .

    А так как вероятность не может быть больше единицы, то отсюда и следует утверждение теоремы.

    Теорема Чебышева была обобщена на более общий случай, доказательство которой проводится аналогично доказательству, предложенному выше.

    ТЕОРЕМА Чебышева (общий случай): Пусть Х 1 , Х 2 , …, Х n – попарно независимые случайные величины, и пусть дисперсии этих величин равномерно ограничены (то есть не превышают некоторого постоянного числа С ). Тогда, при достаточно большом числе независимых опытов среднее арифметическое наблюдаемых значений случайных величин сходится по вероятности к среднему арифметическому их математических ожиданий, то есть имеет место равенство:

    .

      Сущность теоремы Чебышева

    Сущность доказанной теоремы такова: хотя отдельные независимые случайные величины могут принимать значения далёкие от своих математических ожиданий, среднее арифметическое достаточно большого числа случайных величин с большой вероятностью принимает значения близкие к определённому постоянному числу, а имен к числу
    (или к числу
    в частном случае). Другими словами, отдельные случайные величины могут иметь значительный разброс, а их среднее арифметическое рассеянно мало.

    Таким образом, нельзя уверенно предсказать, какое возможное значение примет каждая из случайных величин, но можно предвидеть какое значение примет их среднее арифметическое.

    Итак, среднее арифметическое достаточно большого числа независимых случайных величин (дисперсии которых равномерно ограничены) утрачивает характер случайной величины . Объясняется это тем, что отклонения каждой из величин от своих математических ожиданий могут быть как положительными, так и отрицательными, а в среднем арифметическом они взаимно погашаются.

      Значение теоремы Чебышева для практики

    Приведём примеры применения теоремы Чебышева к решению практических задач.

    Обычно для измерения некоторой физической величины производят несколько измерений и их среднее арифметическое принимают в качестве искомого размера. При каких условиях этот способ измерения можно считать правильным? Ответ на этот вопрос даёт теорема Чебышева (частный случай).

    Действительно, рассмотрим результаты каждого измерения как случайные величины Х 1 , Х 2 , …, Х n . К этим величинам может быть применена теорема Чебышева, если: 1) они попарно независимы, 2) имеют одно и то же математическое ожидание, 3) дисперсии их равномерно ограничены.

    Первое требование выполняется, если результат каждого измерения не зависит от результатов остальных измерений.

    Второе требование выполняется, если измерения произведены без систематических (одного знака) ошибок. В этом случае математические ожидания всех случайных величин одинаковы и равны истинному размеру
    .

    Третье требование выполняется, если прибор обеспечивает определённую точность измерений. Хотя при этом результаты отдельных измерений различны, но рассеяние их ограничено.

    Если все указанные требования выполнены, мы вправе применить к результатам измерений теорему Чебышева (частный случай): при достаточно большом - числе измерений вероятность неравенства

    как угодно близка к единице. Другими словами, при достаточно большом числе измерений почти достоверно, что их среднее арифметическое сколь угодно мало отличается от истинного значения измеряемой величины.

    Итак, теорема Чебышева указывает условия, при которых описанный способ измерения может быть применим 1 .

    На теореме Чебышева основан широко применяемый в статистике выборочный метод, суть которого состоит в том, что по сравнительно небольшой случайной выборке судят обо всей совокупности (генеральной совокупности) исследуемых объектов. Например, о качестве кипы хлопка заключают по небольшому пучку, состоящему из волокон, наудачу отобранных из разных мест кипы. Хотя число волокон в пучке значительно меньше, чем в кипе, сам пучок содержит достаточно большое количество волокон, исчисляемых сотнями.

    В качестве другого примера можно указать на определение качества зерна по небольшой его пробе. И в этом случае число наудачу отобранных зёрен малó сравнительно со всей массой зерна, но само по себе оно достаточно великó.

    Уже из приведённых примеров можно заключить, что для практики теорема Чебышева имеет неоценимое значение.

    1 Есть и другая формулировка: Вероятность того, что отклонение случайной величины Х от её математического ожидания по абсолютной величине меньше положительного числа , не меньше чем
    , то есть справедливо неравенство
    .

    2 Напомним, что
    R

    1 Однако ошибочно думать, что увеличивая число измерений можно достичь сколь угодно большой точности. Дело в том, что сам прибор даёт показания лишь с точностью
    ; поэтому каждый из результатов измерений, а следовательно и их среднее арифметическое, будут получены лишь с точностью, не превышающей точности прибора.

    Неравенства Чебышёва

    Во введении к разделу обсуждалась задача проверки того, что доля дефектной продукции в партии равна определенному числу. Для демонстрации вероятностно-статистического подхода к проверке подобных утверждений являются полезными неравенства, впервые примененные в теории вероятностей великим русским математиком Пафнутием Львовичем Чебышёвым (1821-1894) и потому носящие его имя. Эти неравенства широко используются в теории математической статистики, а также непосредственно применяются в ряде практических задач принятия решении. Например, в задачах статистического анализа технологических процессов и качества продукции в случаях, когда явный вид функции распределения результатов наблюдений не известен. Они применяются также в задаче исключения резко отклоняющихся результатов наблюдений.

    Первое неравенство Чебышева. Пусть Х – неотрицательная случайная величина (т.е. для любого ). Тогда для любого положительного числа а справедливо неравенство

    Доказательство. Все слагаемые в правой части формулы (4), определяющей математическое ожидание, в рассматриваемом случае неотрицательны. Поэтому при отбрасывании некоторых слагаемых сумма не увеличивается. Оставим в сумме только те члены, для которых . Получим, что

    . (9)

    Для всех слагаемых в правой части (9) , поэтому

    Из (9) и (10) следует требуемое.

    Второе неравенство Чебышева. Пусть Х – случайная величина. Для любого положительного числа а справедливо неравенство

    .

    Это неравенство содержалось в работе П.Л.Чебышёва «О средних величинах», доложенной Российской академии наук 17 декабря 1866 г. и опубликованной в следующем году.

    Для доказательства второго неравенства Чебышёва рассмотрим случайную величину У = (Х – М(Х)) 2 . Она неотрицательна, и потому для любого положительного числа b , как следует из первого неравенства Чебышёва, справедливо неравенство

    .

    Положим b = a 2 . Событие { Y > b } совпадает с событием {| X M (X )|> a }, а потому

    что и требовалось доказать.

    Пример 11 . Можно указать неотрицательную случайную величину Х и положительное число а такие, что первое неравенство Чебышёва обращается в равенство.

    Достаточно рассмотреть . Тогда М(Х) = а, М(Х)/а = 1 и Р(а> a ) = 1, т.е. P (X > a ) = M (X )| a = 1.

    Следовательно, первое неравенство Чебышёва в его общей формулировке не может быть усилено. Однако для подавляющего большинства случайных величин, используемых при вероятностно-статистическом моделировании реальных явлений и процессов, левые части неравенств Чебышёва много меньше соответствующих правых частей.

    Пример 12. Может ли первое неравенство Чебышёва обращаться в равенство при всех а ? Оказывается, нет. Покажем, что для любой неотрицательной случайной величины с ненулевым математическим ожиданием можно найти такое положительное число а , что первое неравенство Чебышёва является строгим.

    Действительно, математическое ожидание неотрицательной случайной величины либо положительно, либо равно 0. В первом случае возьмем положительное а , меньшее положительного числа М(Х), например, положим а = М(Х)/ 2. Тогда М(Х)/а больше 1, в то время как вероятность события не может превышать 1, а потому первое неравенство Чебышева является для этого а строгим. Второй случай исключается условиями примера 11.

    Отметим, что во втором случае равенство 0 математического ожидания влечет тождественное равенство 0 случайной величины. Для такой случайной величины левая и правая части первого неравенства Чебышёва равны 0 при любом положительном а .

    Можно ли в формулировке первого неравенства Чебышева отбросить требование неотрицательности случайной величины Х ? А требование положительности а ? Легко видеть, что ни одно из двух требований не может быть отброшено, поскольку иначе правая часть первого неравенства Чебышева может стать отрицательной.