Отраженное нормальное распределение. Нормальное распределение случайной величины. Стандартное нормальное распределение

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Найдем функцию распределения F(x) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдем экстремум функции.

Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно .

Построим график функции плотности распределения.

Построены графики при т =0 и трех возможных значениях среднего квадратичного отклонения s = 1, s = 2 и s = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается..

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и s = 1 кривая называется нормированной . Уравнение нормированной кривой:

Для краткости говорят, что СВ Х подчиняется закону N(m, s), т.е. Х ~ N(m, s). Параметры m и s совпадают с основными характеристиками распределения: m = m X , s = s Х = . Если СВ Х ~ N(0, 1), то она называется стандартизованной нормальной величиной . ФР стандартизованной нормальной величиной называется функцией Лапласа и обозначается как Ф(x) . С ее помощью можно вычислять интервальные вероятности для нормального распределения N(m, s):

P(x 1 £ X < x 2) = Ф - Ф .

При решении задач на нормальное распределение часто требуется использовать табличные значения функции Лапласа. Поскольку для функции Лапласа справедливо соотношение Ф(-х) = 1 - Ф(х) , то достаточно иметь табличные значения функции Ф(х) только для положительных значений аргумента.

Для вероятности попадания на симметричный относительно математического ожидания интервал справедлива формула: P(|X - m X | < e) = 2×Ф(e/s) - 1.

Центральные моменты нормального распределения удовлетворяют рекуррентному соотношению: m n +2 = (n+1)s 2 m n , n = 1, 2, ... . Отсюда следует, что все центральные моменты нечетного порядка равны нулю (так как m 1 = 0).

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

Ниже показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

2) Ф(-х ) = - Ф(х );

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Ниже показан график нормированной функции Лапласа.

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм .

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

Пример. Поезд состоит из 100 вагонов. Масса каждого вагона – случайная величина, распределенная по нормальному закону с математическим ожидание а = 65 т и средним квадратичным отклонением s = 0,9 т. Локомотив может везти состав массой не более 6600 т, в противном случае необходимо прицеплять второй локомотив. Найти вероятность того, что второй локомотив не потребуется.

Второй локомотив не потребуется, если отклонение массы состава от ожидаемого (100×65 = 6500) не превосходит 6600 – 6500 = 100 т.

Т.к. масса каждого вагона имеет нормальное распределение, то и масса всего состава тоже будет распределена нормально.

Получаем:

Пример. Нормально распределенная случайная величина Х задана своими параметрами – а =2 – математическое ожидание и s = 1 – среднее квадратическое отклонение. Требуется написать плотность вероятности и построить ее график, найти вероятность того, Х примет значение из интервала (1; 3), найти вероятность того, что Х отклонится (по модулю) от математического ожидания не более чем на 2.

Плотность распределения имеет вид:

Построим график:

Найдем вероятность попадания случайной величины в интервал (1; 3).

Найдем вероятность отклонение случайной величины от математического ожидания на величину, не большую чем 2.

Тот же результат может быть получен с использованием нормированной функции Лапласа.

Лекция 8 Закон больших чисел (Раздел 2)

План лекции

Центральная предельная теорема (общая формулировка и частная формулировка для независимых одинаково распределенных случайных величин).

Неравенство Чебышева.

Закон больших чисел в форме Чебышева.

Понятие частоты события.

Статистическое понимание вероятности.

Закон больших чисел в форме Бернулли.

Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачивает случайный характер и становится закономерным (иначе говоря, случайные отклонения от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел .

ЗАКОН БОЛЬШИХ ЧИСЕЛ – общий принцип, в силу которого совместное действие случайных факторов приводит при некоторых весьма общих условиях к результату, почти не зависящему от случая. Первым примером действия этого принципа может служить сближение частоты наступления случайного события с его вероятностью при возрастании числа испытаний (часто использующееся на практике, например, при использовании частоты встречаемости какого-либо качества респондента в выборке как выборочной оценки соответствующей вероятности).

Сущность закона больших чисел состоит в том, что при большом числе независимых опытов частота появления какого-то события близка к его вероятности.

Центральная предельная теорема (ЦПТ) (в формулировке Ляпунова А.М. для одинаково распределенных СВ). Если попарно независимые СВ X 1 , X 2 , ..., X n , ... имеют одинаковый закон распределения с конечными числовыми характеристиками M = m и D = s 2 , то при n ® ¥ закон распределения СВ неограниченно приближается к нормальному закону N(n×m, ).

Следствие. Если в условии теоремы СВ , то при n ® ¥ закон распределения СВ Y неограниченно приближается к нормальному закону N(m, s/ ).

Теорема Муавра-Лапласа. Пусть СВ К - число “успехов” в n испытаниях по схеме Бернулли. Тогда при n ® ¥ и фиксированном значении вероятности “успеха” в одном испытании p закон распределения СВ K неограниченно приближается к нормальному закону N(n×p, ).

Следствие. Если в условии теоремы вместо СВ К рассмотреть СВ К/n - частоту “успехов” в n испытаниях по схеме Бернулли, то ее закон распределения при n ® ¥ и фиксированном значении p неограниченно приближается к нормальному закону N(p, ).

Замечание. Пусть СВ К - число “успехов” в n испытаниях по схеме Бернулли. Законом распределения такой СВ является биноминальный закон. Тогда при n ® ¥ биноминальный закон имеет два предельных распределения:

n распределение Пуассона (при n ® ¥ и l = n×p = const);

n распределение Гаусса N(n×p, ) (при n ® ¥ и p = const).

Пример. Вероятность “успеха” в одном испытании всего лишь p = 0,8. Сколько нужно провести испытаний, чтобы с вероятностью не менее 0,9 можно ожидать, что наблюдаемая частота “успеха” в испытаниях по схеме Бернулли отклонится от вероятности p не более чем на e = 0,01?

Решение. Для сравнения решим задачу двумя способами.

) играет осо-бо важную роль в теории вероятностей и чаще других применяется в решении практических задач. Его главная особенность в том, что он является предельным законом, к которому приближаются дру-гие законы распределения при весьма часто встречающихся типич-ных условиях. Например, сумма достаточно большого числа неза-висимых (или слабо зависимых) случайных величин приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем больше случайных величин суммируется.

Экспериментально доказано, что нормальному закону под-чиняются погрешности измерений, отклонения геометрических размеров и положения элементов строительных конструкций при их изготовлении и монтаже, изменчивость физико-механических характеристик материалов и нагру-зок, действующих на строительные конструкции.

Распределению Гаусса подчи-няются почти все случайные вели-чины, отклонение которых от сред-них значений вызывается большой совокупностью случайных факто-ров, каждый из которых в отдельности незначителен (центральная предельная теорема).

Нормальным распределением называется распределение случайной непрерывной величины, для которых плотность вероят-ностей имеет вид (рис. 18.1).

Рис. 18.1. Нормальный закон распределения при а 1 < a 2 .

(18.1)

где а и — параметры распределения.

Вероятностные характеристики случайной величины, распре-деленной по нормальному закону, равны:

Математическое ожидание (18.2)

Дисперсия (18.3)

Среднеквадратичное отклонение (18.4)

Коэффициент асимметрии А = 0 (18.5)

Эксцесс Е = 0. (18.6)

Параметр σ, входящий в распределение Гаусса равен сред-неквадратичному отношению слу-чайной величины. Величина а оп-ределяет положение центра рас-пределения (см. рис. 18.1), а величина а — ширину распределе-ния (рис. 18.2), т.е. статистический разброс вокруг средней величины.

Рис. 18.2. Нормальный закон распределения при σ 1 < σ 2 < σ 3

Вероятность попадания в заданный интервал (от x 1 до x 2) для нормального распределения, как и во всех случаях, определяется интегралом от плотности вероятности (18.1), который не выража-ется через элементарные функции и представляется специальной функцией, называется функцией Лапласа (интеграл вероятностей).

Одно из представлений интеграла вероятностей:

(18.7)

Величина и называется квантилем.

Видно, что Ф(х) — нечетная функция, т. е. Ф(-х) = -Ф(х). Значения этой функции вычислены и представлены в виде таблиц в технической и учебной литературе.


Функция распределения нормального закона (рис. 18.3) может быть выражена через ин-теграл вероятностей:

(18.9)

Рис. 18.2. Функция нормального закона распределения.

Вероятность попадания случайной величины, распределенной по нормальному закону, в интервал от х. до х, определяется выра-жением:

Следует заметить, что

Ф(0) = 0; Ф(∞) = 0,5; Ф(-∞) = -0,5.

При решении практических задач, связанных с распределе-нием, часто приходится рассматривать вероятность попадания в интервал, симметричный относительно математического ожидания, если длина этого интервала т.е. если сам интервал имеет грани-цу от до , имеем:

При решении практических задач границы отклонений слу-чайных величин выражаются через стандарт, среднеквадратичное отклонение, умноженное на некоторый множитель, определяющий границы области отклонений случайной величины.

Принимая и а также используя формулу (18.10) и таблицу Ф(х) (приложение № 1), получим

Эти формулы показывают , что если случайная величина име-ет нормальное распределение, то вероятность ее отклонения от сво-его среднего значения не более чем на σ составляет 68,27 %, не бо-лее чем на 2σ — 95,45 % и не более чем на Зσ — 99,73 %.

Поскольку величина 0,9973 близка к единице, практически считается невозможным отклонение нормального распределения случайной величины от математического ожидания более чем на Зσ. Это правило, справедливое только для нормального распределения, называется правилом трех сигм. Нарушение его имеет вероятность Р = 1 - 0,9973 = 0,0027. Этим правилом пользуются при установле-нии границ допустимых отклонений допусков геометрических ха-рактеристик изделий и конструкций.

по сравнению с другими видами распределений. Главной особенностью этого распределения является то, что к этому закону стремятся все другие законы распределений при бесконечном повторении количества испытаний. Как получается это распределение?

Представим себе, что, взяв ручной динамометр, Вы расположились в самом людном месте Вашего города. И каждому, кто проходит мимо, Вы предлагаете измерить свою силу, сжав динамометр правой или левой рукой. Показания динамометра Вы аккуратно за-писываете. Через некоторое время, при достаточно большом количестве испытаний, Вы нанесли на ось абсцисс показания динамометра, а на ось ординат – количество людей, кото-рые "выжали" это показание. Полученные точки соединили плавной линией. В результате получается кривая, изображенная на рис.9.8 . Вид этой кривой не будет особо изменяться при увеличении времени опыта. Более того, с некоторого момента новые значения будут только уточнять кривую, не изменяя ее формы.


Рис. 9.8.

Теперь переместимся с нашим динамометром в атлетический зал и повторим эксперимент. Теперь максимум кривой сместится вправо, левый конец будет несколько затянут, в то время как правый конец ее будет более крутой (рис.9.9).


Рис. 9.9.

Заметим, что максимальная частота для второго распределения (точка В) будет ниже, чем максимальная частота первого распределения (точка А). Это можно объяснить тем, что общее количество людей, посещающих атлетический зал, будет меньше, чем количество людей, которое прошли возле экспериментатора в первом случае (в центре города в достаточно людном месте). Максимум сместился вправо, так как атлетические залы посещают физически более сильные люди по сравнению с общим фоном.

И, наконец, посетим школы, детские сады и дома престарелых с той же целью: выявить силу рук посетителей этих мест. И опять кривая распределения будет иметь похожую форму, но теперь, очевидно, более крутым будет ее левый конец, а правый более затянут. И как во втором случае, максимум (точка С) будет ниже точки А (рис.9.10).


Рис. 9.10.

Это замечательное свойство нормального распределения – сохранять форму кривой плотности распределения вероятностей (рис. 8 – 10) было замечено и описано в 1733 году Муавром, а затем исследовано Гауссом.

В научных исследованиях, в технике, в массовых явлениях или экспериментах, когда речь идет о многократно повторяющихся случайных величинах при неизменных условиях опыта, говорят, что результаты испытаний испытывают случайное рассеяние, подчиняющееся закону нормальной кривой распределения

(21)

Где - это наиболее часто встречающееся событие. Как правило, в формулу (21) вместо параметра ставят . Причем, чем длин-нее экспериментальный ряд, тем меньше параметр будет отличаться от математического ожидания. Площадь под кривой (рис.9.11) при-нимается равной единице. Площадь , отвечающая какому-либо интервалу оси абсцисс, численно равна вероятности попадания случайного результата в данный интервал .


Рис. 9.11.

Функция нормального распределения имеет вид


(22)

Заметим, что нормальная кривая (рис.9.11) симметрична относительно прямой и асимптотически приближается к оси ОХ при .

Вычислим математическое ожидание для нормального закона


(23)

Свойства нормального распределения

Рассмотрим основные свойства этого важнейшего распределения.

Свойство 1 . Функция плотности нормального распределения (21) определения на всей оси абсцисс.

Свойство 2 . Функция плотности нормального распределения (21) больше нуля для любого из области определения ().

Свойство 3 . При бесконечном увеличении (уменьшении) функция распределения (21) стремится к нулю .

Свойство 4 . При функция распределения , заданная (21), имеет наибольшее значение , равное

(24)

Свойство 5 . График функции (рис.9.11) симметричен относительно прямой .

Свойство 6 . График функции (рис.9.11) имеет по две точки перегиба симметричные относительно прямой :

(25)

Свойство 7 . Все нечетные центральные моменты равны нулю. Заметим, что используя свойство 7, определяют асимметрию функции по формуле . Если , то делают вывод , что исследуемое распределение симметрично относительно прямой . Если , то говорят, что ряд смещен вправо (более пологая правая ветвь графика или затянута). Если , тогда считают, что ряд смещен влево (более пологая левая ветвь графика рис.9.12).


Рис. 9.12.

Свойство 8 . Эксцесс распределения равен 3. Часто на практике вычисляют и по близости этой величины к нулю определяют степень "сжатия" или "размытости" графика (рис.9.13). А так как связан с , то, в конечном итоге характеризует степень рассеяния частоты данных. А так как определяет

Краткая теория

Нормальным называют распределение вероятностей непрерывной случайной величины , плотность которого имеет вид:

где – математическое ожидание , – среднее квадратическое отклонение .

Вероятность того, что примет значение, принадлежащее интервалу :

где – функция Лапласа :

Вероятность того, что абсолютная величина отклонения меньше положительного числа :

В частности, при справедливо равенство:

При решении задач, которые выдвигает практика, приходится сталкиваться с различными распределениями непрерывных случайных величин .

Кроме нормального распределения, основные законы распределения непрерывных случайных величин:

Пример решения задачи

На станке изготавливается деталь. Ее длина - случайная величина, распределенная по нормальному закону с параметрами , . Найти вероятность того, что длина детали будет заключена между 22 и 24,2 см. Какое отклонение длины детали от можно гарантировать с вероятностью 0,92; 0,98? В каких пределах, симметричных относительно , будут лежать практически все размеры деталей?

вступайте в группу ВК .

Решение:

Вероятность того, что случайная величина, распределенная по нормальному закону, будет находиться в интервале :

Получаем:

Вероятность того, что случайная величина, распределенная по нормальному закону, отклонится от среднего не более чем на величину :

По условию

:

Если вам сейчас не требуется помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт,

В теории вероятностей рассматривается достаточно большое количество разнообразных законов распределения. Для решения задач, связанных с построением контрольных карт, представляют интерес лишь некоторые из них. Важнейшим из них является нормальный закон распределения , который применяется для построения контрольных карт, используемых при контроле по количественному признаку , т.е. когда мы имеем дело с непрерывной случайной величиной. Нормальный закон распределения занимает среди других законов распределения особое положение. Это объясняется тем, что, во-первых, наиболее часто встречается на практике, и, во-вторых, он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях. Что касается второго обстоятельства, то в теории вероятностей доказано, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, могут быть представлены как сумма весьма большего числа сравнительно малых слагаемых - элементарных ошибок, каждая из которых вызвана действием отдельной причины, независящей от остальных. Нормальный закон проявляется в тех случаях, когда случайная переменная Х является результатом действия большого числа различных факторов. Каждый фактор в отдельности на величину Х влияет незначительно, и нельзя указать, какой именно влияет в большей степени, чем остальные.

Нормальное распределение (распределение Лапласа–Гаусса ) – распределение вероятностей непрерывной случайной величины Х такое, что плотность распределения вероятностей при - ¥ <х< + ¥ принимает действительное значение:

Ехр (3)

То есть, нормальное распределение характеризуется двумя параметрами m и s, где m - математическое ожидание; s- стандартное отклонение нормального распределения.

Величина s 2 – это дисперсия нормального распределения.

Математическое ожидание m характеризует положение центра распределения, а стандартное отклонение s (СКО) является характеристикой рассеивания (рис. 3).

f(x) f(x)


Рисунок 3 – Функции плотности нормального распределения с:

а) разными математическими ожиданиями m; б) разными СКО s .

Таким образом, значением μ определяется положением кривой распределения на оси абсцисс. Размерность μ - та же, что и размерность случайной величины X . С ростом математического ожидания mобе функции сдвигается параллельно вправо. С убывающей дисперсией s 2 плотность все больше концентрируется вокруг m, в то время как функция распределения становится все более крутой.

Значением σ определяется форма кривой распределения. Поскольку площадь под кривой распределения должна всегда оставаться равной единице, то при увеличении σ кривая распределения становится более плоской. На рис. 3.1 показаны три кривые при разных σ: σ1 = 0,5; σ2 = 1,0; σ3 = 2,0.

Рисунок 3.1 – Функции плотности нормального распределения с разными СКО s .

Функция распределения (интегральная функция) имеет вид (рис. 4):

(4)

Рисунок 4 – Интегральная (а) и дифференциальная (б) функции нормального распределения

Особенно важно то линейное преобразование нормально распределенной случайной переменной Х , после которого получается случайная переменная Z с математическим ожиданием 0 и дисперсией 1. Такое преобразование называется нормированием:

Его можно провести для каждой случайной переменной. Нормирование позволяет все возможные варианты нормального распределения свести к одному случаю: m = 0, s = 1.

Нормальное распределение с m = 0, s = 1 называется нормированным нормальным распределением (стандартизованным) .

Стандартное нормальное распределение (стандартное распределение Лапласа–Гаусса или нормированное нормальное распределение) – это распределение вероятностей стандартизованной нормальной случайной величины Z , плотность распределения которой равна:

при - ¥ <z < + ¥

Значения функции Ф(z) определяется по формуле:

(7)

Значения функции Ф(z) и плотности ф(z) нормированного нормального распределения рассчитаны и сведены в таблицы (табулированы). Таблица составлена только для положительных значений z поэтому:

Ф (z) = 1 Ф (z) (8)

С помощью этих таблиц можно определить не только значения функции и плотности нормированного нормального распределения для заданного z , но и значения функции общего нормального распределения, так как:

; (9)

. 10)

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины Х , подчиненной нормальному закону с параметрами m и s, на определенный участок. Таким участком может быть, например, поле допуска на параметр от верхнего значения U до нижнего L .

Вероятность попадания в интервал от х 1 до х 2 можно определить по формуле:

Таким образом, вероятность попадания случайной величины (значение параметра) Х в поле допуска определяется формулой

Можно найти вероятность того, что случайная переменная Х окажется в пределах μ k s. Полученные значения для k =1,2 и 3 следующие (также смотрим рис. 5):

Таким образом, если какое-либо значение появляется за пределами трехсигмового участка, в котором находятся 99,73% всех возможных значений, а вероятность появления такого события очень мала (1:270), следует считать, что рассматриваемое значение оказалось слишком маленьким или слишком большим не из-за случайного варьирования, а из-за существенной помехи в самом процессе, способной вызывать изменения в характере распределения.

Участок, лежащий внутри трехсигмовых границ, называют также областью статистического допуска соответствующей машины или процесса.